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Preface

s

THIS book criginated in a course of lectures held at
Columbia University, New York, during the summer
session of 1936.

It is an elementary treatise throughout, based entirely on
pure thermodynamics; however, it is assumed that the
reader is familiar with the fundamental facts of ther-
mometry and calorimetry. Here and there will be found
short references to the statistical interpretation of thermo-
dynamics.

As a guide in writing this book, the author used notes of
his lectures that were taken by Dr. Lloyd Motz, of Columbia
University, who also revised the final manuseript critically.
Thanks are due him for his willing and intelligent col-
laboration.

E. FErMI
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Introduction

HERMODYNAMICS is mainly concerned with the
transformations of heat into mechanical work and the
opposite transformations of mechanical work into heat.

Only in comparatively recent times have physicists recog-
nized that heat is a form of energy that can be changed into
other forms of energy. Formerly, scientists had thought
that heat was some sort of fluid whose total amount was
invariable, and had simply interpreted the heating of a body
and analogous processes as consisting of the transfer of this
fluid from one body to another. It is, therefore, noteworthy
that on the basis of this heat-fluid theory Carnot was able,
in the year 1824, to arrive at a comparatively clear under-
standing of the limitations involved in the transformation of
heat into work, that is, of essentially what is now called the
second law of thermodynamics (see Chapter I1I).

In 1842, only eighteen years later, R. J. Mayer discovered
the equivalence of heat and mechanical work, and made the
first announcement of the principle of the conservation of
energy (the first law of thermodynamics).

We know today that the actual basis for the equivalence
of heat and dynamical energy is to be sought in the kinetic
interpretation, which reduces all thermal phenomena to the
disordered motions of atoms and molecules. From this
point of view, the study of heat must be considered as a
special branch of mechanics: the mechanics of an ensemble
of such an enormous number of particles (atoms or mole-
cules) that the detailed description of the state and the
motion loses importance and only average properties of large
numbers of particles are to be considered. This branch of
mechanies, called statistical mechanics, which has been de-
veloped mainly through the work of Maxwell, Boltzmann,
and Gibbs, has led to a very satisfactory understanding of
the fundamental thermodynamical laws.

1x




X INTRODUCTION

H:?: 1;;11? ? aﬂpm%h in pure thermodynamics is different.
il erinllm taflnen'tal laws are assumed as postulates based
themxpwith enta 6V1§lenc.e, and conclusions are drawn from
Phenomenaou ’l?llll'termg mnto the kinetic mechanism of the
independené 1 '8 procedure has the advantage of being
tions that ar(,a Cf>ta By e_xtent,. of the simplifying assump-
tions. Thys (:;hen made in S'_tatlstical mechaniecal considera-
accurate 011 t}?rmOdynamlcal results are generally highly
Satisfact(.)ry ¢ be cher hand, _lt is sometimes rather un-
detail how th.o obtain results without being able to see in
e ngs really work, so that in many respects it is
: convenient, t9 complete a thermodynamical result

it et Iﬁ;ldrough kinetic interpretation,
statistica] foundS esond -laWS of thermodynamics have their
years Nernst haa et claS_Sical mechanics. In recent
Preted statist; 1S acded a third law which can be inter-
lcally only in termg of quantum mechanical

toncepts, The last
: chapter of this 1, : itself
with the Consequences of the third la£0k el

CHAPTER I

Thermodynamic Systems

e}

1. The state of a system and its transformations. The
state of a system in mechanics is completely specified at a
given instant of time if the position and velocity of each mass-
point of the system are given. For a system composed of a
number N of mass-points, this requires the knowledge of
6N variables.

In thermodynamics a different and much simpler concept
of the state of a system is introduced. Indeed, to use the
dynamical definition of state would be inconvenient, because
all the systems which are dealt with in thermodynamiecs
eontain a very large number of mass-points (the atoms or
molecules), so that it would be practically impossible to
specify the 6N variables. Moreover, it would be unneces-
sary to do so, because the quantities that are dealt with in
thermodynamics are average properties of the system;
consequently, a detailed knowledge of the motion of each
mass-point would be superfluous.

In order to explain the thermodynamic concept of the
state of a system, we shall first discuss a few simple examples.

A system composed of a chemically defined homogeneous
fluid. We can make the following measurements on such a
system: the temperature ¢, the volume V, and the pressure p.
The temperature can be measured by placing a thermometer
in contact with the system for an interval of time sufficient
for thermal equilibrium to set in. As is well known, the
temperature defined by any special thermometer (for
example, a mercury thermometer) depends on the particular
properties of the thermometric substance used. For the
time being, we shall agree to use the same kind of thermom-
eter for all témperature measurements in order that these
may all be comparable.

|
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The geomet;

_Rot only by itsyvgf our system is obviously characterized
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n g flfrlgzs re,pTeSentiEg tlius efines a state of the syste™™
o e eyt 1 alle Zﬁtfsitffmﬁgzu” temperature ¢

' A . chemz’cally defined homogeneots
direetjo, > Mtrogy, the temperature ¢ and volume
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io iz "¢ the state, In most cases
Tessupe, . o 4¢ that the solid is subjecte

; that only one value for the
cbe?m'cal conr. TPoseq of o 38 Inthe cage of a fluid.
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State of the Poungs, '0mogeneous mizture of severdl
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Ystem are nog " ase the variables defining th
only temperature, volume, a8
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pressure, but also the concentrations of the different chemical
compounds composing the mixture.

Nonhomogeneous systems. In order to define the state of a
nonhomogeneous system, one must be able to divide it into a
number of homogeneous parts. This number may be finite
in some cases and:infinite in others. The latter possibilitys
which is only seldom considered in thermodynamics, arises
when the properties of the system, or at least of some of its
parts, vary continuously from point to point. The state of
the system is then defined by giving the mass, the chemical
composition, the state of aggregation, the pressure, the
volume, and the temperature of each homogeneous part.

It is obvious that these variables are not all independent.
Thus, for example, the sum of the amounts of each chemical
element present in the different homogeneous parts must be
constant and equal to the total amount of that element
present in the system. Moreover, the volume, the pressure,
and the temperature of each homogeneous part having a
given mass and chemical composition are connected by an
equation of state.

A system containing moving parts. In almost every
system that is dealt with in thermodynamics, one assumes
that the different parts of the system either are at rest or are
moving so slowly that their kinetic energies may be neg-
lected. If this is not the case, one must also specify the
velocities of the various parts of the system in order to

define the state of the system completely.
It is evident from what we have said that the knowledge

- of the thermodynamical state alone is by no means sufficient

for the determination of the dynamical state. Studying the
thermodynamical state of a homogeneous fluid of given
volume at a given temperature (the pressure is then defined
by the equation of state), we observe that there is an infinite
number of states of molecular motion that correspond to it.
With increasing time, the system exists successively in all
these dynamical states that correspond to the given thermo-
dynamical state. From this point of view we may say
that a thermodynamical state is the ensemble of all the
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dynamj .
m{) tiomnmi}I] :t&tes thr(')ugh u:hlch, as a result of the molecular
State is rathes oy PPl Dassing. This definition of
we shall 1ndicatz ?‘met land not quite unique; therefore
variables are, €ach particular case what, the state
uPartieuIariy im
portant am .
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discussed in the preceding paragraph, we may compress it
again to its original volume and bring it back to its initial
state by shifting the piston inward very slowly. The
compression oceurs reversibly, and the gas passes through

the same intermediate states as it did during the expansion.
During a transformation, the system can perform positive
or negative external worlk; that is, the system can do work
on its surroundings or the surroundings can do work on the
system. As an example of this, we consider a body enclosed
in a cylinder having a movable piston of area S at one
end (Figure 1). If p is the pressure of the body against the
walls of the cylinder, then pS is the force
exerted by the body on the piston. If the
piston is shifted an infinitesimal distance dh, |______| _____
an infinitesimal amount of work,

dL = pSdh, (2)

*
dh
'

Q

is performed, since the displacement is paral- P
lel to the force. But Sdh isequal to the in-
crease, dV, in volume of the system. Thus,

we may write!:

dL = pdV. 3) Fig. L.

1 It is obvious that (3) is generally valid no matter what the shape of
the container may be. Consider a body at the uniform pressure p, enclosed
in an irregularly shaped container A (Figure 2). Consider now an infini-
tesimal transformation of our system during which the walls of the con-
tainer move from the initial position A to the final position B, thus permit-
ting the body inside the container to expand. Let do be a surface element
of the container, and let dn be the displacement of this element in the
direction normal to the surface of the container. The work performed on
the surface element do by the pressure p during the displacement of the
container from the situation A to the situation B is obviously p do dn.
The total amount of work performed during the infinitesimal transforma-
tion is obtained by integrating the above expression over all the surface ¢ of

the container; since p is a constant, we obtain:

dL=pfdadn.

It is now evident from the fizure that the variation dV of the volume of the
container is given by the surface integral,

dV = [ do dn.

Comparing these two equations, we obtain (3).
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For a finite trans

is obtained by inte imtl'natlon’ the work done by the system this diagram by a closed curve, such as the curve ABCD
grating equation (8): (Figure 4). ,

I i : The work, L, performed by the system during the cyclical
: o7 ,/: pdv, (4) transformation is given geometrically by the area enclosed
‘,‘herre the integra] ig take by the curve representing the cycle. Let A and C be the
When the state of th tLover the entire transformation. points of minimum and maximum abscissa of our cycle,
© system can be represented on a and let their projections on the V-axis be A’ and C’, re-
‘ (V, p) didggram, the work spectively. The work performed during the part ABC of the
performed dlll‘ilig a trans- transformation is positive and equal to the area AB CC'A’A.

The work performed during the rest of the transforma-
tion, CDA, is negative and equal in amount to the area
CC'A’ADC. The total amount of positive work done is

formation has a simple
Jgﬂ;.eometrlcal representa-
1on.  We consider a trans-

B formation from an initial equal to the difference between these two areas, and hence is
stateindicated by the point equal to the area bounded by the cycle.
4 to a final state indicated It should be no‘.ced that the total p
by the point B (Figuré 3). work done is positive because we B
Fig o his transformation will be .p?rfor_med the cycle in a cloqkwise |C'
of which g g 2. represented by g curve con direction. If the same cyc?le is per- A E
of trapgs cEDEIl.ds on the 4 hecting 4 an ci }5, the shape ff)rrned in a count-erclocl-{\wse ch_rec- D l
5 Wori_l"matlon COnsidef %e P tion, the work will again be given | i
transfory, _don.e during t?‘. by the area 1.)ou¥1ded by tl:le cycle, 'l |
inieh Aon is given by t;]ls but this time it will be negative. i ‘; o
€ A transformation during which A ¢
L — f Y 5 the system performs no external Fig. 4.
where 17 v, P4V, sy | 4 work is called an gsochore tmnsforma_tion. If we assume
Umes and V, are h that the work dL perfo.rme‘d (flurmg an plﬁn1te511na1
stites ;‘Jrresponding toe vol- element, of the transformation is given, according to equa-
and ey and B,y int the L tion (3), by pdV, we ﬁnc_l for an isochore transformation
o rep: e the worp) don cgral, A 3 W dV = 0, or, by mte.zgraimon, 'V = a constant. Thus, an
5 Csente( gEOmetrle’ can Big 3 isochore transformation in th1s- case is a transformation at
- cally by the P . constant volume. This fact justifies the name isochore.
Or whig Mationg which . ed area in the It should be noticed, however, that the concept of isochore
calleq el € Initig] 4y - are especially i, transformation is more general, since it requires that dL = 0
15 g transfcal ransfopm,, ?a States gre the Poriint are thode for the given transformation, even when the work dL cannot
Mitia] g4 ' lcﬁns OF eycles Same. These are be represented by equation (3).
A p) g the stat, o bringg the . ¢ycle, therefore, Transformations during which the pressure or the tem-
lagram then ths S.YStern' g:tem back to its perature of the system remains constant are called 7sobaric
# cycle can 1L De represented and isothermal transformations, respectively.

[‘“ . € represented on
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i 2t. Ideal or perfect gases.
yStém composed of g certain

a volume V gt t
approximate] € temperature ¢ and pressure p can be

Yy e X
We obtain the {:p ressed by a very simple analytical law.
form by changingqﬁatlon of state of a gas in its simplest
om the empirical scalg of temperatures,

to a new i
We define Dro‘.r;s-tempeI ature scale 7'

The equation of state of a
quantity, of gas occupying

0t pressure T
P, is then taken propor-
e the readings of c? '(;}("zupled by the gas. It is well known
conditiong are lap ]1 erent gas thermometers under these
thermomeri, gas 8¢ independent of the nature of the
Eond‘?n?ation_ ,eprsc)}:ndecl that this gas is far enough from
A1t is possible tod ﬁa ! See later, however (section 9);
cline this same geale of temperatures T

¥ genera] t},
ent] Crmodyngm; : )

Y of the speciq] propertli(:ascgffl siderations quite independ-:
gases.

atu;-e T e
ually chosenl;S called the absolute temperalure.
Clween E?U cha way that, the temperatur®
freezing > 8tmosphey, lfmg and the freezing points O
tOtheaégiio Vater gopp.r CSUTe is equal to 100. The
Ute te €Sponds th . Wi

® equation Oinieratul‘e 273.1. en, as is well knowi

gas wh ate of
v: 0se mo cular 2 8ystem composed of m grams
e1ght is M is given approximately

-m
& unj PV = ﬂRT. (6)
Bases; p - Al congty
B = 8314 Ot (that i it ]
1986 ¢q) X 107 » it has the same value for ol

0 Ca, er
f state of ¢ /.degl"ees g/degrees, or (see section

Bo 3 'ld H = )

St&n(ozer L gas 5 Vo ; 90s; it includes the laws ©
at C¥s @ : 0.

or % Perfq qll_atlon 6) . b
ot g Quatioy (6) exactly. An ideal sU

exactly is called an ide®
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For a gram-molecule (or mole) of a gas (that is, for a
number of grams of a gas equal numerically to its molecular
weight), we have m = M, so that (6) reduces to:

pV = RT. (7)

From (6) or (7) we can obtain the density p of the gas in
terms of the pressure and the temperature:
m  Mp
Bt = ®)
For an isothermal transformation of an ideal gas (trans-
formation at constant temperature), we have:

pV = constant.

On the (V, p) diagram the isothermal transformations of an
ideal gas are thus represented by equilateral hyperbolas
having the V- and p-axes as asymptotes.

We can easily caleulate the work performed by the gas
during an isothermal expansion from an initial volume V;
to a final volume V.. This is given (making use of (5) and
(6)) by:

Ve m Y24V

= = — s %
L ﬁ pdV = 3 BT | 5
m Vo

= T/IRTlOgI_’l

= Pp n
= 77 RT log . (9)
where p; and p. are the initial and final pressures, respec-
tively. For one mole of gas, we have:
s
I — RT log 22 = RT log P* (10)
Vi 2
A mixture of several gases is governed by laws very similar
to those which are obeyed by a chemically homogeneous
gas. We shall call the partial pressure of a component of a
mixture of gases the pressure which this component would
exert if it alone filled the volume occupied by the mixture

Ld
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at the same temperature as th
now state Dalton’s ]
form:

The pressure exerted b
sum of the partial
n the mizture.

This law is only approximately obeyed b 7 real gases, but
it is assumed to hold exactly for ideal gases,

at of the mixture. We can
aw for gas mixtures in the following

Y a mixture of gases s equal to the
pressures of all the components present

Problems
_ 1. Calculate the work performed by a bod
initial volume of 3.

12 liters to a fin
Pressure of 2,34 atmospheres,

Y expanding from an
al volume of 4.01 liters at the

ty and specific volume of nitrogen at the
temperatyre of 0°C,

4. Calculate the work performed h
S ¥ 10 grams of oxygen
expanding 1sothermally at 20°¢s from 1 f
i to .3 atmospheres o

CHAPTER II

The First Law of Thermodynamics

3. The statement of the first law of tile?}?g:ﬁﬁcsé
‘ ics is essentially
st law of thermodynamies is ) . .
rI‘fhi\:hﬁIS rinciple of the conservation of energy fo}lJ thfrzxif
3 afniial systems. Assuch, it may be exgre:jased y st?ansg
- fon § : f a system during any trans-
ariation in energy o -

?hat ;L}'li?;n:r is equal to the amount of energy Lha..t the S};i;?;l;
I‘EZIa?ves from its environment. In order to ivedgﬁﬁe s
i it 1 cessary

ing to this statement, 1t 1s ne
m}frang“energy of the system” and “er:‘lergy that ft}:i
E :aslfl receives from its environment during a transfor- .
sys
i i ' ive systems, the energy is
mechanical conservative systems, th gy

Inlpture‘)ullfe sum of the potential and the kinetic ener g1es,.
eqlcliahelﬁ:e is a function of the dynamical sta;;et(l)lf the stflfnils’
be ; ical state o e syste

) to know the dynam_u?a he
bet%:zfent to knowing the positions and velocities ofla}ll t}:;
equsls— oints contained in the system. If no ezcterna 2;;1 s
m‘a ptin on the system, the energy remains ct?nsl d
h ac'f E;l and B are two successive stat.es of an iso ate
T}:tl:;n] and U, and Uj are the corresponding energies, then
s
y , (]A = UB.

tem, U, need no
cternal forces act on the system,
1 “r}i'elr)le :11?;}1’00 Us. If —Listhe work performed l:.>y-t.h(;L
Ortlgfnal forces during a transformation from the 113’5;)&
:‘fate A to the final state B (4L is .thej work performe a?:
the system), then the dynamical principle of the conserv
b

tion of energy takes the form:

Up — Uy = —L. (11)
From this.equation it follows that the work, L, performed

during the transformation depends only on the extreme
11
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states A and B of the transformation and not on the par-
ticular way in which the transformation from A4 to B is
performed.

Let us assume now that we do not know the laws of
interaction among the various mass-points of our dynamical
zystem. Then we cannot, calculate the energy of the system
when it is in a given dynamical state. 7 making use of
equation (11), however, we can nevertheless obtain an

empirical definition of the energy of our system in the
following way:

We consider an arb

; itrarily chosen state O of our system
and, by definition, tak

e its energy to be ZETro;

Us = 0. (12)

We shall henceforth vefer to this state as the standard state

of our system. Consider now

'y, if definitioy (
4 depeng only op

Ay In which th
formeg, We ave alre
mentally t}, o OWS from (11
cither fhg o S Property did
A at €nergy g not

sides e COnsery

must he ¢ el Work, othey
aken inq account

13) is to have a
the states 0 and
¢ transformation
ady noticed that
one found experi-
eI(llof: hold, i, would Hll)ean
e, 1 owr system, o that,

ns of transfer of energy
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We shall assume for the present that the work perfornlled
by our mechanical system during any fl‘{lll:'ﬁ'fOI‘nlETtIOIl '
depends only on the initial and final states of. rt'.he tlf m;s—
formation, so that we can use (13) as the definition of the
en%:fgey(':an immediately obtain (11) from (13) as follows: jf
transformation Metween any two states 4 and B_can.a.lway::
be performed as a succession of two transformations: ﬁrst a
transformation from A to the standard state O, and the1n a
transformation from O to B. Since the sy._stem perfom'ls
the amounts of work —L, and +ZLs during these ’mo1
transformations, the total amount of ‘““O.I'k. perfor:inect
during the transformation from A to B (which is 111-dep(.an en
of the particular way in which the transformation is per-
formed) is:

L = —LA + LB.
From (13) and the analogous equation,
DfB = '—Lg,
we obtain now:
Us— Us= =L

‘hich is identical with (11). .
“héi(;z Iif)tligs, ;‘Ginally, that the definition (13) of ’?he energy is
not quite unique, since it depends on the particular choice
of the standard state O. If instead of O we had ch.osen a
different standard state, O/, we should have obtained a
different value, U, for the energy ?f the stat(_a A, It
can be easily shown, however, that U, and 77, dIﬁer only
by an additive constant. Indeed, the transformation from
0’ to A can be put equal to the sum of two- transformations:
one going from O’ to O and the other-gomg .from 0 tofA.
The work L performed by the system in passing from 0’ to
A is thus equal to:

L2 Lf‘_ — Lo'o + LA:
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where L., is the work perfor

from O’ to 0. We have now: et By the System in going

UA = —'Ld; U; = _.L;
so that ,
L4
UA - U;. = LO"O;

which show ;
ows that the values of the energy based on the two

r only by the constant
This Indeterminate additive conanu i

known, an essential

Yo with £, <« i
W.o different, ways.
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during the transformation, so that a small amount of work is
performed (see equation (3)). We shall neglect this small
amount of work in our considerations.

Second way: We raise the temperature of the water from
{4 to tp by heating it by means of friction. To this end, we
immerse a small set of paddles attached to a central axle in
the water, and ‘churn the water by rotating the paddles.
We observe that the temperature of the water increases
continuously as long as the paddles continue to rotate.
Since the water offers resistance to the motion of the paddles,
however, we must perform mechanical work in order to
keep the paddles moving until the final temperature f is
reached. Corresponding to this considerable amount of
positive work performed by the paddles on the water, there
is an equal amount of negative work performed by the water
in resisting the motion of the paddles.

We thus see that the work performed by the system in
going from the state A to the state B depends on whether
we go by means of the first way or by means of the second
way.

