U.G. 6th Semester Examination - 2025

MATHEMATICS

[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code: MATH-G-DSE-T-02(A)&(B)

[Old Syllabus]

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. Symbols and Notations have their usual meanings.

Answer all the questions from Selected Option.

OPTION-A MATH-G-DSE-T-02A (Linear Programming)

- 1. Answer any ten questions: $2 \times 10 = 20$
 - a) State fundamental theorem of L.P.P.
 - b) State the fundamental theorem of duality.
 - c) Prove that dual of the dual is the primal.
 - d) Write the standard form of an assignment problem.
 - e) Prove that $X=\{(x_1,x_2)|x_1 \le 5, x_2 \ge 3\}$ is a convex set.
 - f) Write the dual of the following L.P.P:

Max Z = CX

subject to $AX \le b$

 $X \ge 0$.

g) What are the assumptions made in the theory of games?

b) i) Find the value of the game and the optimal strategy for each player of the game whose pay-off matrix is given below:

	.•	В			
	•	\mathbf{B}_{1}	$\mathbf{B_2}$	B_3	
	$\mathbf{A}_{\mathbf{l}}$	1	-1	-1	
	A ₂	-1	-1	3	
•	A_3	-1	2	-1	

ii) Solve the following game problem:

		D		
		_ B ₁ .	B_2	
A	A_{l}	-2	5	
	$\mathbf{A_2}^{\cdot}$	7	-6	

c) i) Solve the following transportation problem.

	D_1	D_2	D_3	D4	$\mathbf{a}_{\mathbf{i}}$
O ₁ O ₂ O ₃	3	7	2	1	111
O_2	9	4	7	3	20
O ₃	10	2	8	3	20 35
$\mathbf{b_{j}}$	10	5	21	30	, 50

ii) Solve the following assignment problem.

•	I	II	III	īv	
A	42	35	28	21	_
A B C D	42 30 30 24	25 25	20 20	. 15 15	
D	24	20	16	12	

(4)

OPTION-B

MATH-G-DSE-T-02B

(Numerical Methods)

1. Answer any ten questions:

- $2 \times 10 = 20$
- a) If f(-2) = f(3) = 7 and f(0) = 1, find f(10).
- b) What do you mean by the degree of precision of a quadrature formula?
- c) Show that $\Delta\{\log f(x)\} = \log\left[1 + \frac{\Delta f(x)}{f(x)}\right]$.
- d) If $f(x) = e^{ax-b}$, prove that f(0), $\Delta f(0)$, and $\Delta^2 f(0)$ are in G.P.
- e) Find the relative error the computation of $y = x^3 + 3x^2 x$, for $x = \sqrt{2}$, taking $\sqrt{2} = 1.414$.
- f) State the fundamental theorem of the calculus of finite differences.
- g) Find the minimum number of iterations required to attain an accuracy of 0.001 in an interval [1, 2] using bisection method.
- h) Describe geometrically the convergence of the method of false position.
- i) The Trapezoidal rule applied to $\int_1^3 f(x) dx$ gives the value 8 and the Simpson's one-third rule gives the value 4. Find f(2).
- j) Apply Runge-Kutta method of fourth order to find an approximate value of y(0.2), given that

$$\frac{dy}{dx} = x + y \text{ and } y(0) = 1.$$

614/Math.(OS)

(5)

[Turn Over]

- k) Using Newton-Raphson method obtain the root of $x^3 8x 4 = 0$ correct upto two decimal places (Take the initial approximation as $x_0 = 0$).
- 1) Prove that ∇ is a linear operator.
- m) What is meant by the diagonally dominant for the system of linear equations?
- n) State the basic principle of Newton-Raphson method.
- o) Find the iterative formula for Newton-Raphson method to find the square root of \sqrt{m} .
- 2. Answer any four questions:

 $5 \times 4 = 20$

a) Apply Gauss-Seidel iteration method solve the system of equation:

$$8x - y + z = 18$$

$$x + y - 3z = -6$$

$$2x + 5y - 2z = 3$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

- b) If $y = 3x^7 6x$, find the percentage error in y at x = 1 if error in x is 0.05.
- c) Find y(4.4), by Euler's Modified Method, taking h=0.2, from the differential equation $\frac{dy}{dx} = \frac{2-y^2}{5x}$, y(4) = 1.

(6)

- d) Discuss the method of iteration for numerical solution of an algebraic and transcendental equation.
- e) Find a real root of $x^3 8x 4 = 0$ between and 4 by using Newton-Raphson method correct upto four decimal places.
- f) Establish Newton's forward interpolation formula.
- 3. Answer any two questions:

 $10 \times 2 = 20$

a) i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3 for the function y = f(x) given in the table.

\overline{x}	1	2	3	4	5	6
y	2.7183	3.3210	4.0552	4.9530	6.0496	7.3891

- ii) Let f(x)=0 has real root in an interval [a, b] where f(x)=0 can be rewritten as x=g(x). Then prove that the function y=g(x) has a fixed point $\bar{x}=g(\bar{x})$ in [a, b] if $|g(x')| \le c < 1$, for x in [a, b].
- b) i) By integrating Newton's forward interpolation formula, obtain the basic form of Simpson's $\frac{1}{3}$ rd rule for numerical integration.

(7)

ii) Evaluate $\int_0^2 \frac{1}{x^3 + x + 1} dx$ by Simpson's $\frac{1}{3}$ rd rule with h = 0.25.

614/Math.(OS)

[Turn Over]

- c) i) Use Euler's method to approximate the solution of $\frac{dx}{dt} = tx^3 x$ $(0 \le t \le 1), x(0) = 1$ over the interval [0, 1] using four steps.
 - ii) Evaluate y(1) from the differential equation $\frac{dy}{dx} = x^2 + y$ with y(0)=1, taking h=0.5 by the fourth oredr Runge-Kutta method and hence, compare it to original solution.
- d) i) Establish Lagrange's polynomial interpolation formula.
 - ii) If $x_1, x_2, ..., x_n$ be the interpolating points and $l_i(x)(i=0, 1, 2, ..., n)$ be the Lagrangian functions, then show that $\sum_{i=0}^{n} l_i(x) = 1.$