1/Math.

UG/4th Sem/MATH(H)-GE-T-02/20

U.G. 4th Semester Examination - 2020

MATHEMATICS

[GENERIC ELECTIVE]

Course Code: MATH(H)-GE-T-02

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Define Wronskian.
- b) Find the degree and order of the differential equation $\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{2}{3}} = \frac{d^2y}{dx^2}$.
- c) Find the value of β so that the following differential equation is an exact differential equation

$$(x^{3}y^{2} + \beta xe^{y} + \log x)dx + \left(\frac{1}{2}x^{4}y - 6y\sin y^{2} + x^{2}e^{y}\right)dy = 0.$$

d) Find the integrating factor of the differential equation $(x^2 - 1) \frac{dy}{dx} = -2xy + x, x > 1$.

[Turn Over]

- e) Solve: $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx}$.
- f) When is a differential equation of the form Pdx + Qdy + Rdz = 0 said to be integrable?
- g) If $y = e^{2x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + ky = 0$, find the value of k.
- h) Find the solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(\frac{x}{y})}.$
- i) Show that the general solution of the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$ tends to zero as $t \to \infty$.
- j) Find the differential equation of family of curves $y^2 = 4a(x + a)$, where a is a parameter.
- k) Find the equation of the curve satisfying the differential equation $(x^2 + 1) \frac{d^2y}{dx^2} = 2x \frac{dy}{dx}$ and passes through the point (0,1) having slope of the tangent at x = 0 is 6.
- 1) If $y_1 = xe^x$ and $y_2 = x^2$ are both solutions of the differential equation $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$, show that y_1 and y_2 is a pair of fundamental solutions.

1/Math. (2)

- m) Find a partial differential equation by eliminating the arbitrary function ϕ from the relation $xyz = \phi(x + y + z)$.
- n) Find the differential equation of the planes having equal x and y intercepts.
- o) Show that the differential equation $z_{xx} + 2z_{xy} + cosec^2yz_{yy} = 0$ elliptic.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Solve by the method of variation of parameters $\frac{d^3y}{dr^3} 2\frac{d^2y}{dr^2} + 3\frac{dy}{dr} = \frac{e^x}{1 + e^{-x}}.$
 - b) Solve: $(e^{x}y + e^{z})dx + (e^{y}z + e^{x})dy + (e^{y} - e^{x}y - e^{y}z)dz = 0.$
 - c) Solve the partial differential equation $2z + p^2 + qy + 2y^2 = 0$ by Charpit's method.
 - d) Solve the following system of simultaneous equations:

$$\frac{dx}{dt} + 9\frac{dy}{dt} + 2x + 31y = e^t$$

$$3\frac{dx}{dt} + 7\frac{dy}{dt} + x + 24y = 3.$$

e) If Mdx + Ndy = 0 is an exact differential equation and M, N are homogeneous function of degree $n(n \neq -1)$. Then show that

(3)

[Turn Over]

Mx + Ny = c is the complete primitive of the given differential equation.

- f) Solve the differential equation $(2x+1)(x+1)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} 2y = (2x+1)^2,$ if y = x and $y = \frac{1}{(x+1)}$ are two linearly independent solutions of the corresponding homogeneous differential equation.
- g) Find the general solution of the following differential equation:

$$p^{3} - p^{2}(x^{2} + xy + y^{2}) + p(x^{3}y + x^{2}y^{2} + xy^{3}) - x^{3}y^{3} = 0.$$

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Solve:

$$(2x+1)^3 \frac{d^3 y}{dx^3} - 3(2x+1)^2 \frac{d^2 y}{dx^2} + 5y = \log(2x+1).$$

- ii) Find general and singular solution of $y = px + \sin^{-1} p$.
- b) i) Solve: $\frac{dy}{dx} + \frac{1 2x}{x^2} y = 1$.

ii) Solve:
$$\frac{dx}{2x} = \frac{dy}{-y} = \frac{dz}{4xy^2 - 2z}.$$

c) i) Reduce the differential equation $axyp^2 + (x^2 - ay^2 - b)p - xy = 0$ to the Clairaut's form and hence solve it.

- ii) Solve the differential equation: $(D^2 + 2)y = x^2e^{3x} + e^x\cos 2x.$
- d) i) Solve the partial differential equation by Lagrange's Method:

$$(3x + y - z)p + (x + y - z)q = 2(z - y).$$

ii) Find the canonical form of the differential equation $yz_{xx} + z_{yy} = 0, y > 0$.