If we assume that the principle of the conservation of
energy holds for our system, then we must admit that the
energy that is transmitted to the water in the form of the
mechanical work of the rotating paddles in the second way
is transmitted to the water in the first way in a nonmechani-
cal form called heat. We are thus led to the fact that heat
and mechanical work are equivalent; they are two different
aspects of the same thing, namely, energy. In what follows
we shall group under the name of work electrical and
magnetic work as well as mechanical work. The first two
types of work, however, are only seldom considered in
thermodynamices.

In order to express in a more precise form the fact that
heat and work are equivalent, we proceed as follows.

We first enclose our system in a container with non-heat-
conducting walls in order to prevent exchange of heat with
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the environment, 1 We assum
. exchanged between the s
example, by enclosin

e, however, that work can be
ystem and its environment (for
g the system in g cylinder with non-
t with a movable piston at one end).
of energy between the inside and the outside

€r can now oceur only in the “orm of work, and

ciple of the conservation of énergy it follows

unt of work performed by the system during

any transformation depends only on the initia] and the
final states of the transformation_2

We can now use the empirica] definition ( 13) of the energy
and define the ener

&Y U as a function of the state of the
System only.s Denoting by AU - Uy
n the energy of our System that oce
mation from the state 4 to the S
equation (11), which is applicable 1¢
system, in the form:

from the prin
that the amo

— U, the variation
urs during a transfor-
tate B, we can write
our thermally insulated

he form of
' We neeq only mention p
L ere that
aierml?}kmsu}atlon can he obtaineq ap}?rc?fiﬁectt lth s gl ik
well-known methodg of Calorim o  ovever, by means of
t would e

certai Stances calleq 4 al
thermg] j 8. Propertieg whe i
between the ing L o

i 0 such g v System ig completely
lde ang the outsj ay that work cap 1,
system durin i side, the amo A0 be exchanged
states of th E a given tra_a.nsformatlon d unt of wqp

e transform t,

i Performeq by the

0 the ip;i

€pen
bends oyly itial and final

? It should b notj ; :

o o e tlgedeherelt_hat if deﬁnition (13) of th
system from tpe stand app 1cable, it m S € energy of state
mally insulateq. ﬂrgnstahte Olto the state y Doss.ublte to transform the
formation SOw ; © 8ystem j =
cases, howg;‘r?tt}?éw: ¥ Possible osseai%tmn 13) that suc mali:;]ﬁ;-
forrr_xed._ The wor Derform:d 1: nsf""mation O__)a.nge of heat, In such
mation is —,, i We cap the“efore 45 "i B}EStem during thﬁi’; 2lwayg be per-
bly 13) to such €verse transfor-
Cases glgq

k=)
k=
=
o
[ad
©
-
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: al
heat. We shall therefore replace (14) by the more gener
equation:

AU + L = @, (15)

» tr ions performed on
;iizia%;siz;l:l&;t‘zg z(;fg?;efrils t;igsiflifiﬁse, ?n general, i
dif(f;i:(jg égoilllllt;?;géted physicaH-y afs the ilzwl.feli‘nzhc;fnezfe;if
1 i rstem in forms wo
t':[}’l}ig lfs(;)lll-gfw?sl‘;?;lirrll)(ilig’zzlfr}fl‘om the f:;)(;t (;oh;t;ltif ;?;15;22(;;
iar;niz;::ggj’? eﬂnz;g;frzisi:gitli? tI}?;l Ssi;stemc}rom its environ-
ment. But from (15)

d —L is the energy received in the form of work. Hence,

Znsta;ds for the energy received in 1aill é)till: f;rl;lrgi.n o of T
iti hall now ca :
By definition, we s : bl
; the transforma
ived by the system du} ing '

recFe;‘ltea cybfr:lic transformation, equation (15) ta.kfs on (?i ::Ig
imple form. Since the initial and final states o a,Ocy e
S - . - - . — .
thepsame, the variation in energy is zero: AU ]
(15) becomes:

L=4q 09

i rork ; 7 a system during a cyelie

s 153 tht(? ggzl\éqlfglf?on;ii l?ga.t abiorbed by the systgm.
tl'&nsf()l_ma 1(')tan{: at this point to establish t‘ihe connection

e H?E'm abstract definition of heat and }ts elementa;y
bet“’?en '] lsdefinition. The calorimetric unit .of heat, t. e
CalOl‘{mfftlg fined as the quantity of heat required to raise
hore, et re of one gram of water at atmospher{c
e 1114°C to 15°C. Thus, to raise the temperatm_ e
iy f water from 14°C to 15°C at atmospheric
orm g‘fam: 1‘Oequire m calories of heat. Let Au.denote .th]i
variation i “energy of one gram of water, and [, the vE-or_
Eiﬂgt;znalzesult of its expansion when its temperature is
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raised from 14°C 4o 150
5 ;
. grams of water, the Vari(aj, = atmospheric pressure. For m

; tion i .
are: 1 1In energy and the work done

= ml. (17)

wa‘y tha.t a.fter

tem_perature of the watep is 15°
a

1nce an ideal calor;
" .
the compley e meter is pe

calorimetyie water

is ¢ .
We may t}}llil;lz}fally Insulated during the trans-
ore apply €quation (14) to this

transformat;
on,
to the sum: he total Variation in energy is equal

L = Lg ‘f“ L
From (14) we have, thep

C .

AUs + ap, + T s e

or, by (17),

AUB + L5 = .._(AUC + Lc)

= —m(Au, + 1,).

But fro
m the definit;
eat . lon (15), AU, + L, i
Qs receiveq by the system . ’I_‘*};uss e 4o

Qs = —m(Au, + 1,).
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We see from this that the amount of heat is proportional
to m.

On the other hand, in calorimetry the fact that m grams of ~
calorimetric water have been heated from 14°C to 15°C
means that m calories of heat have been transferred from
the system S to the calorimeter; that is, that the system &
has received —m<ealories, or that Qs, expressed in calories,
is equal to —m. We see also, by comparison with (18,
that the amount of heat, as given by the definition (15), is
proportional to the amount when it is expressed in calories;
the constant of proportionality is (Au. + Lo).

According to (15), heat is measured in energy units (ergs).
The constant ratio between ergs and calories has been
measured by many investigators, who have found that

1 calorie = 4.185 X 10 ergs. (19)

In what follows we shall generally express heat measure-
ments in energy units.

Equation (15), which is a precise formulation of the
equivalence of heat and work, expresses the first law of
thermodynamaics.

4, The application of the first law to systems whose
states can be represented on a (V, p) diagram. We shall
now apply the first law of thermodynamics to a system,
such as a homogeneous fluid, whose state can be defined in
terms of any two of the three variables V, p, and T. Any
function of the state of the system, as, for example, its
energy, U, will then be a function of the two wvariables
which have been chosen to represent the state.

In order to avoid any misunderstanding as to which are
the independent variables when it is necessary to differ-
entiate partially, we shall enclose the partial derivative
symbol in a parenthesis and place the variable that is to
be held constant in the partial differentiation at the foot

n . a . .
of the parenthesis. Thus, 5T ) means the derivative of
»
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U with respect to T

, keepi
are taken as the ip ping V' constant, when 7' and V

dependent, variables. Notice that the

above expression is in general different from 3_;_{ ) , because

in the first ; 9L/,

"second case Eﬁse t-he VOll.lme 1s kept constant while in the

We now cozi'p]I ossure 1s kept constant.

system, that Ig;(fr an mﬁmt‘ﬁSimal transformation of our

variables chan ’e 1?n3f01'fn&tlpn for which the independent

to this transfo%-mm;-y by infinitesima] amounts. We apply

expressed b& equ‘iil = thff first law of thermodynamics as

MUSt now iy CEU-OI;ISIOJ. Instead of AU, L, and @, we

infinitesimag] nature’ f » and dQ, in order to point out the
of these Quantities, We obtain, then,

AU + qr, — d
Since for ' . ”
Or our system, q7, g given by (3), we have:

(21)

comes a functiop of these lvarl:z‘tblllgegszi?: vinles; ©

(2'%),,‘“" 4 [(2%) - p]dv — dQ. (22)

Similay] :
Y, takin .
€T and p as Independent, variables, we have:
" :

[(g%) -+ p(.a__V 10
F b arT . dT + [(a‘) =+ p(ﬂr> ]dp dQ ( )
inally, o P43 NopialiR =40, (23
‘INg V and p a5 independent variables, we st
» We obtain:

gg) 4 U

T op /v P + [(517) i ”}W e o
he thermal capacity of ;

dQ/dT s

a body is, by definition, ¢
al amount of heat d 3 “atlo,

) _ G absorp
simal increase in tempera,tufg C?T

» Of the infinitesim

t
he body 1, the mfinite
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produced by this heat. In general, the thermal capacity
of a body will be different according as to whether the body
is heated at constant volume or at constant pressure.
Let Cyand C, be the thermal capacities at constant volume
and at constant pressure, respectively.

A simple expression for Cy can be obtained from (22)-
For an infinitesiznal transformation at constant volume,

dV = 0; hence,
_(aQ\ _ (aU
L= (dT)V N (B_T)V &

Similarly, using (23), we obtain the following expression

Tof (g
_(dQ\ _ [eU oV
e, = (), = Gr),+Gr), =

The second term on the right-hand side represents the
effect on the thermal capacity of the work performed during
the expansion. An analogous term is not present in (25),
because in that case the volume is kept constant so that no
expansion occurs.

The thermal capacity of one gram of a substance is called
the specific heat of that substance; and the thermal capacity
of one mole is called the molecular heat. The specific and
molecular heats at constant volume and at constant pressure
are given by the formulae (25) and (26) if, instead of taking
an arbitrary amount of substance, we take one gram or
one mole of the substance, respectively.

5. The application of the firstlaw to gases. In the case
of a gas, we can express the dependence of the energy on the
state variables explicitly. We choose T and V as the
independent, variables, and prove first that the energy is a
function of the temperature T' only and does not depend
on the volume V. This, like many other properties of
gases, is only approximately true for real gases and is
assumed to, hold exactly for ideal gases. In section 14 we
shall deduyce fr ' thermodynamics the

RS
et
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result that the ener Let us now consider the process as a whole. Initially
the gas occupied the volume A4, and at the end of the process
it filled the two chambers A and B; that is, the transforma-
tion resulted in a change in volume of the gas. The experi-
ment showed, however, that there was no resultant change
in the temperature of the gas. Since there was no variation
in energy during the process, we must conclude that a
variation in volume at constant temperature produces no
variation in energy. In other words, (he energy of an ideal
gas vs a function of the temperature only and not a function of
the volume. We may therefore write for the energy of an
ideal gas:

: of state (7), of &y of any body which obeys the equation
! " volume ¥ ’A:;) tlf-n ld‘?al gas must be independent of the
}' . '° pont, however, we shall give an experi-

mental proof of th; ay
was performe byl‘};ﬂ?pommm for a gas; the experiment

1k | I .
Ui | nto g calorimetey
' chambers, A and 1?1 Joule placed a container having two

. 1I*: ‘ filled the ol zi connected by a tube. (Figure 5). He
]J ’ chambers hayi, fi With a gas and evacuated B, the two
stopcock in the cgon ot e Shut off from cach other by 2
had set, in, ag ifldical,ltecmng tube. After thermal equilibrium
if Ca'lorimeter, Joule ¢ by a thermometer placed within the
the gas to flow fro Opefled the stopcock, thus permitting
‘ 4 mt? B unti] the pressure everywhere
I the container was the same-
€ then observed that there was
only a very slight change in the
s ling of the thermometer:
This meant, that there had been
Practically no transfer of heat
from the calorimeter to the cha”
T Or vice versa. It is assumeé
that if thjg experiment could be

U = U(T). @7)

In order to determine the form of this function, we make use
of the experimental result that the specific heat at constant
volume of a gas depends only slightly on the temperature;
we shall assume that for an ideal gas the specific heat is
exactly constant. In this section we shall always refer to
one mole of gas; Cy and C, will therefore denote the molecu-
lar heats at constant volume and at constant pressure,
respectively.

Since U depends only on 7', it is not necessary to specify

e

t . . . .
. h%{f would 1, ¢ Performed with an ideal 2% that the volume is to be kept constant in the derivative in
By i Sin ¢ SOW apply the Emg)‘fr&ture change at all (25); so that, for an ideal gas, we may write:
il ce ) _ rs ) jon.

i ] | COMpogeq 0, we have froilv t0 the above transform?ltw;; Gy = 22 (28)

1l | of the twg ¢f, o €quation (15) for the syste YT AT

& I'S and T . . . .

| wh AU 4 he enclosed gass Since Cy is assumed to be constant, we can integrate at once,

i ar?ri'L 18 the Work peys b and we get:

atl €rio .
1 wo ch&n &Y of the rsI;rletd by the system and AU 18 t:]g U=CT+ W, (29)
. Slem.  §j th . .

1! urin s COmposing OSlnce the volumes ffa nge where W is a constant of integration which represents the

f Work, thyy is Erlment, OUr System Ut system do not ct]grnﬁ energy left in the gas at absolute zero temperature.*

rH=0, can perform no ex

| erefol-e, 1 This additive constant affects the final results of the calculations only

l t r when chemical transformations or changes of the states of aggregation

| i Chergy of AU = o; of the subst involved. (See, for example, Chapter VL) In all

\ ’ e substances are involved. 1 A .

dp Dot Changghe System, and, hep | . he €35 other cases, one may place the additive constant equal to zero.
. » HICe, the energy of the &7
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For an ide
al .
835, equation (21), which expresses the first

law of th
ermod : . gy i
takes on the fom:ir-l amics for infinitesimal transformations,

g it CvdT + pdV = qQ. (30)
! €ntiating th .
of an ideg] gas, We(:’)lil;?.fﬁterlstlc equatjon (7) for one mole
Substityt; BV Vip = RaT. %
Uling thig iy (
30), we find:

Since g _ 0%

thi , or : . re
his Cquation g a transformation at constant press™

ves us:

¢, - (49 33)
(Eﬁ?)p = (y + R. (

That
» the dj
Hierence between the molecular heats of 8 8%

Constany
Pres
84S constap R. SUre and at constant volume is equal ¥ tas

. d
@), Indeed, for M2y also be obtained from (26), (2921, ?;):

n ideal gus we have from (29) v

9

(é‘g) 140 R
Suhers »  gp =Cy; (6_]1/) _ _3_1_3_?) g
ubstltuting thes oT), ~\aT p /o P

e . . (33)
¢an he showp bxpreSSIOHS In (26), we again obtal" t(hat"

Y an application of kinetic theory

OP = 3
a2

As Cr =5 R ;01' & monatomic gas; and (34)

su Z A lor a diatomie gas.
€Xper m ese Valyeg . with

C i€ from (33) that

PS iR '
Co= 2 or g Monatomie gas; and (35)

If »
W z "
e p]aCe for a dlatomic gas.
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we also obtain:
K = % for a monatomie gas; and
K = I {or a diatomic gas. (37)

6. Adiabatic transformations of a gas. A transformation
of a thermodynamical system is said to be adiabatic if it is
reversible and if the system is thermally insulated so that no
heat can be exchanged between it and its environment
during the transformation.

We can expand or compress a gas adiabatically by enclos-
ing it in a cylinder with non-heat-conducting walls and
piston, and shifting the piston outward or inward very
slowly. If we permit a gas to expand adiabatically, it does
external work, so that L in equation (15) is positive. Since
the gas is thermally insulated, @ = 0, and, hence, AU must
be negative. That is, the energy of a gas decreases during
an adiabatic expansion. Since the energy is related to the
temperature through equation (29), a decrease in energy
means a decrease in the temperature of the gas also.

In order to obtain a quantitative relationship between
the change in temperature and the change in volume
resulting from an adiabatic expansion of a gas, we observe
that, since dQ = 0, equation (30) becomes:

C,dT + pdV = 0.

Using the equation of state, pV = RT, we can eliminate p
from the above equation and obtain:

CydT + EVTdV =1

or

Integration yields:

) log T + @R_v log V = constant.
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Chang;
ging from logarithims 14 numbers, we get:

R
o
TP o constant.

A’Iaking use

: of . . . i
o 1 the forp,. (36), we can write the preceding equativ®

” ) §
Th;j et = constant. (JJ
1S equatig

1 3 : . . b u'C
change 1, the tells usg quantitatively how an adiab

I itg temperatvo.lume of an idea] gas determines thelchaﬂg_"
gas adiabat, Hme' If, for example, we expand & diat? 1
(38) (assumina Y %o twice its initial volume, we find fr:he
temperggyy o 2¢Cording to (37), that K = ¥ that
s I3 redt‘lced in the ratio 1:2"* =1: 1.32
€quation of state, pV = RT, we can p

tion (38)
0 .
forms: f an adiabatie transformation in the

ut 0
SlloviE

i ()
PV = constant.

(40

=7 = constant.

I

.

EQUat' )
ion . I ‘
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ture with height above sea level is that there are convection
currents in the troposphere which continually transport
air from the lower regions to the higher ones and from the
higher regions to the lower ones. When air from sea level
rises to the upper regions of lower pressure, it expands.
Since air is a poor conductor of heat, very little heat is "
transferred to or from the expanding air, so that we may
consider the expansion as taking place adiabatically.
Consequently, the temperature of the rising air decreases.
On the other hand, air from the upper regions of the atmos-
phere suffers an adiabatic compression, and hence an
increase in temperature, when it sinks to low regions.

In order to calculate the
change in temperature, we
consider a column of air of unit
cross section, and focus our
attention on a slab, of height
dh, having its lower face at a
distance k above sea level. If
p is the pressure on the lower
face, then the pressure on the
upper face will be p + dp,
where dp is the change in pres-
sure which is due to the weight
of the air contained in the slab. If g is the acceleration of
gravity and p is the density of the air, then the weight of the
air in the slab is pgdh. Since an increase in height is
followed by a decrease in pressure, we have:

Fig. 6.

dp = — pydh; ©(41)
or, remembering (8),
- _9Mp
dp = 7T dh,

where M is the average molecular weight of air; M = 28.88.
The logarithmic derivative of (40) gives us:
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dT K — 1dp
T K
This, together with the previous equation, gives:

dT K-—lg

dh — T f (42)
Assuming
K=% g¢= 980.665; M — 28.88; R = 8214 X 107,
we obtain:
ar .
T = =08 X degrees/cm.

= —-98 degrees/kilometer.

This valye is actually Somewhat, larger than the observed
temperature with altitude,

respectively, 9g;
temperatype and
formatiop
To finq t},

ﬁ and volume are,
Volume g 4 1inal state ip which
S Tepreg are 305°K ang 12,700 ce, The trans-

' D) diagram b strai :
Performed gng the heat, absorbegir ]i; tli?égsl;t;é::r?
he injtig) volfltdiabatica’“‘:’r b0 a volume 1.35
! me. The Initig] temperature is

CHAPTER III

The Second Law of Thermodynamics

7. The statement of the second law of thennod;i?az?ﬁfé
The. first law of thermodynamics arose as ;htlal resu1C1 oreate
i hine which could ¢
i ibility of constructing a mac nich co
lII?SrOSSlbﬂ’lIi‘:I}lre first law, however, places no 11m1tat1;)ns On't}sz
eossiglgri.lity of transforming energy fI‘OIl:l one1 011;1111‘181;111; a
p ther. Thus, for instance, on the basis of‘t e A
: ; . _
:E)c;le the possibility of transformnllgtﬁeaf tml‘m:1 nt;{:nt ?)f
y ists provide e tota
work into heat always exis Rn
i i t to the total amount of w = o
heathlisse'qme‘;izrrllly true for the transformation of work 11}13’00
h T;; j.:(iaody no matter what its temperature mayt e%
ei .alwa,ys be ,heated by friction, receiving an am‘?{ug n(;
cible‘r in the form of heat exactly equal to the Wf)l : ?nt‘;
Eéirrliii};za)frl electrical energy can always be transfor nn.et i
heat b y,passing an electric current through a res;;q ance.
Tf;:re zre very definite limitations, however, 4?0 the post
sibility of transforming heat into work. If thlm:r; h1j10h
the case, it would be possible to construct a mac s
could b’y cooling the surrounding bodies, transform heat,
, i i into work.
f its environment, 1n ' . .
talé?rlllcer?;ﬁle supply of thermal energy cont:mnﬁd in ?;iiztil,
i tically un ]
d the atmosphere is prac :
thehwa:f;’ch?;le would, to all practical purposes, be equiva-
?:rft 1?;) a perpetuum mobile, and is therefore called a per-
) ind.
mobile of the second kin . _
pe%ﬁ? second law of thermodynamics zu;es fmfil the I;;Sd
i ) e sec
ibili structing a perpefuum mobile o : :
f{l'?lltlilty I(])ff t;::c;;r to give a precise statement of this Ia,wf we
slllall. define what is meant by a source of heat of a given
teripszz?friﬁch is at the temperature ¢ throughout and is
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co]’lditi()ned i
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M€ remaing bractically constant.

> an now gt
at
® the second Jaw of thermodynamics ¥

the following form:

At
mnsformation whose on]

w
ork heqt exlracted Sfrom
a s

rerature
Kelvin_) through ey,

Y final result is to transform i
t 45 4 ource which s at the same tem-
Mpossible.t  (Postulate of LoOY
The ex :
5 perlment .
m z al i
Anly in the faily evidence in support of this law consist®

constryet, 5 e of a]] eff
Perpetuym, mobile ch)r;}? that have been made °
a € second kind.

