U.G. 3rd Semester Examination - 2024

CHEMISTRY

[MAJOR]

Course Code: CHEM-MAT-03 Group: IB (Inorganic & Physical)

[NEP-2020]

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Inorganic-IB)

[Marks : 20]

1. Answer any one from the following questions:

 $1 \times 1 = 1$

- a) Why does silver nitrate solution turns bluish when copper rod is placed in it?
- b) What is buffer action? Explain with an example.
- 2. Answer any **two** from the following questions: $2 \times 2 = 4$
 - a) Write down the name and structural formula of an acid-base indicator.
 - b) Disproportionation of white P in NaOH solution explain briefly.
 - c) In presence of EDTA, Cu⁺² cannot liberate I₂ from KI explain.

Answer any one from the following questions:

 $5 \times 1 = 5$

- a) A solution of potassium ferricyanide i) cannot oxidise iodide to iodine but it can do so in presence of Zn²⁺ion – explain. [Given: $Fe(CN)_6^{3-}/Fe(CN)_6^{4-} = +0.36$ volts; $\frac{1}{2}I_2/I^-=0.54$ volts.
 - Account for the following order of ii) oxidising power $VO_2^+ < Cr_2O_2^{2-} < MnO_4^-$. 3+2=5
- b) i) Comment on relative acid strength of the following pairs: $[Co(H_2O)_6]^{2+}, [Co(H_2O)_6]^{3+} \text{ and } H_3PO_2,$ H,PO.
 - Boric acid behaves as a Lewis acid rather than a Bronsted acid in aqueous solution - explain. 4+1=5
- Answer any one from the following questions:

 $10 \times 1 = 10$

a) What are hard and soft acids and bases? State their characteristics.

(2)

What do you mean by Common ion effect? Explain with an example.

- Justify that alkali metals do not survive in iii) aqueous solution but in liq NH2. 4+4+2=10
- b) · i) A buffer solution contains 0.10 mole of CH₃COOH and 0.10 mole of CH₃COO[©] per litre. Calculate the pH of the solution after the addition of 0.01 mole/ lit of HCl. [Given: $K_{CH,COOH} = 1.8 \times 10^{-5}$].
 - ii) Write a brief note on super acid.
 - Distinguish between formal and standard 111) potential of redox couple.
 - The partial Latimer diagram is given by $MnO_4^- \xrightarrow{+0.564} MnO_4^{-2} \xrightarrow{+2.26} MnO_2$ \longrightarrow Mn⁺². Would MnO₄⁻² disproportionate in solution? 2+2+4+2=10

GROUP-B

(Physical-IB)

[Marks: 20]

1. Answer any one question:

 $1 \times 1 = 1$

- a) Write down the unit of rate constant of 2nd order reaction.
- b) Define entropy.
- 2. Answer any two questions:

 $2 \times 2 = 4$

- a) Define Inversion temperature.
- b) Show that for a first order reaction, the time required for decomposition of any fraction is constant.
- c) For a reaction with a rate law of Rate=K[A]²[B], if the concentration of A is doubled and the concentration of B is halved, by what factor does the rate of the reaction change?
- 3. Answer any one question:

5×1=5

a) i) A first order reaction has a specific reaction rate of 10^{-2} sec^{-1} . How much will it take for 20g of reactant to reduce to 5 g?

ii) The rate of a reaction quadrupoles when temperature changes from 28°C to 57°C.

Calculate the energy of activation. $2\frac{1}{2}+2\frac{1}{2}=5$

 $10 \times 1 = 10$

- b) i) What is Clausius inequality? Give the expression for reversible and irreversible process.
 - ii) What is Helmholtz free energy? 3+2=5
- 4. Answer any one question:
 - a) i) Derive the relation for the efficiency of a Carnot engine with diagram.
 - ii) A Carnot engine operates between two temperature reservoirs at 600 K and 300 K. If the engine absorbs 200 J of heat from the high temperature reservoir, calculate:

 1) The efficiency of the engine. 2) The work done by the engine.
 - iii) How does entropy and enthalpy determine the spontaneity of a process? 4+4+2=10
 - b) i) Derive the rate equation for a consecutive reaction mechanism:

 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

Discuss the conditions under which [B] reaches a maximum.

ii) The turnover number of the enzyme fumarase that catalyzes the reaction,

Fumarate $+ H_2O \longrightarrow L$ -malate is 2.5×10^3 S⁻¹ and K_m, $= 4.0 \times 10^{-6}$ mol/L. Calculate the rate of conversion of fumarate to L-malate if the fumarase concentration is 1.0×10^{-6} mol/L and the fumarate concentration is 2.04×10^{-4} mol/L.

iii) Using the Lindemann mechanism, calculate the overall rate constant for a unimolecular reaction in the high-pressure limit.

4+3+3=10