U.G. 2nd Semester Examination - 2020

MATHEMATICS

[HONOURS]

Course Code: MTMH-CC-T-04

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Show that $\frac{dy}{dx} = 2\sqrt{y}$, $y(\theta) = \theta$ has no unique solution.
- b) Find $\lim_{x \to \infty} x(t)$, where x(t) satisfies $\frac{dx}{dt} + x = 0, \ x(0) = 2.$
- c) If the differential equation $(3a^2x^2 + by\cos x)dx + (2\sin x 4ay^3)dy = 0$ is exact, then find a and b.
- d) If $y_1(x)$; $y_2(x)$ are solutions of $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (1-x^2)y = \sin x$, then show that $2y_1(x) y_2(x)$ is also a solution.

[Turn Over]

- Find the solution of the differential equation $\frac{d^2y}{dx^2} y = 1$, which vanishes when x = 0 and tends to a finite limit as $x \to -\infty$.
- f) If $y = e^{ax}u(x)$ is a particular solution of $\frac{d^2y}{dx^2} 2a\frac{dy}{dx} + a^2y = f(x), \text{ a is a constant, then}$ find $\frac{d^2u}{dx^2}$.
- g) Find all the singular points of the ordinary differential equation

$$x^{2}(x-2)^{2}\frac{d^{2}y}{dx^{2}} + 2(x-2)\frac{dy}{dx} + (x+1)y = 0.$$

- h) What is Phase plane?
- i) When a critical point is called a Center?
- j) Find the nature of the critical point (0, 0) of the linear system of differential equation $\frac{dX}{dt} = AX$, where $A = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \end{pmatrix}$.
- k) State Lipschitz Condition.
- 1) Prove that $[\vec{\alpha} + \vec{\beta} \ \vec{\alpha} + \vec{\beta} \ \vec{\alpha} + \vec{\beta}] = 2[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}].$
- m) If \vec{a} has constant magnitude then prove that $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.
- If $f = 3x^2yz$ and C is the curve $x = t^2$, $y = t^3$, z = tfrom t = 0 to t = 1, find $\int_C f d\vec{r}$.
- o) If $\vec{r}=3t\hat{i}+3t^2\hat{j}+2t^3\hat{k}$, find the value of $\frac{d^3\vec{r}}{dt^3}$.

2. Answer any **four** questions:

 $5 \times 4 = 20$

[Turn Over]

- a) Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} 3\frac{dy}{dx} = x + e^x sinx$.
- b) Solve by the method of variation of parameters $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x}\sec 2x$
- c) Solve for y from the following set of differential equations:

$$\frac{dy}{dt} + \frac{dx}{dt} + 2x + y = 0, \quad \frac{dy}{dt} + 5x + 3y = 0$$

- d) Solve $(1+2x)^2 \frac{d^2y}{dx^2} 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$
- e) Find the series solution of the equation $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 3y = 0 \text{ near ordinary point } x = 0.$
- f) Solve the linear system of differential equation $\frac{dX}{dt} = AX, \quad \text{where} \quad A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \quad \text{and} \quad X = \begin{pmatrix} x \\ y \end{pmatrix} \text{ subject to the initial condition } (x_0, y_0) = (2,-3). \quad \text{Discuss the stability of its equilibrium point.}$
- g) Let $\vec{F}=(2y+3)\hat{i}+xz\hat{j}+(yz-x)\hat{k}$. Evaluate $\int_C \vec{F}\cdot \vec{dr} \text{ along the path C}: \text{the straight lines from}$ (0,0,0) to (0,0,1), then to (0,1,1), and then to (2,1,1).

3. Answer any **two** questions:

 $10 \times 2 = 20$

) i) Solve the equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}.$$

- ii) Solve the equation: $\frac{d^2y}{dx^2} + y = \sin x$. 4
- b) i) Solve the system:

$$2\frac{dx}{dt} - 2\frac{dy}{dt} - 3x = t$$

$$2\frac{dx}{dt} + 2\frac{dy}{dt} + 3x + 3y = 2.$$
6

ii) Solve the system:

$$\frac{\frac{dx}{dt} = 6x - 3y}{\frac{dy}{dt} = 2x + y}$$

- c) i) Find the series solution of $2x^2\frac{d^2y}{dx^2}-x\frac{dy}{dx}+(1-x^2)y=x^2 \text{ about the}$ point x=0.
 - ii) Show that $f(x,y) = x^2y^2$ satisfies Lipschitz condition on the rectangle

$$R = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, \ |y| \le 1\}.$$

- d) i) If $\vec{r} = a \cos t \hat{i} + a \sin t \hat{j} + at \tan \alpha \hat{k}$, then find the value of $\left[\frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \frac{d^3\vec{r}}{dt^3} \right]$.
 - ii) Solve the equation for \vec{r} : $t\vec{r} + \vec{r} \times \vec{a} = \vec{b}$.