© expressed as follows:

Unti
tl now e have 1
a

ale. € use
Postulate of Clausl; order tq giVeO.;1 lg of an empirical tem-
recise meaning to the

us, we
part of I,op what we mea

Rty d Kelvm’s DPostulate ;
nal resulg ofetll'?

eat takeH
Nge in the

of tbenhesseptia]

eat into

that the transformation
? Process. Indeed, it is
rom a source all at one
state of the system i8

1 expa,nsi()n of
at at the te

an ideal gas that is
Mmperature 7', Since
nd the temperature

" N o

SECOND LAW OF THERMODYNAMICS 31

when we say that one body is at a higher temperature than
another body. If we bring two bodies at different temper-
atures into thermal contact, heat flows spontaneously by
conduction from one of these bodies to the other. By
definition, we shall now say that the body away from which
heat flows is at a liigher temperature than the other body.”
With this understanding, we can now state the postulate of

Clausius as follows:

If heat flows by conduction from a body A to another body B,
then a transformation whose only final result is to transfer

heat from B to A is impossible.

We must now prove the equivalence of the Clausius and
the Kelvin postulates. To do this we shall prove that if the
Clausius postulate were not valid, the Kelvin postulate
would not be valid, and vice versa.

Let us first suppose that Kelvin’s postulate were not
valid. Then we could perform a transformation whose
only final result would be to transform completely into
work a definite amount of heat taken from a single source
at the temperature {; . By means of friction we could then
transform this work into heat again and with this heat raise
the temperature of a given body, regardless of what its
initial temperature, . , might have been. In particular, we

could take t. to be higher than ¢, . Thus, the only final
result of this process would be the transfer of heat from one
body (the source at the temperature t,) to another body at a
higher temperature, t;. This would be a violation of the
Clausius postulate.
The second part of the proof of the equivalence of the
two postulates requires first a discussion of the possibilities
of transforming heat into work. We give this discussion

in the next section.

8. The Carnot cycle. Since, according to Kelvin’s pos-
tulate, it is 1mpossible to transform into work heat taken
from a source at a uniform temperature by a transformation
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Vs (Figure 8, B). This part of the transformation is rep-
resented by the segment AB of the isothermal .. The
state of our system is now represented by the point B in
Figure 7.

We now place the cylinder on a thermal insulator and
increase the volume very slowly until it has reached the ©
value V, (Figure 8, D). Since the system is thermally
insulated during this process, the process is represented in
Figure 7 by the adiabatic segment BD. During this adia-
batic expansion, the temperature of the fluid decreases
from ¢, to ¢, and the state of the system is now given by

the point D in Figure 7.

| Sp—

Insu— Insu—

fz e [ [

A B D ¢ Ay
Fig. 8.

Placing the cylinder on the source ¢, we NOw compress

the fluid very slowly along the isothermal DC (Figure 7)
until its volume has decreased to V¢ (Figure 8, (). Finally,
we place the cylinder on the thermal insulator again and
very slowly compress the fluid adiabatically along the
segment CA until its temperature has increased to f..
The system will now be at its initial state again, which is
given by the point A in Figure 7 (Figure 8, A).

During the isothermal expansion represented by the
segment AB, the system absorbs an amount of heat Q.
from the source . During the isothermal compression
represented by the segment DC, the system absorbs an
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produce an amount of work L. Since the source at the
temperature fo receives and gives up the same amount of
heat, it suffers no final change. Thus, the process just
described would have as its only final result the transfor-
mation into work of heat extracted from a source which is
at the same temperature throughout. This is contrary

to the Kelvin postulate.

9. The absolute thermodynamic temperature. In the
preceding section we described a reversible cyclic engine,
the Carnot cyecle, which performs an amount of work L
during each of its cycles by absorbing a quantity of heat Q-
from a source at the temperature t, and surrendering a
quantity of heat @ to a source at the lower temperature i .
We shall say that such an engine works between the tem-
peratures ¢ and Iz .

Consider now an engine working between the tempera-
tures t; (lower) and t: (higher). Let L be the work per-
formed by the engine during each cycle, and let Q. and Q,
be the amounts of heat per cycle absorbed at the tempera-
and expelled at the temperature {1, respectively.
This engine need not be a Carnot cycle; the only condition
we impose on it is that it be cyclic: at the end of the process

it must return to its initial state.
We can easily show that if b =
performs a positive amount of w

Q, > 0.
Let us assume first that Q. = 0. This would mean that

the engine absorbed an amount of heat @, from the source &
during the cycle. We could then place the two sources in
thermal contact and let heat flow spontaneously by con-
duction from the hotter source t, to the colder source t:
until the latter had received exactly the same amount of
heat as it had surrendered to the engine during the cycle.
Since the source ¢, would thus remain unaffected, and the
engine would-be back in its initial state, the only final result
of this process would be the transformation into work L of

ture is

0, that is, if the engine
ork, then Q. > 0 and
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engine which operates between the temperatures ¢, and ..
For this engine we have, by definition of the function f:

% = f(il, t).

Comparing this equation with (54), we obtain (53). Q.E.D.
Since the temperature ¢, in the above discussion is

arbitrary, we may keep it constant in all our equations;

from this it follows that we may consider f(¢o, f) as being a

function of the temperature ¢ ouly; we therefore place

where K is an arbitrary constant.
Making use of (55), we can now put (53) in the form:

Qz _ 5@2)
0 = Jt, t) = Ok (56)
This equation tells us that (i1, ¢2) is equal to the ratio of a
function of the argument ¢» to the same function of the
argument ¢; .

Since we have used an empirical temperature ¢, it is
obviously impossible to determine the analytical form of
the function 6(f). Since, however, our scale of tempera-
tures is an arbitrary one, we can conveniently introduce a
new temperature scale, using ¢ itself as the temperature,
instead of i.

It should be noticed, however, that 6(f{) is not quite
uniquely defined ; it can be seen from (56) or (55) that 8(¢) is
indeterminate to the extent of an arbitrary multiplicative
constant factor. We are therefore free to choose the unit
of the new temperature scale f in any way we see fit. The
usual choice of this unit is made by placing the difference
between the boiling temperature and the freezing tem-
perature of water at one atmosphere of pressure equal to
100 degrees.

The temperature scale which we have just defined is
called the absolute thermodynamic scale of temperature.
It has the advantage of being independent of the special
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properties of any thermometric substance; furthermore, all

the thermodynamic laws take on a simple form when this
scale of temperature is used.

We shall now show that the
perature O coincides it
duced in section 2 with ¢

We consider a Carn

absolute thermodynamic tem-
h the absolute temperature T intro-
he aid of a gas therniometer.

ot cycle performed by an ideal gas
(for simplicity, we take one mole of gas). TLet 7T, and T2 be

the temperatures (as measured by a gas thermometer) of
the two isothermals of the Carnot cycle.  (See Figure 7.)
We first calculate the amount of heat Q, ahsorbed at the
temperature T, during {pe isothermal expansion AB-
Applying the first lay, €quation (15), to the transformation

AB, and indicating by the subscripts 4 and B quantities
that belong to the stateg 4 and B, we have:

; Ing simila.r fashj 4

EIVen up at the sougtrzlé \;e ;an- PYOVe that the amount of heat
Tepresented hy the Segmén glglégl: €1s0thermg] compression

& = RT, 1o l;_
0 poi 4
ave, from (38):13 ts 4 ang ¢ lie on gy, adiabatic curve, we

DVE: = gy,
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and similarly,
T,V = V5™

Dividing this equation by the preceding one and extracting
the (K — 1)th ront, we get:

Vo _ Vo
=T

From this equation and the expressions for Q- and @,
we obtain:

Q- T,

g

: : 's us that the ratio Q./Q: is equal to

theT ?iiqu}af ;ci)’fi ,S}cl)(fmtlslel temperatures of the i(;ul:;ii rﬁ’iﬁ
these tef;lpe;'atures R S fihef gl?Sufslsh&t Q:2/Q:
scale of temperature. But from (56) it 0' @ E Fhes somrros
is also equal to the ratio of the tem}?erat’;‘lﬂfg Ounits of the
when these temperatures are e}Irplesseth(-} ratio of the two
absolute thermodynamic scale. Henc‘e, dyvnamic scale is
temperatures on the absolute thermo tyn e
: hat ratio on the gas thermometer 1 S,'nce thé
Elquafla tg JEcemperature scales are proportiona Ih lne mn
1"3’5 Wf temperature for both scales have been chose qual,
11*1331 i;ncludé) that the two scales themselves are equal,
that is, g (57)

two

1, we need no longer use

i g and T are equal, : :

d'f?mcet leiters to indicate them; henceforth, “:; shao _

11 zresn use the letter T' to denote the absolute therm

alway

dYII}&_mlC ;’eﬁp;;zi:t: 10??. 6, we have from (56) for a reversible
sing i :

cycle between the temperatures Ty and T

Q_T

(58)
& T
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| And the efficiency (44) of 4 reversible engine becomes:

vt T _TeeT, (59)
Tg T2 )
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Problems

1. One mole of a monatomic gas perfogms aOCax;:;lc;t ucgs(lai
bet\;feen the temperatures i%oo'lgtgjlldv 21?1(1}11 eKié . 1?{—, ke Upper
i hation, the ini _
:ﬁsr?ﬁlffo[ﬁlizrg 11]1?52(;? To {ind the work performed during a cycl§:
and the amounts of heat exchanged with the two sources. .

2. What is the maximum efficiency of aotgermg.laeilcﬁ:gi
wori{ing between an upper temperature of 400 an
temperature of 18° C? .

3. Find the minimum amount of work needed too Ff\zxt‘l;le:gfl 2}1::
calo.rie of heat from a body at th.e temcperature of 0° F, v
temperature of the environment 13 100° F.

"3 M
i
Fa)



CHAPTER 1v

The Entropy

11. Some Properties of cycles,

Let us consider a system
S that undergoes g cyclic transformation. We suppose

that during th, cycle the system receives heat from or
Surrenders heat, 4 set of sourceg having the temperatures

gy ey P Lt the amountg of heat exchanged
between the system and these Sources be Q,, Qz, -, Qn,

the @’s positive if they represent heat
M and negatjye in the othey case.
e shall noyw Prove that -

2 Q <0, (61)
i=] T.'

and that the equality sigy holds ;

I (61) if the cycle is
reversible,

In order to prove (61) we lntroduce, besideg the n sources
isted above another soypeq of heat qt an arbitrary tem-
Perature 7', ang also ¢, reversible eyclic engineg (we shall
take n Carngt cycles, ¢, Ce,y ... ¢ f, Operating hetween
the temperatures Ty, Ts, won g 1
temperatyre P ,

Tespectively, and the
We shal] chooge the 4t Carnot cycle,

Bk 5 CMperatyreg T; and T,
at 1 surr nd :
the quantity of e, temperature 7'

» A0 amoypy, to that
absorbe( by the System g at the temperature e%-ual °

€at absorheq by C:

According to (58)
from the i
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cchange of heat at each Of
By, O, wes , £ ".T The ?e;r”e.‘g\lf}:‘;?gg the cofﬁpli“{@ﬁzlilllz
the .S?ﬁczzuilé T, ,surrenders an ﬂm(;‘i:ltt ?)ff heeit frlom the
:;;Eem lS, but it I-ece%ves ;ihe sinﬁjgmother hand, lese; 13)‘;
cycle Ci. The squ;fio tlol,e sum of the a.moﬂgtls (gwe s
amount of 1.1eacf13 egu the Carnot cycles Cl’allgemOUI;t of
) illjsems}j)(;rce YTO surrenders altogether
Thus, th

heat equal to

) " Qs (63)
%= ZRea=To2u hat the
i= i is tha 1
he net result of our Complek,cyge S’scei\’es an
I‘Ience; the d of S and Cl: C'.!, T Ingut we ha\’e
System compose from the source T. ion the work
amount of heat Qo'n a cyclic tmnSfO.rmatlonthe system.
already seen thalttl the total heat received 'k.)}’_ il stavas
performed is equal to -+, Cy return to their 1‘111 It of the
Thus, since S, C:, Cs, lex o yele, the only final IeSL; e
at the end of t‘hB coslf‘lfns'form into work an amou; It 0,
complex cyecle is tirce .at a uniform temperatu;fadiuc.tion to
received f.rc.)masﬁis result would be in tc}?;t Qv =0, or,
Eell‘e- Iaosgszslllate It therefore follows -
elvin’s '

from (63),

nQ‘_<0,
7=

. - 1). R e
which is identical }vl::’i;ég liy S is reversible, Wenciﬁedegcilijﬁ
0o i T ; i
. I.f L pil“e direction, in which cese a s gl e
1t in the .OPPUS; plying (61) to the revers )
change sign. Ap
obtain:

or
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Thus, if the ¢

yele i revers

1 7 as
S ible, this inequahty, as well
atisfied. I'hi

; lity
$ is possible only if the e?lllli\lfe:
sign holds, Or a reversible cycle, therefore, we mus
i )
Q (05
§ﬁ“&
This Completeg the py

e

and  (64), we assumed thab E:};S

nges heat With g finite number of SOUI'.der

ThiiTy, -, » Bao Tt g important, however, to consl n-

t_he case f_or Which the System exchanges heat with a co.n

of sources. In that case, the Sumsr;r
be replaced by integrals extended 0¥

the integra.l ext
dQ the Infinjeg!

Ima] amount, of 1,

ended over 4 cycle and bY
from g SOurce g4, the t

m
eat received by the syste
Srberature 1 o have:

fg%g =0, (65)

]‘es.r and

d
PR,

fOI' e

which ig Valid fop all ey

(66)
Versibla Cycles.t

. e DI‘Operty Of 'bl & cle
Ssed by (g & reversible cy
O Mt B bé t6) b

€ stated ip the following
WO equilihyg
avoid

UM states of 4 system S.
: isy
oint gy, T Ndergg,
Surrenderg

r
¢ Quantit,y, of
rend g T o e, o
o pos;itive eed, if the versigl System) which receives the
: ) b : anngy ¢ (rely ol S T when
A ot floy e

and whep is Degative g > % o-der bady o
(eguatlont (66)}3, We mugt 41, = T. !
etween twq odie i ol !
we may therefore tikl;t’l‘lt[f)e“;n:htempemtums ?:B;:?f ?:v‘éf:iiﬁe. .08
temperature of the bart of ¢, aystzntleflgf:igu;e Oftﬁhisogrdce #0d algg thg

Clves € heg .

Meaning f

(65) and (66),
ture of ¢

he source which
ily equal to the
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: i kes the system
tion which ta
5 ible transforma: I
Con51der. a’.i?;egi:ieeA to the final state B. In m
from its ini

ill be pos-
ions from 4 to B wi
many reversible transfol‘m&zct’)lil:. For example, if the state

of the system can )bziazzz:

¥ 2

d on a (V, p :

Senteeontirmlous curve connect-

’ fadnythe two points A and B (rep1

mfenting the initial and ﬁnrz‘

rz tes of the system) c:o.rble

i ELnds to a possible revirm B

o i o B.

v tfansformatlon from i fo B
In Figure 9, three suc

P

Fig. 9.

formations are shOWI}. bl
Consider now the integr

BdQ
I

i A to B

i transformatl‘on from o B
0 i e oo K;‘lrf;;b;ebsorbed revermblyt];littk;z :yabow
(dQ is the amount o e e
e 3 S tome or all ’reversible_ transform hofia oot
i the' sff?;:;t {he value of the mtegrs: for
k4 tha;t Is:ti‘epends only on t_he e;c%ge; e
tm?‘gfojz?n;:?g of the transformation @
stales

jon atself. st fig
onIihe trgnjfzgw;iize this theorem, we mu
n orde

: A
d II are two reversible Fig. 10.
show that if I an

in Figure
i ) 4 to B (m. the transfor-
tra‘nSformatlon:refi-ggesented as points and
10, the states

i then
. erely as a visual aid to the proof), )
mations as lines merely

(L= o

B

F 5y
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reversible cycle, since it is ma

de up of two reversible trans-
formations. We may therefore apply (66) to it, so that

dQ
jéI.BIIA T~ 0.

This integral can be split into the sum of two integrals:

LB+ (L9, o

The second integral in this expression Isequalto — ( / B @) .
T
A

because in the transformation frop, Bto 4 along II, dQ

takes on the same values, except, for sign, as it does in the

transformation from 4 ¢, B along I :
(67), and thus prove our theomm.%r - Hence we obtain

The property expresseq by
new function of the state of 5
LR System. : :
which is callec} th<_a entropy anq ig 0? Utlrillost'Ii’hlS f;mctloinn,
thermodynamics, ig defined ip the follgw: mportance

We arbitrarily chg OWing way .

0Se a certajy -
system and call it the standarq staigmhb;u;n Etate o oft;)ur
: € some other

equilibrium state, anq consider the integpa]
ral;

S4) ~ [*dq
£ T (68)

taken over a reversible {pq
nsf :
seen that such an Integrg] dep;‘gm tion, We have already

A and not on the Particyly, - "0 ON the states 0 and
from O to A, §j AL Teversih] .

- SInce the standayg € transformation
we may say that (gg ; _State :

18 fixed, however
ha, : : Unctioy ’ ?
Weiahallicall ithis functioy, the ey of the state A only.
T s OBy of th Az
* The necessity of reggyjng: |, e state A.
states only arises frop, tfll:tg::gt 1;:}}!!13 deﬁnition of th
i ollows 5o eomi 0 be g B2 st 20 14503y 6 i
it follows from Contmmty congiq eqnistirom 0 to A must
O and A must alse be eQUilibri ati ng ¢ at qul!lbrlum states Hence
In many cases, hU“’eVer .m Stateg, the Initig] ¥

non-equilibrium states. Le,t ig Possih)

'l and fina] states
of several homogeneous

diffgy, 1OF em:el e ehtropy even for
€reng temperae';ua Syst,Em compose
'8 and py es.
essur
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Consider now two equilibrium states A anc'I B, ?nglé{saé
S(4) and S(B), respectively, be the entropies o
states. We shall show that:

B dQ
S(B) — 8(4) = [ Uik (69)

where the integral is taken over a reversible transformation
from state A to state B. _ }
Irllrl1 order to prove this, we note thatlthef1nt§ﬁr§alv2;18itbiz
ralue for
ight- side of (69) has the same v '

Eiitsflé?;itions from A to B. We may therefore chzgz?v:

particular transformation consisting -(‘)él t:r-zn;ﬁ:; i

reversible transformations: first a OI'eVCIC.ISI ﬂ?e nl a Lo
n

f the standard state a ( -

t?gtﬁlsfinf;tion from O to B. Thus, the integral in (69)

can be written as the sum of two integrals:

iQ _ [°dQ f”ﬁ. (70)

We have by the definition (68):
S(B) = T

: rsible. We
since the transformation from O to B is reve

have further:
°dQ * dQ = — S(4).
-l d = s L

: th
Substituting these two va,lues_ for the Qnge]%'rals on the
right-hand side of (7())); ;Vsl ZbZiltI;Of)?);equiores' the arbitrary
The definition (68) of th asily prove that if,
: state 0. We can easlly 4
glszl;fdozfagtav:rfaciiose a different standard state 0', then
bJ

i ature and pressure. _If th_e
= ul]lftoz\{riltﬁeg};irother, the system will evi-
On'mfa heat will flow from the hottelr to the
S;n((;f pressure will give I'i_SP: to mot‘lon. If,
a thermally insulating rigid container, our
d we shall be able to determine its en-

Let each part, however, have
different parts are in direct ¢
dently not be in equilibrium,
colder parts, and the difference
however, we enclose each part in
System will be in equilibrium, an
tropy.



. state 4 differs from the
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the new value, §'(4), which We find for the entropy of the

old one, (4 e

constant, (4), only by an additiv
If we take 0’ as the new stand

definition, ard state, we have, by

S4) < ["dg

tion from (O t%ral 3 %;e:g;? e (o ) crsible transforma-
find that ying (69) to this integral, we
Sy =8y, 80,
or
D = @) o g

Since the new standarq state 0’ i fixed, 1, Y

constant (that is, it is independeng oy "OWever, § (0)isa

Thus (71) shows that, the differencg 1., "2tiable state 4).
w

of state 4 obtained with two diff Ctween t},
and 0', is a constant, srent, Stang

The entropy is thus ¢
stant. This indeterming, lan additiye con-
dealing with entropy diﬂerences; i L US wheo Wo ane
however, the additive constant iy Droblems
important role. We shall see later howet i ar;
thermodynamics completes the dEﬁnition Of}t: ir law of
also enables us to determine the entrop, he ¢ *opy and
Chapter VIII). ¥ consta,nt o

Both from (68) and from (69) it follows, 3 ;
infinitesimal reversible transformation dul‘ine Cong; der .
entropy varies by an amount dS ang the g steg “’hich

€ entropies

ard states, O
Eﬁned €Xxce t

5 or
cy will not, trou

Ntrg

t
amount of heat dQ at the temperature T that recei\'es :e
ds = 2@,
ST ; L (72)
That is, the variation in entropy during ap !

. . . A s n n‘ !
reversible transformation is obtained by dividing the Eﬁflmal
l‘)u11 t

——

| .
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e of the
of heat absorbed by the system by the temperatur

system. ed of several parts 1s very
The entropy fhae S;ffjn;fciff (;SIltI‘OPieS. e ti? (f)falf;tse;
oft(?n.equal tff3 the energy of the system is the S%L;rmed by
Thn?. s m:fe ;11 the parts and 1f bliE workl fsrthe sum of
:fﬁzl gless’;em durtng 5 transformation 15113(3? parts. Notice
the a}rrnounts of work pel-formfd Eieaobvious and that in
that these conditiiIlS nagf bI;Ofu?ﬁlled- Thus,go;szziﬁfé
some cases thF;}’ mS‘ :z;.tem composed of two ni‘rgy as the
in_the case o ‘_?1 b}e possible to express bhe fﬂ if we can
substances, it wi ies of the two substances O Sywhere they
sum of the en‘ergl energy of the two substance v
negle_ct the smfaceThe surface energy cam fvery finely
il(;el 1nte cclzo;xltl?)crt-i f the two substances S?;zr;lgle iy
glec S a con
Suidivided; ?g:;;:::sfi’] ;tsi?:; I;Ifas)irmplicizyggz’f ;E; i}fte%z
et us asst i ste g
. two partial Sy m of the
;i ;;r;lszo:iitoi 1?:1;13‘:37 U of s is equal to the su

energies U, and Us of s, and $::
U=U+ Usz; '

s during a transformatltl)n

ythat is, to the sum of the

ectively:

b
and that the work L performctit?L 2
is equal to the sum of L1 c‘iln re::,p
work performed by s: and Sz,

L:L1+L2‘

d from (15) it follows that the

1 . : tion
From these assumptions 4 during a transforma

tem S
heat Q received by the sys
can be written as the sum,

Q:Q1+Q2’

y the two parts. This

i b
of the amounts of heat received which defines the

i 1 (68),
enables us-to split the integral (
entropy, into the sum:
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_ A dQ _ A dQl f.« fiQE
S(A)~L T~ ) 7t

of two integrals which define the

ial
entropies of the two parti
Systems g, and g,.3

hen the conditiong for it
additivity of

. = eﬁne
entropy enables yg In several cases to d

i in &
the entropy of System evep though the system is not 1
state of equilibriym, This is pos

ssible if we can divide tg:
Elven system intg & Number of parts each of which alo
18 in a state of equilibriyy, € can then define the entropy
ese parts and, b

y deﬁnition, place the entropy
Lsystem equal 4,

s validity are fulfilled, this

reversible transforma-
» Y€ integra) is taken from
tl'ansformation, the preceding

show in that case that

S(B) - (4 > [” QTQ

(73)
In n )
7 3 fom Eﬁir t0 shoy this, we take our ngf
0 ible
transform ;. 2long an jrreversi
A

and 1
/ a];}png a reye sible i
il Igure 17

\ tion R (see

.. Teversip)q A Oge;her fform an 111-

(65) to this Irreversib]e eyele, we obtain. We apply
3 It should be

noticed thyy if ty
total system are given, the corrgs?ft;lr?c(iliird s;cat.e O and the stat,
compose the total_ays_tem 2re knoyy, g:s atets. tOf thfe two
systems have been Indicateq by the Same letteig%uaﬁfl 3 the ¢

“ It can easily be broved thag, q)) th TOpertieg alreads
fo the entropy apply also to thi, Eeneralizeg definition

© A of the
Arts that
¥ bayisag
¥ showp to “-Dply
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oz § #=([" D[

be versi formation,
A ul: l pplied to the re ersible trans
a
Since (69) can be :
R, from B to A, we have

"4 dQ) _ S(A) _ S(B)-
(7).

’ dQ) — [5(B) — SA)],
(%)

tion
of transforma
the general case of any type

so that, for th -

from A,to B, we have:

"49 2 §p) - S(4),
|7

-E.D. ery
.. : ith (73). Q takes on a v
which is 1dentlm;11;isolated system, (73)
For a comple

7 ﬁnd
d@Q = 0, we now
Since for such a system dQ
simple form. (74)
that: 8(B) = S(4); . P
wation occurTing in an;fgfft;m‘:yof iy
n A n that

final state can never be Ziesss reversible, the
the entropy of th? the t,ra-nSfOrmathIl m suffers no change
initial  state. . Ilds in (74), and the syste
Squelliby sz ho t the result (?4)
in entropy. learly underStOOdl tlsait is possible with

1 EIRILG be'sglated o Téic,e the entropy of a

applies only to i nal system to re taken together,
the aid of an e’t“tely of both systems

op
body. The entr

case. > of maximum
however, fadin DT td ecfrsystem is in the Sifst undergo any
When an iso ELtewith its energy, 1t ¢ isformation would
i COHSlfSt:rI;lation bagalss ?if;ly tlf;ze state of maximum
further transfo tropy. e X The
: se of entr isolated system.
result in a decreas tate for an . isalated
. table s " an isolate
i 1‘5 Hile w;:»isritheous transformations in
fact, tha a B

o "N

that is, for any transfor

°
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System procee ip such a

an be Convenient]y illustrateq by two simple examples.
e first, €xXample, we consider the exchange of heat by
ction between two parts, 4, and Ay, of 8
Ty and 7, pe the temperatures of these tw0
Parts, reSpectively, anq 1t Ty < T,. Since heat flows by
conductiog from the hotter body ¢, the colder body, the
E}?gybf dzygl:;is. up g Quantity of heat Q which is absorbed by

S, the entrq f A, changes by an
amount, Q/T,, While that o 1 .

£
of 4, changes by the amoun
—Q/T.. € total varigtion - lete
: lati g comp
System Is, accordingly, Al entropy of the
2.9

. Tl ?‘;

Since T, 2

the entropy 0f2€hthls Variation i obvioysly positive, so that
a Secong 93:1, bire system has beey increased.

by friction, T J=le, We considey the production of heat

i ratan o e ‘Hreveersxble Procegg also results in a;l

jby friction re?&i\?‘es a OSit,i\I:art of the System tha_t is heate

Icreases.  Sing of heat ang jtg entropy

€ amgq
nce the heat
another par of the Systemcc; S from Work and not from
fompensated hy 4
the system.

another part of
decrease during any
pretation from the

8
has proved that the entropy of
dynamica] system ig

to the probability of t i e
We have already emphasizeq tharis j§ 12EE

e
dynamical and thermodynamjcal o dlfference betWeen "

system. To define the dynamicq) smﬁts. Ot the gpo of a
have the detailed knowledge of the 42,1t

it: Necg
081t Ssary to
all the molecules that Compose thg SYSt;E[? an motioi of
dynamical state, on the othey hang, deiin;g JF
b giVing

an 1solated System can never

& e  very clear inter-
i W.  Boltzmann

Connecteqy bglven State of

he state, a g

direction as to increase the entropy
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ture
uch as the temperature,
ber of parameters, s t to the
only a small 3“;2 feort.h. It follows, therefor;(,) I::(ilsa . T
e ical state there corres ics
same thermfédyl;?g;(;?l states. In statlstﬁca:n ﬁ;‘iﬁié’ai
m{mb.el‘ ?f 'ng:l for assigning to a g}ven; e;mical states. -
criteria are gi fresollis s correspondmz‘:f yna,lly called the
state the nlgzln 30.) This number m 1s Lllsslfmte ik,
(Sei ?)Bl;ys egf the given thermdyﬁaﬁiio the ’probability
probabi iner. it is only proportio _ vy ot
sl Spelailrllfé : ri‘she latter can be obFal?ZCEalizsdlw g
in the usual sense. ible dynamica - g
0881 : istica
by, L tOtﬁl numbzgsﬁfnl; in accordance with stati
We shall now J

t stable
1 that the mos i
icher probability, so . bability
i et O}f1 h;ggf?;mpwill be the state u:)ff I:f:iifsfe?l
statej of sue '?11 };he given total energy glishes 2 parallelism
PO SIS ‘:111 t this assumption esta

We see tha

i of a func-
s the ex1stenc<.3 :
S of our system, and thus suggest Such a relationship was

% T 1 ennl.
ol elanitnein })({)t“ ;;(?lttzrlnann, who proved that
actually established by

S = klogm, .
stant and is
stant called the Boltzmann Con
where [ is a con

equal to the ratio,

(75)

6
R (76)
A’ d
dl.o"s number . .n

R to Avoga ) rove, assuming
of th.e gas co{ls.tanta ool of (75),- Weh(%anbgtweeél B anid
i Wlt}.lTIt gl?; i functional relationship
lhe existence

) (77)
8 = f(),

probability.
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- entropies:
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S: be the entropies and 7, and 7, the probabilities of the
states of these parts. We have from (77):

Sy = f(’fl'\); S, = J(ra).
But the entropy of the total system is the sum of the tWo0

and the probability of the t ‘ . duct of
the two PrObabilities, otal system is the pro

T =T,

From th : )
following. €Se equationg and  from (77) we obtain the

i J(rimy) = J(ry) + f(ra).

€ Iunction . .
equation: 7 must accordingly obey the functional
Tay) = fa 4= (78)
This property of fe @).

(78) is true for all vq

nab] . .
lueg ois b determine its forin. Since
where eis an infinjte x

: 24y, We may take y — 1 + 6
Slma] of the first, order.y ’ai‘heg:

J(z)

h Sideg b b Py

Y Ta ) .
order highe, thyalois theorem ang neglecting

& + gy o,y B85, we have:

E‘Xpanding bot
all terms of an

J
For € = 0, Wwe ﬁndf(l) 5 O(x) +f(1) -+ Ef’(l).
’ ) ence,

onStant, B

() o EC_

Integrating,

&

We obta.in :

I@) < klo

8z 4 congt,
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Remembering (77), we finally have:
S = k log = -+ const.

; p .
We ban place the constant of integratlor-l e-ql(lialte;(l)ni zlf;?e
This is permissible because the entropy 1s inde

ly
to the extent of an additive constant. We thus finally

. 5). hi
Obg)%fmcc()zlrie it should be clearly unders?og (?;t S;}nclz
prmstibyfes I;O proof of th?iB(])ltzn;m;lllan%;:;;? relati(,)nship
demonstrated tha 7
!';V:t\?:‘;f él 0afnd + exists, but have merely made it appear

plausible.

tates can be repre-
of systems whose s .
lf.dThe el(llat’r(;&p)ydiangm. For these systems tTI;e stag;e 2115
(Sieg edog: aam,r two of the three variables, p, ]’313;1 (thé
Ife v h}:)se T 'and V as the independent var;a e
sta:;ev(;rioables), the heat dQ received ;ﬁtt(}:fe vziscﬁrg’ Frdk
infinitesimal transformation as a re : Ly
2}1:;;13;1 bti’sﬁounts dT and dV is given by the differenti

expression (22)

a-@)er e[l

From this and (72) we obtain:

1 (aU l[("_) s p] av. (8
as = % = T(gﬁv‘)vdT'i_ T \av )z

i i sions for dQ and dS differ in

Lhiees tvao C:ﬁ{;f;l t;igl,;:clr.‘esWe know from the ge??:l

S ImI1):h re exists a function S of the state o he

e th?t i case, S will therefore be a function of the
fr};srf;z.gll;as Tnagg v, wﬂich define the state of the system:

8 = 8(T, V). (81)

: ight-hand side of (80) is
i ial expression on the g _
thgé?oc:ﬁfee 1qclii:j’?erlzmlzia,l of a function of the two independent
variables 7" and V.
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In general,

. a different;
variables » rent]

al expression of two i dent
= - epen
and y, such gs- two indep

% = M(z, y)dz + Nz, y)dy, &

€ a perfect q; e
randy, e

is said to b

function of rential if it is the differential of

oy maly accordingly say that (80) 8*
1S well knowy, 4}, 1 Mdependent variables 7" and V-

at ; ‘ “ |

and N mygt, Satisfy thq flold(ils 4 perfect differential, then M

l VIng equation :
d
ﬂ(m) = WN(z, y) )
When this ay - T . (83
ondition ig fulfilleq 4 - ' _ ;
S find 5 unct;j "It 18 possible to integrd
F on Whlch satisfies that equﬂtion'

I .
o I(S)t?sh €IWise, no such function 8?‘;
g i as '};ei.lnd dz cannot be considere
i c:tling the differential of SOI.T]G
i tegl‘alonfof  and y; then, the 1"
\JN nectj of (82) along a path ol
g 12, v g two o :
Plang (g boints on the (%,
th two 5 Pendg not Only on these
e .2 Dointg (the limits of the i
m

a ;
2 .]OlI}lng the

thatlag g:};pressims (79) and (80):
g & SO ;’v tl;erfeg,t differentir?n'
12 A0 re ; e oA
B2 % B e g 1 ol
along thESéAt){vO » on Tﬁeresult inat()):)ltghthe two paths
Qi and Q, Whichd_lfferent pother hang . 025eS, namely’
easily verified b In geney athS, We ’ \V‘e 1ntegmte dQ
(15), to the twa applYin il are not, Obtain two result$
we find that. tranSfOrm& ie firsg la,weé1 Yal.  Thig can be
i I ermodynamicss
* VN doing this
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Taking the difference of these two expressions, we obtain:
QI""QH=LI-'LH-
L, and L,, are given by the areas AIBB'A’A and ATIBB'A’A,

respectively. Since the difference between these two areas

is equal to the area AIBIIA, it follows that L; — Ly and,
therefore, Q, — @, also, are, in general, different from- ZEero.
Thus, (79) is not a perfect differential, and no function @
of the state of the system can be found. It should be
noticed that if a heat fluid really existed, as had been
assumed before modern thermodynamics was developed, a
function Q of the state of the system could be found:

Let us consider, as an example of the preceding con-
siderations, the expressions for dQ and dS for one mole of an
ideal gas. From (30) we have:

dQ = CvdT + pdV,

or, on eliminating p with the aid of the equation of state,

pV = RT,

T
dQ = CvdT + 1%_ av. (84)
a perfect differential, and one can

This expression is not s :
immedi :ft ely verify that the condition (83) is not fulfilled.

From (84) and (72) we obtain:

dQ _ Crar 4 Bay. 85
ds=_§=TdT+VdV (85)

Since the condition (83) is noW fulfilled, this expression is a
perfect differential.

On integrating (85),

S:CvlogT+R]0gV+a: (86)

we obtain:

ot of integration. This additive constant

where a is a consta: d L
renfa?n?s limdetermined in accordance with the definition

{ tion 32.)
tropy. (See, how ever, sec
(6%: fc;zetigngfgl}"rm the expression (86) for the entropy of
one mole of an ideal gas by introducing in place of V its
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value V = RT/p obtained fr

om the equation of state.
Remembering (33),

we obtain:
S=cq, log 7 _

Rlogp + ¢ + p log R. (87)
~ Returning to the generg] case of any substance whose
~state can be defineq by the '

Variables T and V, we obtain
for the differential of the entropy-
When applieq 14 this expression, gives:

the expression (80)
The condition (83),

Suse V and 7 as the

perform the partial differ-
cedi

(88)
As an applicatio

energy U of a SUbSt&nce whi Use it to ShOW that the
PV = RT'is a funct; oS the equation of state
lon of the tempera s Quation of sta
depen.d onttlhe Volu'me_ AVe gl e only ang do?s not
experimentally verifieq by Joule; 54 ;-9 S€en that this was
to obtain this result ag a direct, Conse “Testing, however,
of state. ence of the equation
Substituting the ex
that:

n Of (88)’ we Sh

Pression 5 _

I

44 in (88), we find
ou 8 (R

(3V)T TB—T' ?) = %_:“f

0,

which proves® that U does not,

depeng on
If we choose T, p or p,

V insteaq of v v
A

— : oL ) N
8 Notice that this result is not quite independent, s the inde-
described in section 5. Indeed, the proof of the idop 8 oul,

it €Xhans
thermometer temperature T and the thermog namie temy Sety, cxDerime, ¢
section 9 was based on the results of the Joule e De

! o
XPerimen r&ture;‘ the Eas
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0t ‘hich are
pendent variables, we obtain two other ef}uizlizil:‘ T}’I and p
substantially equivalent to ('88). Tl‘l)lés): 1 Sineeds = dQ/T
as the state variables, dQ is given by (23). ith the aid of (83):
is a perfect differential, we easily obtain, w

(_379)? =4 (55 T aT/» |
as the independent variables, we

Similarly, taking p and Ti'
obtain from (24) and (83):

r-[@),+)@)-GE). @

15. The Clapeyron equa- F
tion. In this section we shall
apply equation (88) L -
urated vapor, that is, to -3
system composed of & Liqui
and its vapor in equillb}"lum.

We consider a liquid en- a
closed in a cylinder with 2 LV
piston at one end. The Sp&lce ; ,
between the Sul'facfe thf f)ilse_ i
liquid and the face of the
t;llll i?ll be filled with Slltuy; which depends only on the

r at a pressu its volume.
::fsd : z‘tciie of the vapor and no T-S'Zpor system in a (V, P)
he oo o als for this liquic : Keeping the tem-

The 150131?@11'[13‘ obtained as follows: of the vapor by
Tepresentation are e increase the Vo_lume of the liquid
Perature constant, W As a result of this, some of the vapor
raising the piston. der to keep the Presre B o o n
will evaporate in or s long as enough liqu the pressure
unchanged. Thus, 2 e of the system leaves iXuIl)re of a
Increase in tl};,ehvloi?orfe the isotherm z.d for]jien;f constant
unchanged. —— ilibrium is a :
liquid and itshvgé);l;) ;?a&;lluto the V-axis, as shown in the
pressure, anc he

.o in Fiegure 13.
region within the dotted line 1t i

Fig. 13
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When the volu

1
‘ - volume will result

If we now ¢
© perature constant, th,

Tessure of the g

At this Ppoint,
does not produce an

of the vVapor condeng
(the horizonta] stret,
| When the volu
i i that the substan

increase in the
es and th
ch of the 1
me hag he

: ‘ (lines a, b, ¢, and d), can
i the length of the horizonta
it It (that is, the volume interyg) for
i | can coexist in equilih

€ seen from, t
Stretch of
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ent
me has heen increased to such- an GPS(; o
that all the liquid has evaporated, a further increa

e . se in
» 38 shown in Figure 13, in a decrea
! Pressure just as in the cage of a gas.

ompress oyr System,

still keeping the tem-

© Pressure will increase until it becom e;
aturated vapor for the give :
a further decrease in VOlumB
pressure; instead, som

€ Pressure remains unchange

Sothermay),

t
D reduced to such an exten
e is complete]y ;

he figure that
he isothermal

Sl Which t}q liquid and vapor
v g : a given ses
Hi with Increasing temperature uitﬂ f(fempera,ture) decrea
il reduces to an inﬁnitesim
Il

‘ point of inflection)

il wsothermal, and its temperature
temperature. The volu
responding to the
the critical volume and the CTiticq]
responding to Fead, o I
critical point) of the System

The isothermals for mpe

temperature are Mmonotonje decrea
no discontinuities, For vep larg
over into equilateral hYDerbolae i
the substance in the ra

150ther

e and
horizontal :

asj

e

omt, of
1S calleg
Tature

] Ecau
nge of Very high
more and more similar to those of gy ;

* the isothermal ee it
al lep h :

18, to a horizontal
€e is Called the erstical
1S calleq the eritical

pressure P. cor-

ction gre cglled
essu'r .
t

€ the state cor-
Criticql state (or

8 abg

Ve the critical
unctmns Which have
mDera,tures’ they go
e e

mperatUr
Cal gas 1S become
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++ 001 isothermal ee
) and the c1'1t.10a1 .150'5 section
The dotted line in ﬂll;nigliliio four SG_C“(?E;'E t E}?e section
divide the (V, p) p onds to the hqul(-i ’ re :)f the liquid
marked L, which .00112?'113'esp0nds to the mmiﬁich corresponds
marked L, V, whmh-c or; the section V-wn G, which corre- .,
Bl e Sawmteiic*l\‘igp(;r; and the section G,
o the nonsaturated iquid-vapor system
Sponds 0 ho s ly (88) to the o e 13
We shall now app L, V of the (V, p) I:it,ies of the liquid
represented by Teglo}:-ecss’sure and the dentqture. Let v an_d
In this region the p 1 only on the Fempmcvolumes per unit
and the vapor Flepm} (1 umes (that is, thethe liquid and t.he
v2 be the specific vo Lf the densities) of 'be their Spef”ﬁ_c
mass, or the in.vel‘sre. Oand let 2 allc'l N-zqss). The quant‘l'
vapar, 1-espect}VeB ¢ energies per unit : o he temperatulg
energies (that 1s, th are all funcuonsbstance, and 7, an
ties p, vy, vz, us, and Tﬁuﬁ.ﬂ mass of the sub arts, respectively,
only. If m is tl;e;f;c;l;e liquid and vapor p
mq are the masse
then, m = mi + M-

of the
total energy
the total volume and the

e m(T) + meva(T)
ALign
+ matta( | N
e ] transformation of (; .
9; of the substance t0 P
'

1l

v
U

; n isotherm . .
v consider a ot di hich resu
- HOL- h causes an amou or state, and I e dU of the
System whic i te to the vap 1d o chang oo
from the liquid sta total volume 8% F the trans o 7
In a change dV of the tem. At theen dm) grams of liqui
SV — @ me
total energy of the Sblge present (1 that the total volu
tion there will then ms of vapor, SO
and (m, + dm) gra

will be equal to: o amyn(T) + ¢
V4 dv = "\ 1oD), — (DY,
=V ‘

ll (o1)
’ GV = {na(T) — w(Dhdm

Il

ma + dm)%’z (T)
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Similarly, the tota] energy will change by an amount
U = {usT) — uy(T))dim, (92)
From the first law, equation (21), we have:
dQ = dU + pay
= dm{uy — o, + plv, — v1)},
or
dQ
dm ~ 2T Ut pl — g -y, (93)

The value of A is different, fo different, 1iyy: ‘ :
nt I Iso
depends on the temperatype, For wate?'u];its,tind};t if]:ng
temperature and standard Pressure, )\ _ 5 40 el e bo
Since (91) and (92) gl 4 /.

refer o isoth ;
the ratio dU /qv gives us: frma] transformations,

LY = i,
(aV)T vz(T) — :((;;):

(aU) 4T i
v 7'_1_)2_:.—;1"1?.

If we compare this equation Wwith

or, using (93):

83) ang Write dp/dT
eCa,uS

i op 4
instead of T K which we may do 1,

€ the ;
function of T only for our system, e ik thm:IZ'I'essurr;; isa
api 3 ey
a7 m—_:—v:‘j. »
This is called Clapeyron’s equation,
As an example of the application of 54
we shall calculate the ratio dp/qp o YTon’

&ter 31 . e(llIation,
boiling temperature and at standarq Pressure, "\POT at the
e

ave:
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A = 540 cal./gm. = 2260 X 107 ergs/gm.;

v, = 1677, v, = 1.043; T = 373.1.

Substituting these values in (94), we get:

o —— o H de ees'
9 _ 3,62 X 10" cynes/em. dogrees = 2.7 em. Hg/degr
dT ’ ;
tained from

An approximate value for dp/dT flmtl a})) eis ZSgligible as
Clapeyron’s equation by as3umIng the bl assuming that
compared to v., and then calculating ”ﬁf a:;; ideal gas.
the vapor satisfies the equation of state c; ﬁation ©):

For one gram of vapor, we have, from eq
R (95)
poo = 32T,

. . Equation
where M is the molecular weight of the vapor

(94) now becomes:

dp )_\y_.p (96)
aT ~ RT*”

. dlogp _ M (97)
—aT _ RT*

his formula
iling temperature, t

; ?0 11111111518 in very good agreement
o obtained from the exact cal-

For water vapor ab t111
gives dp/dT = 3.56 X 10%
with the value 3.62 X
culation.

I e bty af Vagfo 1:cle‘:zmperatures,
over a, wide range

tant
i is assumed to be cons
dlia we can integrate (97)

ain:
and obt Jaehit _%ﬂ% + constant,
oz p =
= const. e &7
p =

|a shows in a rough way how the vapor pressure
This formula '
depends on the temperature

I
|
I
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We have derived Clapeyron’s €quation for a liquid-vapor
system, but the same

formula, can he applied to any changﬁ
« As an example of this, we sha
apply Clapeyron’s €quation to the melting of a solid. 13
solid subjected tg g Ziven pressyre melts at a sharply define
®temperature whicy, varies with the pressure applied to the
solid. Hence, for 2 solid-liquiq System the pressure f?r
i uid state can coexist in
perature. We S_hal l
derivative of this function.
Is case represent, the heat_of
. ific vo umes of t}he solid and the liquid,
respectively,
If we take th

€ meltip ‘of §
A = 80 cal./gm, _ qq.n8 Of ic

5 X 107
gm., v, = 1.00013 ¢y, 5 o ergs/gm

> U1 = 1.0907 cm_3/
! gm,, = 2 A,
values in (94), we obtaip a1

Substituting these

77 = —1.35 X 108 dynes /ey, 2 degrees

= —134 atm./degrees.
That is, an increage in Pressurg of 13

melting point of ice by 1°, % atrnospheres lowers the
€ Noticed, jp
of ice decreases With ine

water behaveg diﬂ'erentl ‘1 this respect

substances behave; i t majorig oway In which most
point increases with Increagi -

n 355, the melting
behavior of water ; £, Dressure, is lous
ehavior of water is dyg to the faey ¢ e s anomalo
water, whereas in mogt other ;el,ls €58 dense than
the liquid. 0l

€nser than
The fact that the melting Poing o ; :
sure is of considerable Importan, in geopli3 oered by pres-
phenomenon is responsible £, Ysic

Darticular, that

reasin Pressype.

he melting point
Y from the

Cases the

the bECause this
When the mass of ice encounters 5 rock on o P
the high pressure of the jee againgt, the € glacia, bed,
melting point of the ice at thpy Doing, ¢, %K lowep, the
melt on one side of the rock,

> Cangj p
It refreegeg agair?i € Ice o
! Cdiately
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: the mass of ice
after the pressure is removed. ;I(l)lf:tl:c;‘é?
1s able to flow very slowly aroun

istic
. The characteris
ation. ; 1 gases
der Waals equ or Of real g
10; .Thef VIfililclezll gas represents thelbejla‘;; ssures. How->
s tmﬁ) for high temperatures and uro ave such that the
arly we d press i the
rature an iations from
ever,. when tl;glf;;l]gztion, important deviatt
£as 15 near d. been
laws of ideal gases are observe L of state that have .
1 erous equations f real gases, that o
" Anlong e ent the behavior ol A because of its
Introduced to rep P especially interestln%‘ibes the behavior
‘{an d?r Waals is se it satisfactorily desfctemperatures and
Simplicity agctbez:;l over a wide range 0
of many substan iderations
& fl'Om consi
Pressures. ived his equation t to a first
rive : : ccoun
b Waa} 5 Ctl‘,(la}eory; taking mtodathe cohesive forces
based on kinetic ize of a molecule an te (written for one
approximation t{ne SleiS equation of sta
between molecules.

mole of substance) is: b) = RT,

2 (V — 0 .
ol ristic constants for a given
e

to the char-
Bidias M0 (99) riiuf;,sm b represents
B e T gas. Tf the molecules, and
acteristic equation Om the finite s1ze % molecular cohesive
the effect arising frsents the effect of the
the term a/V* repre

the Van
leculated from
forces. _— isothermals 02 Cbeen drawn. If we
In Figure 14 so n of state hav f Figure 13, we see
der Waals equatio he isothermals o s. In both
are them with t s many similar features.
comp es

i izontal point of
that the two sets POSS e pnal hasinie s hotizontal p

5 isot = i . a,nd the pOil’lt
UGS eMSTt}SJ'ani; the critical isothermal;
is
inflection C.

: isothermals above
is the critical point. i T'}llerli)oehavior in both
of inflection; 5 erature show a simi ab low the critical
the critical .,temzr the isothermals be
HoweVer,
figures.

(99)

act
where ¢ and b are char
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temper

b ature exhihi g

Isothermals areXl;:,blt- differences. The Van der Waals
ntinuous curves with a minimum and

ma){]'lnum, Wher
i eas the i .
angular points ang are 1sothermals of Figure 13 have two

e hori .
Van der Waqls isoth orizontal in the region where the
Th ermals take on their maxima and
€ reason for ty, : ‘
?;0 i:eésl of Eothermillzl;ihéatively different behavior of the
at the noi 1€ Tegion mar : .

: Points marked jgure

t};l Sl i Figuretigon the horizonga] stregclilvfl r;ll;lgilslo'
S_ atfas, beeause alon (_10 not, cory espond o ] s
liquid ang 4 + g this streteh the sube to homogeneol
stance splits into &

If w
e
Compress g nonsatumted

’ ::ifﬁ Isothermally until W€
N e

still furthep o V'Olume

bart of t} er: sondensation O

curs withe Vapor generally 0¢

e PI‘ESsuTEUt fultther increase

t0 the i +  This corresponds

| 13, HOWOthermals of Figure
L the va.po;3 ver, if we compress
Fig. 14 f wzep 1 free "\(’)erﬁ i o

o e can ust particles
ation pressure befora Sidergy, l‘ea?h a presslzlre coni

tond . 1
) We say g 2tion Setgh?r than the sat-

aturate Stat(?: the vap;?'. When this

Situati()n is T 3
ealized
rated. The g
: upers
slight disturb
ance
system to pass ngaf’ broduce ¢, Owey, ai'_s Supersatu-
liquid and a vapor partnto a stabe Stainsation iiab_ﬂe ; any
p € chyp, ., uSing the
IMportany, fo acterigeq by a

The labile stat
. €s are
they illustrate th
. € possibilit T ouy q:
ous state oo y of t 1 diseyges
that tl . 1;1 t]-le reglon of the Satuhe Exis enccusslon because
o 1ese labile states are e rated -, Doe- °f homg

of the Van der Waals isothermaelnjl":};1 by thle' e asssne-
@ Dary, i

Wh " "
ereas the horizontal stretel, BF DEFQ " Bepgr
Of the diFlgUre 15)
S(}ont. )
Muoys
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isothermal ABHDIFG represents the stable liquid-vapor
states. If it were possible to realize all the labile states on
the Van der Waals isothermal, one could pass by a con-
tinuous isothermal process from the vapor represented by
the part FG of the isothermal to the liquid represented

by the part BA. |
Given a Van der Waals isothermal, we may nOw 'w1sh to
1e saturated vapor 18 when

determine what the pressure of tl
its temperature is equal to that of the given isotl}ermal; or,
geometrically speaking, how high above the V-axis we must
draw the horizontal stretch BF which corresponds to the
liquid-vapor state. We shall prove that this distance must
be such that the areas BCDH and DIFE are equal.
In order to prove this,
we first show that the work 7
performed by a system dur-
Ing a reversible isothermal
cycle is always zero. From
(16) we see that the work
performed during a cycle 8
equal to the heat absorbed
by the system. But for &
reversible cycle, (66) holds;
and since in our case the
cycle is isothermal, W€ may o] sign in (66). Equa-
remove 1/T from undell- t{l;eﬂiztii - h%at * eorbed, and,
tion (66) now tells us tha £ ieilic eyele, is zero.
hence, the total W e reversibly isothermal cycle
We shall now & 15). The work performed during
BCDEFIDHB (Flgured py its area, must vanish.. But
this cycle, as e ockwise direction so that its

, ibed in & ¢l
DE'F{ D s gisecri)flgreas BCDHB, which is described in a
area 1s post ’

o ection, has & negative area. Since the
counterclockaISz (ilyrcle BCD EFIDHB is zero, the absolute
total area © s of the two cycles BCDHB and DEFID

values of the are
must be equal-

Fig. 15

ork done
onsidel‘ th
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The objection m; i : iy

; ght be raiseq against the above demo
Stration that singe g area of the isothermal cycle BCDHI;
¥ non—vanishing, it is not true that the Wor
performeq during 5 reversible isothermal cycle is alway

e :
ero T}}e ANswer to thig objection is that the cyel
1S not, reversible,

For g point on the liquid-Vanf:
are th though the volume and presst!
the Van e, Wag € same in hoty, cases, in the case 0

Is isot . 3
S SOUS state ereg he.r it Tepresents a labile hom?
1sotherma], I, <4

. I
1€ case of the liquid-vap?
Tepr q
:Emposed of g _Pu;fSents a stable nonhomogeneous Stg‘fﬁ
© cycle Bepyp When we perfor
fler hWaals iso e the state p on tIfle Van
1sothermg) in ate D op iquid-vapo*
stable than the c\(;axf hd quid"’apor :sta,it;:(i,1 ’ Jlll)quils mor?
versible becauge it couelfl Waals State p this step is irre”
Opposite direction Oceur g : i in the
irreversible - hug, o taneously in th
The arit - HeTefore g , C Chtire gyor BCDHB
€ critical dgagy Lok Area ng N0t vanish
expressed in termg o th A5 ohd ey
the Van der Waals e ¥
_ The Van der Waalg ®Quation (g Substan eg
1S an equation of th third g 9)3 wh ;.
fore, there are three diﬁ'erem-,gr
T and p. The critica,

. Ootg ;
1 1Sother 07 17 fo
horizontal point of inflection ;3:&1 =7, gt:en values of
there is a third-ordep ‘*“Vpn, Vv _ vever, has &

critical isothermal and the hoyy, S V_.c; that is,
6] . c

it follows that the cubic €quatioy lfl(?f L e 4, 9 EJEtWeen the

placingp = p.and 7 = 7, i, (99) hag a""hlch I8 ot Hence,

This cubic equation can be Written y L

i
i thelri)e Togt, Vv n___:edbe
pnva L (pcb + RTC)V2 L av it I'%n. c e

-..0.

™! Beneral, there-
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) ; t-hand side
Since V. is a triple root of this equation, glillelfay compari-

must be of form p.(V — V.)’. Hence, welind,

son, that:

Pcb -+ .RT:

ab, 72 E; and 3V.="— Pe

3 . =
Vc = E:f 31/ Pe
If we solve these three equation
obtain the equations: 8 a (100)
Vo=23b: p.= 5’3’%9 and Te = 57 By’
c = ? ° 7 -

ts
: . f the constan
which express the critical data m terms O

@ and b .
’ . 3 7. tﬂ.ke I )
It is worth noticing that if CVIH‘:E conperature,
units of volume, pressure, an mes the same
the Van der Waals equation asst
Substances. Placing

‘(pc,a,nd T a.s -
1-espectlveIY:
form for all

9@____%{; 3_5 _T_c,

ﬂin fl‘OIn (99) 5

)
P = ?77;

and making use of (100), we 0bt

8
N B
SN ey _) _8q
<g’+_ﬁ)(v 3 3 ts, it 1S
numerical const.a.n 8, is
The states of various sg -
e values of g, 0, an 1‘ :
eSﬂI‘?{ (101) is often calle
an

N
responding states.

(101)

; ins only
Since this equation contaids

the same for all substan}geséh
Stances which are deﬁl}ed g;tes,
are called corresponding $

jon of corresl nce obeys the
‘VIa.n der Waali’ equzf:;)‘ied that if a substa
n section 14 we

e can deduce
T, of an ideal gas(i: 2; thiis temms
€quation of state, Pvlit its energy dep?II‘lhis result is true
thermodynamically tt,] ‘on the volume- depends also on the
Dﬂll'ature onl}i’ all(isno For real gases U aep
only for ideal gases.

Volume. that:
From (99) we deduce B ., (102)
’ p=ig—5 ¥

s for V., pe, and 7. We
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this together with (88) gives:

(@) 8 | RT
aV,*Tﬁ{V_:__g}_ RT | a
V—b' V?

‘175.

If we inte
grate this eqrrais
con Cquat i
stant), we ohtiy. 1on with respect, to ¥ (keeping T

U= _2¢a

since the o
stant .
respect tgo 1% of Inte .
onl gratio '
¥ DU may s by e Vo
ction of 7.

esentg
the potentig] energy of the

term - = ..
L n (103) repr
cohesive forces betwe
en

T
dyﬁan)a'cannot be fllrthe: e Moleoygg
te nics alone; ify gape, o o Mined b
mel specific heatg L:termination % ¥ means of thermo-
2o ecular heat gt ol US assume ®Quires some data OO
(25) and (103) we gpy 22t Volumg ' " CXample, that the

obtain
3 then, ' Yy, 18 constant. From

Cv = (gg)
oT =y
Integrating, we get: R

v
where wis a constant. R . fi
Tafon (103) oy |,
U = Gl a ecomeS:
. 4 v+ w,
ith this expression f
or the (104)
ot the eoopy of one ol of o Vs (T
e -
5 3 ), and (104), we obtain ?r Waal ;:;ly calcu-
1 & B1I'OI'I'.L
e W T
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d
a8 =99 _ 1 4 pav)

T T
_1 a 1({ RT -_“—)dV
v, B dv
=Gt Ry

or, on integrating,

S=Cv10gT+Rlog(V—-b)+ (105)

const.
Notice the similarity of this formula to (86), which is the
expression for the entropy of an ideal gas- .

In section 6 we defined an adiabatic transformation as &

reversible transformation during which the system 13
diabatic transforma-

thermally i 1 i
y insulated. Thus, alon8 °% % 0 /m g, or 8 =

tion dQ 0 S =
— 0, so that from (72), d )

const. T 4 uffers an adiabatic transforma-

h hat is, if a system S e A

alled isoentropic.
jon of a Van der

5) by taking the

tion, jts entropy remains CcODSUAY
adiabatic transformations are sometimes €
The equation of an adiabatic transformatb
aals gas is immediately obtained o™ (10
entropy constant. This gives:

Cylog T + It 1og v -b= const.

or

R
= b)EF — const. (106)

f a Van der Waals gas is
abatics of an ideal

TV

This equation for the adiabatics. ?;he b
Very similar to equation (38) for

gas,
Problems

. tion of 1,000 grams of water when

rail.dv}rhat ifs th? entropy Ya;gemperam:re? (Assume a constant

sed from freezin

Specific heat = 1 ¢&t
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CHAPTER V

Thermodynamic Potentials

hanical system the
transformation 1s
That is,

(107)

extw. The free energy. In a purely mec
. ernal work I performed during 2
qual to minus the variation, AU, of its energy:

L = —AU.

For thermodynamical systems there is 10 such simple
?elationShip between the work performed and the variation
I energy because energy can be exchanged between the
System and its environment in the form of heat. We have,
nstead, the first law of thermodynamics (15), which we

tan write in the form:

I = —AU + @ (108)

Many transformations of thermodynamical systems occur
While the systems are in thermal contact with the environ-

ment, so that an exchange of heat between the system and
In that case L may be

he environ c
ment can take place. %
larger or smaller than —AU, depending on whether the sys-
tem absorbs heat from or gives UpP heat to the environment.
al contact

We suppose now that our system 8 is in therm

With an environment which is at 2 constant temperature 7'
transformation of our system

throughout, and we consider &
from an initial state A to a final state B. Applying the
inequality (73) to this transforma

7 dQ — S(4).
j; e < S(B)

Since the system receives heat only from 2 IsTo;lrce whgse
temperature is constant, W€ may remove 1/T from under

the integral sign, and we find that
\ Q = fB dp= H{EE) = S(4)}. (109)

77

tion, we have:

M
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) an
THERMODYNAMIC POTENTIALS v of the system is only
the decrease in the free er;elifed by the system.’ ly
imi rork perfor b T * pure
upger hml;g&iﬁ;iﬁ?)k“ﬂ& (107), which is true for pu
y compar =

- of heat |
We thus obtain an upper limit to the amount OfIf the |
which the System can recejve £ rom the environment.

in
i ity sign
transformatjop from 4 10 B i reversible, the equality S8

: : 09)
holds in (73 and therefore ip (109) also. 1In this case (1

. rstem
g1ves exactly ¢ amount, of hegt received by the sy$

? he
Uring 'mation,

the transfq
From (108) ang

_ _ U®
B U(A); (109) we obtain, on putting AU = (
10)
L=suw _ UB) + 138y _ S(4)}. a
This inequa.lity 1 < t of work
that can he obt, rIi)naéfles iilil?pper e eths amiomn
If th

g the transformation fl'O.m A tcl’ds;
Teversible, the equality sign ho
Sequal tg the upper limit.

s nitial
and fina] gtape f oW that, the temperatures of the init

e
temperature e B » A the same and equal t? th’
of th # ® Shvironmeny We define a function
OWs;

e trangf Ormatioy is

: ~ T, (111)
L terms of thq functjg,
n ey s
of the System, we an writq ’(Ugici}; Ishcaflled the free energy

€ Iorm:
L
= —AF, (112)
In (112), also, the
is reversible,
The content,
follows:

If the transformation

of equation (112) can hg

Stateq In words as

If a system sufferg g reversiplq trangg
initial state 4 to g final state g both o W‘Emation from
temperature equal to that of the envirgy ich ates have a
system exchanges heat with the mept ? 80d if the
the transformation, the work done by theis only during
the transformation is equal to the decre Vste uring
energy of the system. efs-glee
1 e,

€nvirgy

e
If the tra.nsformation is 11;1

‘ee energy,
© see that the free ith
i stems only, we =e cchange heat w :
Ezi};?;lcllciaﬁical systems which gt rous o that played
their engironments,“ plays a role ana OgThe main diffel‘eﬂ?e
by the energy for mechanical Systemli ays holds, whereas mn
; . C N alwaé o l tra,ns—
: 7) the equality sig - reversible
l(slfg)attlli (;glflzlhty sign holds only for e
. is dynamically (no
fozrﬁx:atlons. nsider a system tha_t lsm‘j;t in the sense
i ‘e Illlow ‘Co-ulate d from its enﬂf?.m of work between
ermally) ins of energy in th'e 9 sible. The system
:ﬁat anty exc}lg?%: environment is 1IMpos
€ system and it

ions.
i . formatlo 11
®an then perform only isochore tr 8dll?stim(’» is the same for 2

p to farmed by the
If the pressure at any lﬁsdti?ork can be geéfozlrlﬂi: prelsfsure
s Pars of the et of the forces ey insulated when
ysiem only as an effecs stem is dyn airrilciﬁval'iable volume.
FJI]_ .the V"ELHS, th.en_the a'ycontainer ’Wlt 1 'ght l-equil‘e more
1t ;S enclosed 11;’31dimica1 insulation D1
therwise the dyns

Complicated devices.

M ironment and
hough 0 r e environ
. e assume tl”ﬁt’ralzl contact with th
Wsulated, it, is in therma

) T of the
temperature "
is equal to th?-On of our system, we
hat, jtg temperature 1y u-aHSfOrI?lﬁi;).
envir . For a1 -om '

awle1 3,mfl_egive obtain thus fro F(B),

system is dynamically

(113)
Or

r(p) £ T

as fa]10“’515:1-ansf0rmation, the work L

d 1 : ergy;
statec rmal trar of its free energy;
L s is very often an {Sothehc variation, AF,
This result i undergoes minus t versible. T
hen a system oy EXCEE . onisre t only for i
Performed by it can ne‘riimlsformﬂ;;?me it _]1olsd5d3r0ing which the SYS.‘LEI‘::[
ig equal to —AFif t!)e gen ral beﬂsfOl'l”ﬂﬂ'-":]:0].1L termediate states, PTOque
ur result is mole1 o for tré | T'in the m-‘th the environment which
trﬂnsfnrmations‘vbut adisﬁerent fr(c)(r'lul's solely Wi
tures at 0 £
Sumeg temperatur o of hef ughout
1] hroug
;;ﬂlsg that the ‘E:ﬁthﬂ;:'iture b
2t the same
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That is, if g System is in thermal contact with the e'nvn'oﬂ‘
ment at the temperature 7, and if it is dynamically Isoleig
H‘:osuch & way that no external work can be performed o
absorbed by the System, the free energy of the system cannt®
Icrease during g transformation,

mzﬁﬁg;(;n;ecﬁ;;:mce of t.hi?c, fact is that, if the free _ene?‘gy g;
S0 becaus’e System is in a state of stable equalibrium; th .
' o any transformation would produce 9J1.111.(:1't3 i
113). 1o tt}anergy, and this would be in contradictlo?

‘ 1¢ case of mechanical systems, stable eq

rum exists if ¢} : y
the condition © potential energy is a minimum.

system enclog for stable equilibrium of a thermodynami®

ed i e : . -
perature of th M a rigid container and having the tem

minimum theefenVironment is that the free energy be%
namic Po,tent' lree energy is often called the ‘“thermody
that, Strictlyla at.constant volume.” Notice, howevels
i the condition for the validity °
the volume of the container

T whil cternal
) syst, = e no exter
througholut, this can be rei,lizgi ilfSt }?t & uniform pressure
are equ i
: ni(tleS?mgﬁiigg?otraniformation). egiilﬁnis ol
infi . : o .
performed. atlon from p 4 Y, during the

o B’ no work j
is to be
Let L and L + dL be the Mmaxin

that can be obtained from the translilrm aMounts of work
respectively. We have, then OfMations T and II

L = F(4) — ppy :
L +dL = F(4') — pyy, e

THERMODYNAMIC POTENTIALS

or
dL _ dF(4) _ dF(B) (115)
ar  dT dT

where we denote by dF(4) and dF'(B), respectively, F(4") —
F(4) and F(B") — F(B). But we have:
F(4) = UA) — TS,

or, taking the differentials of both sides,
dF(4) = dU(4) — Tas(4) — dTS(4).

jon from
Binee. 16 wode. 8 peI‘fOI‘mEd in_ the trm;Sfosr?;;t;s?i u;ing
4 to A’ the amount of heat recezlved by dt' ae tz (15),
this infinitesimal transformation 18, according

dQ. = dUA);

(116)

and, from (72), 40, dU)
. dU@A)

S =F =T

Equation (116) now gives:
o F4) _ U4,
ard) _ _g4)=— ~ T
aT

Similarl btain:
llarly, we o S U(B).
dF(B) _ _g(B)=—F ~ T
T

d
From (114) and (115) we thus find:
dL _ _AU (117)
_p% = AU,
L= *ar

where AU U(B) U(A) is the va-riati;n i%q?ﬁﬁ
o ation from A to D-
resulting from the transformation r,t Hoff and has many

7
(117) is called the zsochore of Van
useful applications. ) tul expression for the
is poi hall derive & Uuse
At this point we sha e

be represented on a
; s . .
pressure of & system whose g infinitesimal, iso-

(V, p) diagram. Let us COU>
thermal’ reversible transforma

e
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vo}ume of the System by ap amount dV. We can apply
1S transf,

b Ormation €quation (112) with the equality SIg¢
ecause the transformation is reversible, Since:

We have, frop, (112)
pdV — -_(..a_I]_:) dV,
or L
(.‘1{’ (118)
W BV l'd o --p'
ec
s enegn;h;;le | Section 1y glving the expression for th°
obtaineq fromon ole of . n ideg] 8aS. This is imme diately
Cquationg (111), (29). and (86):
= C T b .
If we yse 87; T T (G log 7 +Rlog vV 4. (119
ormuy] Stead o (86), We obtain the eqaivalenf’
F =
CT +yp _ o

18. The thermod

In Inany thermod

tent;

al at ure-
amijg Constant press
.and the temperature i al transfnr ationg thep ressureé
Instead, remajy, equal ¢, th € syste p
of the envj . &

“ronment gy, t epggii:r 3 nt?]z ES;I;E};?;{;

Cumsta gaq it .w lxl)ioss?ble Oe E;a;;foimati?;
'cinl:lfltf S OHov?in;n;rop-
the giVenp aturo,r a‘egiVen set of
We consider an isothermal, iso S8supg ang I;E;le system
constant temperature 7' and the ANgfo, DPerature.

Const Mat;
takes our system from g state 4 ¢, ,, o0t Preg, 0 at the

N 8t 1y :
V(B) are the initial and fina] VOIUm:;e (_)Bce 1 (; ?Ax;};lsg
s

. Ystem
erty: if the function L

values of the Pressure anq the
will be in equilibrium g4
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ino the transformation
system, then the work performed during the
)

is:
L = 'D[V(B) = V(A)] : o B
. . a y W
Since the transformation IS1 ?Sof?:zrstain:
equation (112) to it ; on doing this,

B).
< F(4) — F(
pV(B) — pV(4) = & of the state of the system

ply

We now define a new function

: (121)
as follows: Ly = U—TS+ pV.
P =F Y =

. equality now becomes:

In terms of , the preceding meq
®(B) = &(4). i pote’ntwl al
. is called the the?‘m"dgézzzgin an isobarifly
The function ® IISt follows from (122)the thermodynamic
Othermal tra; nne an

. ssure ca erature
Dotential at constant P;fy that if the t;n;imte of the system
We may therefore e kept cOnStafnt’ L-s a minimum 18 @
Pressure of a system d?n amic potential P his is that if @
Jor which the thermo

for t
. e reason 1¢ te of the
State of stable equalibrium. 'I:JILS change in the st&

i uld
, e reasing ®; but this wo ;
ol mmm%&ni]dﬁg tslfeoeﬁect of nlll(;?:ﬁ;?g) tates
System would ha inequa hose sta
ek the M tems W :
be in contradiction to erties of @ for Sysam are sometimes
The following e & (V, p) diagr ;
can be represente ' dent variables an
Clif:;f - '01;00?1623 with respect 10 P, ¥
erentiate

oV
aU) L4 T(g—g),.‘l' p(ﬁ)r+ J
(55)? ot the entropy and from the firs
(0]

ition tion:
But from the de;i ?;versible transforma
e 4Q = Tas = dU + pdV;

(122)
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or, in our
cas S
e, for an isothermag change of pressure:

/7 ap )y TP Pl

Hence, we find that .

(g-j;) =P - (123)
Similarly 4 &
show thatB:r’ dlﬁcerentmting (121) with respect to T, W° c22
ad
Lt (124)
Asg, (aT),, S.

SXample
mpley i, 4 o ok th(f' usefulness of the potential ®, W 3 hall

already © derive (, e
- deriveq 3, . 3PeYTON’s ¢ ' ioh we ha?
sid Section 15 quation, which

€ ton :
rated Vapol T a syt by a different method.

e -
temperaturz, ®hcloseq 11: E‘;Omposed of a liquid and its Sﬂtl‘ll
are the e aind preSSUre_ C}ﬁlnder and kept at a constd /',

- : U 74 Ve
¢ Jepoy Dartg “Miropieg and 1, Uy 81, 8s, M}d I “g.nd
qu, reSpectiV’ely volumes of the hquld o
antitiegf y and U S. and V are
T the toq) Sl;ste;n, then,
= Uiy,

SO that, from (121)

where ®, an D -

d o b
Daits, respectivélire " ©
Vap((j: ?;;r?nd ™z be the f the liquiq and vaP®

» TeSpectiy, A8say ¢
Uz, 82, 0s, and ely, o oL tha 1
©2be the o N g € ligy; he
an . Cthe spanie Ob quid : d th
rd thelmOdynamm e e. cenel.h.’ Faiin part an |
We have, then, tialg of tlhgles el’lt 1, and ¢1 @
¢ iy - ropies, volume®

P and the vapo’

2,

e
Potentig;
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We know from the general properties of saturated vapors
that all the specific quantities wy, Uz, S1, 82, V1) and s
and the pressure p are functions of the temperature OI}IY .
Hence, ¢1 and ¢, are functions of T only, and we may write:

P = 7”-15’31(T) + 7??-29’-‘:'.(7?)-
rium and perform an

. We start with the system in equilib
1e pressure constant

sothermal transformation, keeping tl . ;
S0 that only m, and m., can vary. Let»u be mcr-eased }f an
Amount, dm, as a result of this transformation. 1k en{;
SInce m, 4 m, = m = const., m will decrease by an gmou;l
@, . The thermodynamic potential will now be given by
the eXpression:

=& + dmi(er — ¢2)-

ate of equilibrium, ®
From this and from

(my + dmy)gy + (me — dmi)ee

Since the system was initially in a st
Must have been a minimum initially-
¢ above equation it follows that:

g1 = €29

or
(ua — wy) — T(sz — s) + pvz — v) = 0.
l hat:
Dlﬁerenﬁaﬁng with respect t0 T, we find tha
d
&?(u‘z = ul) = Ta%:,(Sg e 31) S (32 = 31)
d (v — 1) = 0.

i g_%(yg —u) +PFT

But
dv

g
rop=ar t Pl
i es to:
Hence, the preceding equation reduc

d;’, (i — ) = 0.

—

—-'(32 — Sl) + d
in entropy when one gram of

riation i
g t temperature; hence, it is

5 1o t]
Bt (as — P 12 at constan

quid is vap orized
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equal to N T, where ) i

. . the
s the heat of vaporization of
substance. W

o

thus obtain the Clapeyron equatio

dp A

dT ~ T(o: — )
We shall Now write down the
dynamic Potentia] gt
ideal gag. From
PV = RT, anq (33),

*=Cr 4w

ermo-
expression for the ?2 of an
0
constant pressure for one m

. Stﬂ_te;
(121), (120), the equation of
Wwe obtain

). (129)
= T(Cylog 7 _ Rlog p + a + R log I2)

) nly &
. 19. The phgg,e Tule. Whep 4 system consists of ©
single thogeneous subg

11
s : ist of 0
tance, it is gaid to consist

S Containg in the g 2
an examplg ¢, composed of only one phase; uﬂ
may consider OMogenegyg liquid (not ne Cessm-ﬂyd)
chemically ., Substance g utiong Iso be considere®”’
8 homogeney, solid, op as HiAyals
The following ar .

sist
g ® exampleg o systems that cops®.
of two Phaseg: stem COmpogey of v ty d water Vapo'ra
a saturate( solutjoy of salt o vater an

salt bresent; g g

lid
ste ater witp, some of th'e S(‘)ds i
and so fortp,_ In the 5 zosed of two immiseible hquel. .,
liquid phase COmpogeq of Ximple, the two phases are-
composed of the

Water g
two phases are- the a1t

bl

ase
and a gageous ph

e
“Watey L 1€ Secong example, tfllt
In the thirq example, 4} fe Soly ion, anq the solid s2

All the specific Propertjeg of s ases gre the two liquids.

erties referred to g Unit mggq of thise (that I8, all the prop”
the phase: for example, the o, @ &

ensity, . Stance constituting
so forth) depend on the ter era,m;r © Specifie heat, an
and the chemical constitutjoy s e

f the > M€ pregsure P
In order to define the chemjcg) %nphase_

stltution of 5 bhase, we

ve d sub-
ically define

ive the percentage of each chemic

must gi

Strictly speaking, o o lements)
tach chemical eflem(;l:f cgfgxi?t}allff bounqﬁtgr:ilezoinpounds
element, both free aercentage of, e dllements would be
were: known, the. P d with the given ,ﬁ and pressure p of
that could be folme.lven temperature from the laws of
“etermined Yy $be 2 it is well known ¢, pressure, and
the phase. Indeefli 11] given teml?emt‘;lle’ments present,
chemistry that for alSY of the vyt - ed within the
relative concentratior will always be reai?? .7 o
chemical ethbmﬁn refore say t_hat ahg)mical compounds
Phase. We may the 11 the posslbl_e & Jements present 12
geneous mixture of ?,Om the chemical ef each compoull
which can be formedt1 the percen’cﬁg‘;1 Op and the relative
thie pha_s N and1 tglas} determined .b};he’ph,ase.
Sriserlllill:,t(i::;;:;%fe all the elements 11

oncentr

.4 £
isting ©
hase cons -
seous P at a give
le, a gas nd oxygen Tk
Consider, fOfc‘ eéﬁipof,hydr()genogﬁ abundant molecu
definite concentra The m

g . O: H and HzO
temperature and presiulaid oxygen altetf; ;‘a.rer molecuig:
formed from hydl‘oogel'cit)’, we neglec of water molecu
(for the sake of ?Img )1 The num:j; mixture at 3 E‘l;filé
H, 0, 0;, and H:02)- our gase ormined, an .
temperature Efnd pre the gaseous Ilrlle oxygen only.
the consti‘t}utflc’tliL eohydl-ogen and t
tentrations ot th

; dent com-
the independen :
herefore say £ ailj elements contameg Ilf;
speaking, we may o e the Chermcanted as an indepen o
: 1 .
p%nents of & phasiegzllt is to be _CO;ES elementary form O.Itlirsl
(6} . n i
18 e (ealigtier it is prebeﬁzr elements). However,
component W

3 t o &i_n Condi'
bination Wlt%grations that under cert
chemical com 1 consi

iod
. ly after a perio
jcal COT " realized on . :

known from Chen'n(.;l equilibria are ompared to ordinary time

; many chemiC dlIlgly long as ¢ ixture of H, and O,
tlf0 1? s e that is EXCP:? we have a gaseous
of tim if W
Thus,
intervals.

8l ()
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at norma] temperature gng pressure, chemical equilibrium is
reached when 5 |

. arge amount of the hydrogen and the
OXygen combing t form water vVapor. But the reaction

2H2 -+ 02 = 2H20

ly under normal conditions that tically

o 1t practic
fg cnmll;)mamon of hydrogen and oxygen takes place in 8
wgitl)cllm ly short, Period of time. Of course, the reaction
take place H}U.Ch more l'apidly if the temperature

talyzer were present. E
. re O E 0
which we haye a c}? ceding diseyssiop that in all cases I

broceeds so glgy

. 1. the
€, We may consider th

not, jtg constituent elements) as &
€pendent, COMponent, f the phase. If, for

ateravgaseous Phase consisting of hydroge™
Water i: zitrhat Such g, Jow temperature that
say that oyup er for

1 1q 4+ 7 hﬂ_ll
Phase cono: Med or dissociated, we s
Ponents 02, 2, and Hagls the three independellt com-
ponentg hydrogey, and (

- 1 nog only the two com-
of the phase ig th OXygen); {1 chemj itution
and en determmed Mmical constit

120 per unit, i o of the phyg, ¢ Masses of O, y Hay
It is clear from the ahgye co s

of independent COmponep g
than the totq] Dumber
previous example we

lds Fationg that the number
of chemicy) o larger or smaller

d thye S Present. In the
(H, , O , a,nc.i .Hzo) iIlStea,d of on] epehdent components
other hand, if water Vapor alope 3 two (g and 0). oy the
its dissociation intg hydrg 'S Prege

Zen and q

> We can peglect
g of only one ComX.V

phase as consistin

4 consider the
[0}
not of t_Wo. 0, the Water, and
Consider now g System Compogeq ’
independent, components, T,at o

5 My, b pha’SES a n
component present in the st phas:_ € the nd of

35 of the xth

of the components among the Varioyg en ¢ Kk in
i ibed by the array. = Phaseg. ntio

veniently described by the array: ¢ = P

: 89
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M1, Ma1, ", Mpa1
M2, Moz, y My2
.................. »
Myn , Many *°* ) Myn - (126)

. ondition for

At a given temperature and, pressule£1 Ehethzrmodyﬂamic
equilibrium of our system is ‘that e n sives rise to a
potential & be a minimum. Tll}S. Conf;gl)o &
set of relations among the quantities Ewdrgi; 0

We shall assume that the surface zal to the
hegligible, so that @ can be puttleq hases:
thermodynamic potentials of all the p

H =& + P+ + &y
and the masses M,
ts in the 7th phase:

f our system is
sum of the

(127)

The function ®; depends on T, P,

Mig, « -+  m;, of the various componen -
d; = q:,-(t, Py, Mi1; """ Min)- 1

‘ ecial prop-

i i ends on the sp ‘

g N funcmor\l/vgell)lotice, however, that &,

erties of the sth phase. variables i1, Miz, ©**
; : f the n if we
conmd:ered as a funﬂzloélf O'the first degree. I?eii’ Ao
Min , is homogeneou m:, by the same f?ft;rpelids e
. P in . e
"angs m m:il’ltion ’of our phase (Smﬁe 1total mass of the
& tex i sol ’s), but increase o multiplied by
the ratios c: tfhect?r I’{. Thus, ®:; becomes
Phase by the fa . ) r—
the same factor K. be in equilibrium at a given ans
If our system 18 toq} must be a minimum.  This means,

e n infinitesimal
Perature and pressure, ose on our system an

i imp the
analytically, that if we ant temperature and pressure,

i onst : ider a
transformation at ¢0 $ must vanish. We cons

iation 10 : m (to be
resulting V?‘”B‘t;zn& result of which an amount om (
transformation

\ kth
itoci f the first order) of the
infinitesimal o ' ; |
considered as an mferred from the 7th to J‘f-h,e jth phase, 351
component 1§ transents and phases remaining unaffected.

on _
the other comp es my — om, and m; becomes my + dm.
5 becomnt '
Then, i
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In the Variation of ®, only &

. We
. i and &; will change. Thus,
Obtain as the minimuym con

dition:
0P = 5‘13.' -+ 5fI)] = ja_@iam — quﬁ?n, = 0:
amj}; amik
or
—(Zii L (129)
amik am,-;, ’

i d
for any one far €quation mygt, hold for any two phases 3;;
R —~ 1) -y COmponentS’ we obtain altogether t
€Quationg of equilibriyyy, -
¢
9% ae, 5%,
omy, omy — T = .
S =
[ o =~ omy,
B R T e
5ﬁ‘ﬁfw=gi (130
We Notice that Myy,

chemica) Constitutioy, oi:e €quationg depend only on the
amount of g1, cach

|
Stane Phase and not n the totd
(128) is 4 hom © Preseng ; N

:nce
Ogeneoysy ¢ . € Phase, Indeed, sin¢
: SR u :

m’s, its derwatlve wit ol

© first degree in the

- -
homogeneous of zerg dEgr:eSE:f}t t. any one of %:rhe m’'s 18
only on the rat; 5 of 1y, m:m a1f ‘1s. its derivatives depend
(12'6), We see that ther are (n _ e :"‘ﬂl-l From the arr&{

; uch rg4:

conta; 3 atios (the n —
o l:l:d 1}? a column of (126)
thlg jse_)- esides these
be ()0 T ang p in

3eoe)n. this Dump,, ar{ Varighleg,

15 the yy, the number,

er
thosep arbi&a:_li‘e @i 1)f
ermlned by ar']

The difference, v, betw
n(f — 1), of equations (1

+ 2 variables which can be
maining variables then being de

y: the re-
€ equatjons

d S

ability or the
(130). We therefore call v the degffgrgf v%%ah;ve:
number of degrees cf freedom of the sys 1 N
v=(—Df+2-0-Dm
or

(131)
v=2+n-—1

This equation, which was derl

d
d of f phases an
Phase rule. Tt says that a system Comp()?ie of variability

: has o degree of VE*T R0

" Independent CO%POEZESBG of Variabﬂgly ;15 Emand e

=24+ n —f By ur variables 1, 7 hases)

; : we take as our V¢ f all the p

1;:111111 blfll OLV&;“ lcglle?tl:fngine the constitutions ©
riables tha s

that can be chosen arbltrol 11;(- —
To avoid misinterpretatlont’otal amount 0

the composition and not the

ved by Gibbs, expresses the

. t only
notice tha :
hould ¢ each phase lj
il betwee
;¢ equilibrium iy
: odynamic ©HET and no
considered, becaufie §§f§n3n the constfe‘i‘gi "as shown by
wo phases depen Sf the two phasest phoW the phase rule
Elllo total amounts Oples will illustrate O
29 . A few exam . e
o i of a chemically and
13 to be applied. hase G ="1)
Ezample 1. A 5Y have only 0ne - e obtain,'then,
h d. We (131) W bles
Omogeneous fluid. 1). From ose the two variables,
o no further POSSlblht.y
substance is a cheml;
he total amount o
nted as a

One component (n =
U = 2. Thus, we can, ;
T anq D, al‘bitl‘arlly;_bu :on, since Our 1
of varying the constitutic Notice thab is not cou
cally defined compour " ready stated;

Substance, as we bave tem composed of two
degree of freedom.) mogeneous syshave one phase (f = 1)

Ezample 2. A héses_ Here W?n — 2). From (131) it
chemically defined g: components ay freely choose T, p, and
and two independen Indeed;;ft;n that determines the com-
follows that » = compo

. two . !
the ratio of themix ure- uilibrium with its saturated
Position of the 107 . in eq

Wwa
Example 3
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vapor. Here we have two

only one COmponent, so thy

tf =2andn = 1.
must have » — 1.

Since there
freedom of

is only
choice j

1

H

tnted as degrees of freedom.
P D

water vapor are not ¢

Fig. 16 r

Bxample 4. A System ¢
compound in three differey, rgggssd °f a definite chemical
as, for example, ice, water o Solid, liquid, ang vapor,
here one Component, gnq three phage = Vapor, We have
therefore fing from (131) that , fs' =1,r-3 We
there is no freedom of choicg of =0 Thig Means that
three phases can coexis

t only fo, Variab]eg at all: the
perature and a fixed valye of the 2 fixeq a
This fact can be il

Dressure. Tk fiftorfenir
- - ) ustrated With the aiq
Figure 16, in which temperatures and preg
as abscissae and ordinates, respectively, i
The curve AR represents the Pressure p
water vapor plotted against the temperature i turated
i €n the

£ diagram in
S are plotted

phases, liquid and vapor, and
Thus, we
5t ha We can choose only the temperature
arbitrarily, anq tpe pressure will then be equal to the
Pressure of the saturate( Vapor for the given temperature:
°ON€ component, we obviously have 10
N . > I the composition of the two phases.
Netice also in t €xample that for 4 given temperature
we can have equilibriym between arbitrary amounts lof
: “POT Provided the pressure is equal to the
saturation Pressure, owever, the amounts of water and

93
S
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. ter
. his curve, wa
values of T and p correspond to a point on tthe temperature
constant, we increase the pressure, equl ld all the substance
water an,d the vapor no longer eXISt-S’ atnad we decrease the
condenses into the liquid phase. If, fcnz ) Hence, for poiniE
Pressure, all the substance e{apfgra zn.d for points below 1t
wa y <
above the curve AB we have figure.
we have vapor, as indicated in ’i};e A%u but it corre spoIl:l 2,;3
The curve AC is analogous r in contact e bl
aturated vapo (' ice is stable,
:l}(l)i pr'is}?ull"elfifclt};:‘?ltir Above the curve A
with lig ater.
. : le.
and below it vapor is stab xis oint
Since water and vapor j%n fto (;S necessary t?aﬂl‘g ;1;31; for
vapor can coexist along 40, to the values 0 s; that
;oo orresponding 10 vt n both curves;
;r;li‘f;l}ale. dlagl;;r;. c;3,nd vapor coexist lie 0
ice, water,

: f inter -
= e point 0
15, that this point coincide “lthwfgh seI:% now that the
=) a nis

es. s lue of the.
Section A4 of the two curv for a definite va
three phases can coexist only
. "e. .

temperature and the pressu! triple point b d the ice-

The point A is called the ger-VapoOr CUIVe BL A s
Rl ly of the Wase™ " curve AD.
Intersection nﬁt :1;110 of the ice-Wa
Vapor curve bu

ions that
into three reglo A
b divide the T, p plade 1o ice, and water;
ree curves
represent, the ranges

i i i t}‘]e b U :

75°C and P =
7 = 0.00 =
triple point 18
Qince the presst t the trip
0.00602 atm. in ; P the
than atmospheric pressure,

a 5 b :
rﬁorizontal hnetjl'.) ” rle SZII?S
intersects the thre s
he diagram) 1ntel*_"3‘;l of the dotted line
(the dotted line on © .. The iIltersecmi?empergau;ure equal to
ice, liquid, and vapo orresponds to & it pressure: [D50)
Wit’h the curve D (ff water ab atmOS}J)BI(ZOI'l'eSponds to the
the freezing Plomtbf“,ith the curve A tmospheric pressure
The intel'sectlonture of water at &
a
boiling temper

i int is
5 re at the triple poin
(100°C). cubstances the pressu
For some

+ along AB, and ice and

ecause it is the
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higher

dogéted 1?1}"]122 f Iie.atmosphere. For these substances the
lies below t}ri : 1}11e corresponding to atmospheric pressure
from the solic‘l3 tt)nflie pomnt and passes, therefore, directly
liquid region. € Vapor region without intersecting the

do not liquefy g{t atmosp heric pressure these substances
(SUbﬁmation)- thuet Vaporlz(? directly from the solid phase
sufficie 'OV Can exist in the liquid phase only &t

ntly high pressures,

20. Thennod .
all previous yhamics of the reversible electric cell. P

applications .
have generally Gonsiderigfsz,};f laws of thermodynamics, W€

mechanical wop). But ems that could perform only
3, mechanieg] axid 111 » 48 we have already seen in section
dynamica,l laws- the ectncal work Obey the same thermo‘
The reason fo ,t hiseiy are thel‘modyn:—lmically equivalent-
asltlx]\? N Ehere are processes which cal
e Completely into electrical
S an example Of
i«;t;_rk, vﬁe shall sty dya_ System which eap perform electrical
¢ cell. By g « .18 section th . -y
such that g reVer;:l"e}"SIble electrolytig Eei"ler}fermble electclel
through it caygeg thez the_ direction of the o meaﬁ aving
proceed in the ODpos; €micq] reactiong ; .current lox. o
be brought back Site sense, % taking place in it

% 10 its initjq) State %Vermble cell can always

current through it
: ¥ revers of
Let v be the electmrnotive for Hg s HoW

work perf oe
o performed by the ger) e Of the g The electrical
electricity to flow through, iy, = n we ®rMit an amount e of
: oun

L = g

Of course, the cell actually perfopy, (132)
S ths

only if we keep just a is

through it, thatlis, if ;Z?;;liaéh?mount ar;:ﬁgnt of work

reversibly. Otherwise, some enelt3 Hhat ¢ roig:gﬂowmg
oceurs

into heat inside the cell as a result <
of th tran
Let U(T) he the energy of our cell b(:;fi?,:le eff tSformed

y .

Y EIE Ctricity

P v
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has flowed through it. We assume that U(T) depends only

SS volume of
on the temperature because we assume that t.he e o
1at it is an isochore cell),

our cell is practically invariable (t! 10!
and 0011se§uently befeglect any possible effects which the
bressure may have on the energy- .

We now cinsider the state of the cell after & qfuzlllet;g :it?;
electricity has flowed through it. The. ﬁowho o l\Vithil’l
through the cell results in certain chemlca.l ;:1 al fhemically
the cell, and the amount of substance whic elflergy of b
transformed is proportional to e Thus, t lllebe o by
cell will no longer be equal to uT) 1_3111? 1‘)"1 ULT, €) the new
an amount proportional to e. Denoting by ;

energy of the cell, we have thus: (133)

U(T, e) = U — eu(T); ik
; he cell ¥ ¢
where 4(T') is the decrease in the enct gy of t

: o 5 , -ough 1
unit quantity of electricity flows throug

. 'e
Mo xiaw: sy the Van't H?cflfelsfrfi};?czl state before)?r;y
thermal transformation from vA% ergy = U(T)) to
electricity has flowed through the cell }(12,1; fowed through
the final state after th)e Z s (133) wo have for the
(energy o by (133))-
given by
Variation in energy:

t. .
(117) to the 150-

AU = -—GU(T) - n
9). Substituting
The work performed is iiveg ylzyw(el ihkf)}tain'
- 1 Si es ’
(117) and dividing both i (139)
v — Ta’f

; holtz,

ich i3 called L4 o Ogtifizhf?z)rce v

This equation, Whlchi etween the (_alectrom oree ?

€stablishes a rela,tlonswe notice that _1f no heat we1§ -

and the energy " oy and its environment, we 8 (?13}4)
changed betwee! i The extra term Tdv/dT in (1

€xpect to find ¢ = = the heat that is absorbed (or given

t of : : :
represents the eiffefiom the environment when the electric
out) by the ¢®
current flows:




96 THERMODYNAMIC POTENTIALS

; e
We can also obtain (134) directly without e :lalie
Van’t Hoft isochore, Let us connect the cell to a varia

condenser having & capacity C. The amount of electricity
absorbed by the condenser jg:

e = Cu(T),
der ¢ and 7T a5

ystem composed

f we char_lge the Capacity of

dC by shifting ¢} plates of
performs g ¢

ertain amount, of v
between the Plates, This amo

We now cong; the variables which define the
state of the S of the cell and the Condenser;
the condenser by an amﬁ;m
the condenser, the sy btiOﬂ
ork because of the attrac
unt of work ig?:

9L = 3 dCw(T),

The energy of gur System

of the cell, Is the sum of the energy (133)

U - Co(T)u(T),

t
DSer, 3Cv(T). From the firS
od 7 ;
by the systemyrilr?mlcs {15) » W€ find that the heat absorbed

which T ang ¢ h iy Ditesima] transformatjon during
_ 8 by amouyg T and dc js;
dQ = au s S:
Q + dL eu(Ty — CoT)u(ry + 1CHT)] 4 1d00(T)
— aUu
=i S dy
[dT Cva_f» "‘Cu—d_?_ —I-Czr;—;_,
2 _ ).
The differential of the entropy jg e + dC[v" — v,
) Ore,

Sy o T[dT C”W“Cuﬁ+0vﬂz]+do

a7 | + 55 [V — .
2 This formula is obtained ag followg: Theten
denser is }¢2/C. If we change (', the work dong {1 grgy of an Solated con-
tion in energy, that is, ual g, Minyg e st
1e2 2

where e is kept constant because the condenser g isolateq -
a 1 d in the text,. * Sip
we obtain the formula use Ce g o o

*Z

. : ¢ have:
Since dS must be a perfect differential, w

dv _d_ti 2wy

. =T T
oC

ber
. T d and remgm
If we perform the differentiations mdlc?te we immediately
that I}) u, and v are functions of T' only,
b b

obtain (134).

Problems
L. With the aid of the phaso rule s
Saturated solution and the soli

1P
system colt
2. How many degrees of freedom h?; zl:sognt of air ?
cert;a,in AOURS G WAL andéi: cfiil;’lc: t:ontained in air.) ell
. 1 ic cell,
€ rare gases and the carbon ible electrl
; Thg lectromotive force of a reverst
+ The ele e
function of the temperature, 1s:

0.924 + 0.0015 ¢ + 0.00

find the hea
n °C. Tm(il)ws throug

ilibrium of &
. the equilibriu
dlscuffl;ved substance.
osed of &
(NegleCt

as a

00061 #2 volts, g
d by

 absorbec B 1

. h it isotherm

t . tu]‘e 1 -

ee]ffl\ﬂl:gleihgngealﬁginb of electricity

A% a temperature of 18° C.

®




Gaseous Reactions

eoi - Chemica]
8 system
and water vzgrci-posed of a mixture of hydrogen, OXY 2%
_lnteract che - The components of this system C

mically wi .
g chemical reaci;ozl-th each other according to the folloW

2H2 + O2 :_; 2H20.

quilibrium has set in, the

v f will .
additional H,0 1o "8hY to left Proceed with greater spec
: UNtil a sufficient amount ©
am

eq‘lilibrium as been s
from ri - If we med to estqp:
m right to Jeft, e :Iid Some wa ey Ei:ﬁhsh a new state of
regulat e Preponderant £o%%, the reactiol
ated .by the law OfQLIlhbria T or a certain length
e, the Mass action, CUS Systems are

general form - €quat,

c -
nd,; + hemica] Teaction j
& n2A2+"°+n,A n in the
r=m B

931+m"'32+ ..

- + qua, (135)

equiliheia + 3
Quilibria in gases. Iet us consider @ gas

e
—
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where 4, A,, ..., A, are the symbols for the molecules
reacting on one side and By, Bz, " » B, the symbols for
those reacting on the other side. The quantities 71, 72,

*, and m,, m., --- are the integer coefficients of the

reaction. We shall designate the concentrations of the

different, substances expressed in moles per unib VOlu;ne by
the symhols [4,], [4], - -+ ,and [By], [Bal, -+ - We can
Now state the law of mass action as follows:

When equilibrium 1s reached in @ chemical reaction,
€xpression

the

A LAs]™ o2 (41" = K(T) (136)

(BJ™ [BJ™ -+ [BI™
i a function of the temperature onty-

d The quantity K(T) can assume d
Ifferent, chemical reactions. In som

sm S : hifted toward the right-
all, and the equilibrium will bfism has been reached for

hand side: that is, when equiliP
such case:s,t t?;{; 1i:,oncm’c,md;ions of the molecules 0111c 1113;;2
right-hand side are much larger than those of fohelmoee e
on the left-hand side. If, instead, K(T) is large,
Opposite situation exists.

It is instructive to give &
law of mass action. The ©
action (135) might conveniently

rillm,” because even afte’ e lecules continue to
been realized, reactions among the mo

jlibri however the number gf
s e t time f;om left to right 1n

reactions that take place per un.i Bio ;

(135) is equal to the number taking pile:;e :ffe;cl;;njot;ﬂ; rflls t;r;

1 two OppOSiI

Zlagcla:llf (t;zhl::t’ %%ethsat oy alculate the num‘mzlr of
: o right and set

reactions that occur P . i rea%tions il

this equal to the corresponding DU er o p

ceeding in the opposite dire‘ction. :
A rfactioﬁ from left to right can occur as a result of a

uite different values for
e cases it will be very

very simple kinetic proof of the
hemical equilibrium of the. re-
be called «Linetic equilib-
uilibrium conditions have
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The equilibria of gase-

E nym
1 molecules 4 ,, n, molecules 22. The Van’t Hoff
off reaction boXx.

‘ [ 2,000
| collisiong ;sm()lecules y: |
obvi r- The 7
%j—; 1, to the nzt‘illously proportioi: z;luency of such multiple | ous reacti
_ 1, that is, 1o bower of [4,] to the nm,th power of |~ g th lons can be treated thermodynamically by assum-
' © € product : 2y =+ -, to the n,th power of dowede existence of ideal semipermeable membranes €n-
[4,]™ Semjpe;wth the following two properties: (1) A membrane
‘ Thus, the f [Ae]™ ... [4,]" all oth meable to the gas A is completely impermeable to
‘ also be pro Tequency of yegeij o the er gases. (2) When a membrane semipermeable t0
Perature ¢ Portiona] o cactions from left ; ¢ of gas A separates two volumes, each containing a mixture
| Proportj elermines this expressio to right > A and some other gas, the &35 A flows through the
il ri . ’ Wi ) r to . A o ;
| S 1 ey o o, S et o w5 PP of
| K'( " thie expreSsionl;eaCtlonS from left 19 gasNA on. both sides of the membra:fe have become equal.
’L _Similarly ¢ T Aa] [, So otice that a gas can flow spontaneously through &
il site directio Or the freqy SR £ mipermeable membrane from 2 region of lower total
il 0, we fing. oY Of the react E}I;essure toward a region of higher total pressure; provide
| K actions in the opP° mat’ the partial pressure of the gas that passes through the
' At equilibyg @) (B [B;]™ themb_mne is higher in the region of lower total pressure
I K1 1M these gy LB man in the region of higher total pressure- Thus, if &
I ) [ [4,]" © frequenc; ?H}brane Semipermeable to hydrogen separates & box con-
| or R ¥ L 165 must be equal: taining hydrogen at one atmosphere of Pressure from a box
| | T B 2 - iﬁnta'ming oxygen at two atmospheres, hydrogen Will flow
! ‘ [, o™ o [B™ thl‘ough the membrane even though the total pressure on
| []WN e other side is twice a8 large. . : :
1 This is ident; (BT ]m - Ky We should notice, finallys that in reality 10 1.deal_ semi-
.j fcal with ¢ i W] -If'_(}")‘ | Permeable membranes exist. The best ‘appro::clmatlon of
1 V of magg g+ Such a membrane is a hot palladium foil, which behaves
| K (1) K" ACtion (136) 3¢ like a semipermeable membrane for hydrogen.
’ This simple I I j@f%g 15 plan® 1 In order to study the equilibrium conditions for the
J about the ? e k_lnetic argy ) che.mical reaction (135), we shall first desqribe a process by
I applying th ;ﬂcn(}ﬁ KTy, ment gives which the reaction can be pe.rformed .1sothermally and
; only prove t} modynamics ¢ € sha] nl;S o info . reversibly. This can be done with the aid of the so-called
| COHSideration]e law of mass a,c%-‘r1L SOUS regey; Shoy, f;matmn Van’t Hoff reaction box- " \ iy
1l K(T) on the St’ but can also dlon indepen, 5011 e 1at by This box is a large container in which great quantities of
| emperature, etermine theen \'g ofcap not : the gases Ai, Az, *°° an 1By rne BEE in chemical
de kinetic equilibrium at the temperature T. On one side of the box
re 17) 5 FToW of r windows, the kth

(the left side in Fig

oo of mi B Gnting down, is semipermeable

I
| | e
2" Ndengg of
from the t'Op

e PP B




Semipermeable 1, th
L L] - - er
equilibrium exists, =0

state can be perf

shift the pistons
box very slowly
cylinders have Passed thr
branes into the large box,
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. ide of
t0 the gas 4, whije on the other side (the right-hand side
Figure 17, where

= 2)isa
we have assumed that r = 8
Tow of g windowsg s

gases B,, B,
are attacheq
In the figure, rans-

€ shall now describe g reversible, isothermal tl{f{
formation of our System an calculate directly the wor'on.
performeq by the System  during this m.ansformat; be
According to the results of section 17, however, L must of
equal to the free €nergy of the initial state minus tha esé
the fing] state of the transforrnation. By comparing .
two €Xpressions for

the
€mipermeable in the same Order,'fl?jows
"»Bi:. On the outside of these “lshoWn
Some cylinders with movable pistons, as

.
2

L, we sha]] obtain the desired result.
€ start with o

. : I system ini
Pistons in the cylind

. the
tially in a state for.Whlﬁfc1 the
€rs, B, on the right-hand side o

. ders
-OWS, 50 that these cyhndi
€ Pistons jp the » cylinders,d ;
a 0siti - de
oles of tpq 4 l:on that the fth cylin

S¢¢ Figure 18) gt g5 con-

: c ncentration, [4,], of this gas inside
Partia] Pressureg of the gag on both siges of the

embr
ane are e equal, ang 5 state of
The reversiple transformation from

; Bhar: ey ]
ormed in the followin lglzxtal t(? the fina
Starting from the initin] state “eps:

in the cylinders on the left‘ha;gdur? 18), we
inward untj] all the gases cong, b s;ld_e of the
Ough the sem; el‘lﬁeabl eln these

At the end of this Process

Step 1.

103
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t i own in
ystem w 1 state hat 18 sh
syst rill be in the intermedlate tat

2 great
f the large box 18 S0 o
We assume T,hat 1’5111161 ceoﬁzerizfcentrationsnii:“ﬁzﬁlsgo ¢ the
i‘;ﬁ?‘:'t}ée re;? tg;:seescisanfgﬁgible. T?e L
mflow
gases 4 during this process, er]r B[ A
tonstant and equal in order to lA1l,
The work L per-
formed by the system
during this step is evi-
dently negative because
Wwork must be done on
the pistons against the Titial state
Pressures of the gases.
In the first cylinder the
Pressure remains con-
stant and equal to the
bartial pressure p, of the
83s A, inside the box,
While the volume of the
cylinder changes from
the initial volume V1 to
the final volume 0. The
work is equal to thi
Product of the c()"(lsmr-li_
Pressure p, and the var
ation in volume, that 15,

ore, remain practically
" ve A

[ntermediate s tate

al state
Vs. S oliey
P10 — V) = — P2 ol Fig. 18 RT
Sings the cyliodet, - jon of state, PV = T -
1 i T
tiglly, oS B et Summing the WO
moles, we have, al to —mfrn-

The work is thus eq:‘lh
all the cylinders on

— RT 2 m.
Ly = B i=1

i we now
'‘mediate state, -
esl, n;n the right-hand side

e left, we obtain:

m the int

Step 2. Starting fro linder

in the s ¢y
shift the pistons in th




. the gas Inside
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of th e
© box (they are initially in contact with the windows)

ver
¥ slowly outwarq. Since the bottom of the kth cylinder

counting frg .
B, this Cyﬁ::l the top down, is semipermeable to the 88

" er will absorh 1 . cess
and it . 1e gas Bj during the pro

s conf:enziatlon n the cylinder will be equal to that.of

e large box, that is equal to [B:). We shift

a1 B mzz,---,77*e,1r1:1olesOfthe
We thus reach the £ “esbectively,

on the right i he final state of our transformation show"

pistons touchip I%Ere 18.  Here the cylinders A have their
€ the windows so that their volumes ar°

Zero, while t . Z

that the xth (tl;lifésmns I the cylinders B are so place
M moles of the :r, %)unﬁng from the top down, contain®
concentratiop [Bg S Dioat g Concentration equal to the
31, By, .., e that gas inside the box, The ga5%
rium through cyhllders and box are thus in equilib'

the sem;
he work performe lpermeahe bottoms of the cylinders:

O > d b
s epvy*lllobw()uslybe Pogtitvee System during this secon

o e R S
he total w ey
tion is the sum roli Eeriordmf,d during 4},
1 an 2 entir a-
1, that g e transform

y igm"_‘gn,- 4
This WOI'kiSe 7

qual to the
energy of the initial st €rence 1,
calculate this differe ate and thag o th ®tween the free

nce, we
large box is the same . note that, the ol state. To

. h in the initia] conte
In going from one state to the othe?nvcslrf:';f ltstateg_ nt of the
g S

2??4 laz‘gfebolx) ny I.SOIBS of A1, ns moles of Aszrodueed int
i p 1), and then extracted m, moles of jé; ? " moleg

3 mz In_oleS

(137)
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" ical
of By, -- -, m, moles of B,. But according t0 thet%};m;::gae
equation (135), the substances i““"duc‘?dhcin;?\.-n More-
box are equivalent to the substances \Zlftth:s larg.e box do
over, since the temperature and volume gases in the

. Thri f the
not change, the chemical equilibrium ?at, the initial and

box readjusts itsel! in such a Way ‘ The only difference
final states of these gases are identical. he system is in the
between the initial and final states of t ;31 zydjfference be-
contents of the cylinders. Therefore, t ; is equal to the
tween the free energies of the tWo state

tained
- ; the gases A con
difference between the free energy g d the free energy of

. . LY - an
in the cylinders A in the initial 'Stﬂt‘?s B in the final si;a.lte(.:1
<1 the first cylinder

The free energy of the u Afloiﬁ‘)ws: The volume
(initial state) can be calculated 25 dently equal to the
occupied by one mole of the a3 15;;;16 free energy of one
inverse of the concentration [Al. 9) by gubstituting n
mole of A, is then obtained from o )of one mole. Since
that equation 1/[4.] for the volume . of this gas Is:
we have n, moles of 41, the free enerey
T — R 10{; [A]] -+ al);

1

Using similar
as 1

fens 32 it ee energy of the
o Ayy W find for the fr

itially in the cylinders A the expression.
101&

n{ O T + Wi — T'(Cy1 108

where Cyy , W1 ,an
and entropy cons
notations for Az, -
gases A contained in |

i as)
2 ni [CVT + W,- - T(CV{ log T — R IOg [Az] +

i=1 .
. the cylin
The free energy of the g.asels Bivt:;l by:
the end of the process is similarly &

ders B at

m 4 = (s = Bl + adl,
28 ACHT + Wi — T(Cvilog 7 — Rlog [Bi
" nd the
here C- ’ and a, are the molecular heat an
where Cvi, Wi, : !
energy and entropy constants for the gas B,
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The diff
erence b
etween these two expressions must he

equal to the
RT(E Wrork L given by (137). We thus have:
Xmi— 3 ) - :
. i=1 i) = § e [CV.'T'—l— W, — T(C -logT

— R 8
Iog IA:] + a:) - Z m; {C;;T
=1

+ Wi — 1(cC;
o i = T(Cy;log T — R log B
iy g }?Y RT and passi e o
quation redudes tos'smg from logarithms to numbers
i(B+C'y,—at )= 3 n;(R+CV;'-'“"’}

[4,]™ (4]
e I 1 ) z
[Bll [Balmz e [[B ]]m. = 6{1'-1

1 r

A 8

7l 2 Ccyini— .
X T (ihl L lec'v;m:)

5
3 oW o
- niW .-_E miw’;

= 1 (139)

The ri
L e r%%ht-hand side of tp Xe BT
40 us, e . i
action » ©qQuation 8 equation i
K(T) 3(1:1%'6‘)’ but it &(1;39)}101; onlym;l is a function of T
W xplicitly, 0 gives th proves the law of mass
e shall discuss e form of the functio?

next section we Shaﬁhe formulg, (13
iv 9) in sect]
ction 24. In the

I'esult Ob i i :
ta.med m Section 11: tha

t tuhe

5

of a system
3 at a give
w n t
h‘l?;g the free energy i: :lﬁfilz’;ture and
consi . 1m
By, --- ;liirtha mixture of tlltt;l.
fixed volume V aflc;ﬁempelrature T EDi?Ses i
equation (135). W]:eactmg chemicaut);":din g and
en a quantity of tﬁg accop :ﬁamer of
gaseg ;. ¢ With

Mside the

&te
Voluilof equilibrium
€ are thoge for
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| reaction, the con-
change; as a result
changes also. We

22223:;?1? takes part .in the chemica
of this 1?61118 of the various gases present
of his, the fee enersy of the M |
rests w obtain !ﬁhe equilibrium cond1t1on.f<?r the chemical

ion by making the free energy & minimum. To do

thi
Ofus, we must first obtain the expression for the free energy
a mixture of gases of given concentrations.

that the pressuré of a

Dalton’s law (see section 2) states
partial pressures

ixture of (ideal) gases is the sum of the
tial pressure of a

0
f the components of the mixture (the par
that this component would
upied by the

c :
egmpo_ne.nt ijs the pressure
m.ert if it alone occupied the total space 0cC

Ixture). This law indicates that each component 1S

Unaffected by the presence of the other components and S0

retains its own properties i the mixture. We shall now
generalize Dalton’s law by ixture of
ﬁleal gases the energy and Py als.o are €q

e sums of the energies al ies (partial energies .an.d
Partial entropies) which would have if it
alone occupied the total vo
at the same temperature as that

From the definitions d (121) of the free energy
and the thermodynami . 1 ot constant pressure, it
follows now immediately that for 2 mixture of ideal gases
these quantities are €qu? i to the sum of the
partial free energies an partial thermo-
dynamic potentials at constant pressure of the components
of the mixture.

With these assump? i
pression for the free energy of our mixture of

free energy of oneé mole O the gas A, is given,
preceding section, by the expression :

CuT + Wi — T(Crlog T — R log [41] + @)
o of Aiin the volume V is [A4],
ther V[Ail moles of the gas Ai.

of the mixture.

write down the ex-
gases. The
as in the

jons we can now

Since the concentratio
there are present altoge

5N
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The i ) ) :
ther£§§21:a1 free energy of this component of our mixture 1
V[Ai]{CmT + W,

The free energy of the
up the partig] free en

Mmixture, Q, doing th
the expression -

P = Vg[A,-} (CwiT W, _ T(Cy,

‘*‘V_El[B,-

= Ty logT — R log [4.] + ar)}-

total system is obtained by Sﬂlflminf
ergies of all the components in OV
18, we obtain for the total free energy

log T — Rlog[A.] + a:))

We consi g
(135) (thag . "V N infinitesimal reaction of the tYP°
Substance ig %f Teaction in which an infinitesimal amount 0
the left to tpe Ansformed). the reaction proceeds fro™
Hght of .(135): inﬁnitesimal amounts of the

Bases 4
of the e ) “ir disappear and finitesimal amounts
gases B,, B Infinitesimal a

» Llg, o u.
2, *«

moles of the gas "> B. are formeq. The fractions ©
Proportiong] oS 4, Aay e A, that di ear Aare
3110 the coeffigse * <% B4 dISApD

and the fractions MS 7, 0y, oo ;o pespectivelys
of m ) » Ny, TESP

are produceq I TBSI(;IIES !f)f the gases B,, B,, ---, B, that

tiona] to the of th

e tra : or-
numbersg 4, m nsformation are prop

1 e - -
the Concent, e » Ms, Tespectively. Con

.
: rati
** undergo the Variat(;;lrsls-ml]’ [4.], -+-, and [Bi),

Proportionality.

ate, the variation in #
be: 3 al reaction must vanish.
we have. Calculated gg though it were a

oF = — or oF
A, ™ T Yl
2 TSy ol = iy

+5[§;]smz+.._+j£ 5
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acing the derivatives
140), we obtain the

Dividing this equation by €V, an_d rep(l
by their values as calculated from
following equation:
. D -+ BT

. . T__R ]Og[f-l-]"l" s
= {CwiT 4+ Wi — T(Cv: log

£-=21 L { L + ! RT} =0.
o T — Rlog (B]] +ai) +

jon and equation
uatio can thus be
dlng SectiOD.

+ 2 mi (CT 4 Wi — T(Crilo
=1

{hat this equatic
ent tha © o cquabion

s in the prece

It is immediately evid b
(138) are identical. The GQUTI i
Obtained at once in the same Way ¢ T

“ipria; the princil
i n f{ql(l;lég?i:e can obtam 1;1}::
lrJIK(T), which appears on

24, Discussion of gase
Le Chatelier. From (136) a

explicit form of the fun)ctio[l}f(T) s sometimes called the
right-hand side of (136)-

it i tant

; e. it is a cons

constant of the law of mass action; of C};)‘]LH‘SC: (136)
O 3 ] .

only if the temperature 15 constan

and (139), we obtain:

%{ l“’? (rtcClyj—e' M
K(T) = ¢ V™! Lok ,<_§ miW'i |
1( ' ; ";‘_,C'Vi'"j> -‘F‘l":(;zfn“ e / (141)
= = Cygrl;"'
R i=1 [4 the
. epends on
i which K() SO0 the
In order to discuss the heat of reaction

omparing
ary m+cv-"“')""}
j=1

i=1

way 1n

: e
temperature, we first dc{in?ﬂ::econsider a Irgiil;;;efjtlfi.
chemical reaction (13 a5n)t yolume and at iﬁ‘;{f (135), so that
B e i o i (5
Ny, Ne s .g. 5 Tr moles Of-therifgto My, My * e m};;‘l;) q
spectively, interact and gt VeBs respectively The

his isothermal procestﬁ 1151
e. The reactio

etion at constant voluztnding on whether

calle.d s el gl lor endothermal, dep <tem when the

is said to be exotherma absorbed by t}le 8) - tion (135).

v A E{“irf; the left to the right 1 €d

reaction proceeds

. e ]
of the gases B:i, B2, i 958
developed by the systel

| B
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" olume, no
Since the reaction takes place at consl.ﬁg’r; the heat
work is performed by the systefﬂ- Thm.occordjng to the
absorbed by the system (= —H) e B ;f the system:
first law (15), to the variation AU in energy

I = —Al.

for
le Of Al b
Remembering that the energy of one Eﬂ&e umbers 0
example; iS equal tO Cv]_T + "H,fl ) and tha

ety :
Bl B2:
moles of the gases Ay, Ayy oo A, and i_n, and M
increase by the amounts —Ny, —MNz, ",

tion, Ve
b

i e reac :
Mz, v ,m,, respectively, as a result of th

. 5) 15
. th (13
find that the variation in energy associated wi
given by the expression :

AU=imM%T+WD~memﬂ+ml
=1

i=]

The heat of reaction is thus:

= 2 )‘) (142)
H = 2ndCnl 4+ Wy = 35 ey + W)
1=] =1
Taking the logarithmic derivative of (141), we obtain:

2 < ’ % _ y W: mi
d log K(T) ; Cyvin; — ; Cyim; ; Win; 21: .
T e ______‘J__—'—/
T RT + RT*
From this equation ang (142), we now find that:

dlog K(T) _ 1

RT*
from thig €quation, which was derived ,bg
hat K(T) is an increasing or g decreasin
function of T, dependin

on wWhether the heat of reaction i
5 K(

- = -e
T) increages with the temperatur
for exothermal reactions ganq eCreases with increasing
temperature for endothermg] reactions,

(143)

! This equation ¢

on alsS bedeitved disdsiis lyi 't Hoff
isochore (117) to a process similay Y DY applying the Van's

to that described in section 29
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: T)
increase 11 K(
: : 36) that an mnc direction
rasily see from (1. sie in the di .
mone CZE::S(: gf the equilibrium condltlsorflls and decreasing
Ofeia;?;,zasi;ggconcentrat.ions of the ,gas:shift. of the equml‘K
concentrations of the gases B, t}1121:{‘3 19;{ equation (135).'1ib
: ‘ i he le the equuitb-
he right to t s that the e
illstzrlr'leafs?;? Ié(];) 0%1 the other hanq’ ;E;esfll that equation- has
: ’ he 11g itions
is shi the left to the ] condi
rlurlrfil is &}-‘;lftfd flll‘locI;ll a change in the ex’.ﬁem:an St B suml;
e effect w rorioa] reaction can Des :
o0 the equilibrium of a chemic ali;eacm'fhis Prmﬁlp?i,r:c}:;gn
: atelier principie. jons the :
Z‘naﬁed e j et C:.Tnine without calGul.Ti”i;lS tends to shift
il?ivlfis}?ne t}(l) neeein the external c(.)llfil system, states the
i eq‘ililﬁ)l'?iu?ﬁgof a thermodynamica are
. tem
1 1 . I m,cal 'sy.s
0 }r;\: ;ng. ernal conditions of @ thcrmgffy?gzo move in such @
e external con Tl ter e
altered, the equilibrium of the SySIEG":’:: Za:iemal Cond_zmnjf this
ection, qs to oppose the change 11 ake the mean-lfnfhe reac-
. " ma t1
A1l serve to m tha ure
e emples will serve o 8 e in the temer®
tion (135) is exo:chermal, then an 1nere

f .
; qrd the le
Shifts 4}, chemical equilibrium tow?a

ft to

jon from !e y

®Quatiop (135). Since the 1‘each-,tllmce)bnequilibrlum N
ex%hermal, the displacement of

left, res

) t by the )

ults in the absorption O,f et f Le Chatelier’s
Pboses the rise in tempe;a:}uleeépplioation1(1) nge in pressire
P syt et S i

b} v c
Constant, temperaturfg hasti?; t Offezaoles in o
€ reaction (135). We no n

Dl‘oeeeds from léf t to right, then the

Saseoug system changes; if

hat if the
umbe

(144)
ite inequality

that
suppose e
ber of moles increases, eases. ment of thd
olds, the number of moles dec;en a di pmcepressure; an
he e les, then & Ty ~
eq\lillillzs?uahsy (1§141);h213‘1'1)ght will increds
‘Tum towar :

4 me
m
M4y e e <
the

iy
h In
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Vice versa,

therefore, t
mixture wil

. ) 't ex ect,

From Le Chatelier’s principle we mt;ﬁl"t gaslzaous

hat an increase in the JPrESaLLLG cifft? that is, I
Lshift the equilibrium toward the left,

- . . in pressure.
such a direction ag to oppose the increase in p
general, an increg

in such a direction as
system, and vice
directly from the la
f we increase th
temperature const,
of our gaseous

in the

to decrease the number of mOlsztl;line
versa.) This result can be o
W of mass action (136) as foll(?“ 'ing the
€ pressure of our system while keep onen
ant, the concentrations of the comp uilib
i If the chemical e?l the
affected, the concentrations of _ i and
components woylq be increased by the same facto ,dside
assuming (144) to hold, we should expect the left-hanright,
of (136) to decrease. But since the expression on thed sl
hand side of (136) remaing constant, the left-han hifte
¢annot decrease, Hence, the equilibrium must be S
toward the left in o

; 136)
rder to keep the left-hand side of (
constant, il
. r
We may conclygg this section by stating that, in gen®
low pre

Ssures faVOI' :

v hile hi
. C1SSociation processes W
Pressures fayor combmation Processes

: Problems
1. For g chemieg) Teaction of the type
2 A = Az
the equilibrium,

Constgpy,
temperature of 1g° C -K(T)

he
Is 0 of the lay of mass action at ©
gaseous mixture jg | t 00017, he tota) pressure of 2o
: Amosphere, " of di
soclated molecyles, Ind the Percentage
2. Knowing that, 4}, heat, o ,,
in problem 1 is 50,000

freaction ¢ : i dered
cal, 9 the reaction consi
at 19° C and 1 atm, /mole, finq

Ryl
egree of dissociatlo

ilibrium
se In pressure will displace the equ

CHAPTER VII )
; Jutions
The Thermodynamics of Dilute So

dilute

.on is said to be

25. Dilut lutions. A solution 18 Sal to the amount
+ Dilute solu ;

. Omp&red da_
When the amount of solute 18 S?ealiliall deve}ff tzhszhiltl;ns.
is section sog of dilu
of solvent:. '1111 tgésthe the rmodynamlcfsNo moles of solvenbii
Mentga] principles Jution composed 0 ral dissolved sub
Let us consider a so oles of the seve If our solution 18
Ny, Ny, Naflin respectively-
Stances Avy Agy -0y Ao

. (145)
very dilute, we must have:

.3 Ny L No- the
) Noj =+* s ions for
Ny & Noj Ne < T d the expresSi” = iute
Our first blem will be to fin th, of
ur first pro

and so for e thermo-
energy, the volume, the entropy ¢ th

ication © operties
; d applic2 ther pr
fiohltion. A stralghtiflolr?ha;n yield all the o
Yhamic equations w
of the dilute solution. U of our o :
We consider first the e nergf}’the solution € ) ontain
f a fraction O the solution
€ the energy o This fraction of
Mole of golvent.

lute
of the SO’
] ) moleSt energy W
IN 1 ¢ the solute A, Tts
1 o IMoles O

Ag. N/No:
4 N /N, moles of the SO S0y, Vs

: Let ©
lution.

antities
b : T p, and the qu
© a function of T, P, # (146)
***, N,/N, ; thatis, Ny Ne ’W_E) s
T, D 7, No' f solvent,
u:u( 1 £ Ny moles ©
ains No

3 Ont . t is
Since the entire solution Eha,n (146); that >

. Ng). (147)
Ny 08 .0y 5, .
U=N Uu(T’ B Mo ce our solution 18

hat, SiP are very
W keuseOfthefs‘Ct‘b .--;N"/NO
€ now nia

, /No, Na/Nos
dilute, the ratios Mk 113

i er
hergy 7 is N, times larg

@
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small. We 4«

the funCtisnassumeg therefore, that it is possibl

ers nb(1_4b) in powers of these ratios and 0 2
S above the first. If we do this, we obtall:

N, .
-+ ﬁ; ﬂg(T; P)

e to develoP
Ject
&ﬂ POW g i

U= uﬂ(T’ Nl sl
p) + No 111(1, ) + j:rr_uﬂ(T! f)) o et
0 .

Substityt; .
(rltutlng this expression in (147), we find that:
S A:u’un(T, p) -+ jvl'h'i(T, ])) + .- + Ngitg(T} P)
N § N:"lt,-(T, D).

It
e should e poy

(149)

7 in the
ed that although the various 'terms mﬁrst

XPressio |
term g ;éiﬁgi for U are formally quite simila® the} the
Mequalitieg (145§U‘ger than all the others becaus® %

¥ a simi)
ar
the same order OI;I'OCESS of reasoning, we can shoW - i{;ten
5 ApProx; . I
as: PProximation, the volume can be

oo?Jo(T, ) - va!(T, ») ot Ngyy(T, P)
. 2 Nil?i(T,

i=(

)
p). (
W@ mus

Solutiop. 0%

tain the expression for the entropyY Of;ible

11 .
8, we consider an infinitesimal I ever ir
infi?

transfoy :

: Matig ;

t n dy hi

ES | amountg I;ng which 7" and p change by the

Mo ag o N T' and dp, while the quantities

from 41.¢. ¢ 40 not v ing
this transforma‘zz};; i The change in entropy * esult
S:

ds = 4@ _ 1
7= T(dU + pdV)

= > w, s + pan, (150
iy

=)

t now ob
To do t}

i
he coefficip S.a, Perfect, differ . N’S
tial, Dt of ek gy 5. oreRtial for all values of the 2 ™

We integrage 1, in (150) must be a perfect differe”
ODS $4(7, p) ese perfect differentials, we obtail 2
28T, p), ., 5,(T, p) such that:

ds;(T :
(7, p) < éijT_pdi (151)
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If we now integrate (150), we obtain the expression for

the entropy:

- t Nisi(T,p) + C(No, N1, *** , No)- (152)

The constant of § . ich i t only with
" : h is constant oLy Wit
ant of integration C, whic ut this in

Tespect, to T and N's; we have p
: p, depends on the IV'S;
®Vidence in (152)., We can determine the value of this

Constant, g5 f
ollows: i
x : in
Whimce no restriction has been Plﬁced_ of, b3 I;lam,;erstill
ap (131}1 T and p may vary, the express At (Iff)t 1?1:‘3 entire
Plies if we choose p so small and T so la'rge; aOur system

solution . : i
‘ 4 vaporize
Wil ncluding all the solutes, g ?or such a system We

then be com
pletely gaseous, an f the
;lready know that the entropy is equal to the Sl;’{j;‘og 23).
11?:}1 entropies of the component gase; (Se;si; pressure
e
© entropy of one mole of €25 &7 (tsee o quation (87):

Piand having thre molecular heat Ci 18 R (153)
, 1 :
Cpilog T — Rlog pi + & A fe 08 partial

erenCE, for our mixture of gases We have (Sinffvjlf- % i
®8sure p; of the substance Asis equal 0 Pl

*) Where p is the total pressure):
gai N +a;+RI°gR
. N
s N'l(Cp.'lOgT = RlogpNU+ e +Nﬂ

= EN.-(Cm'logT—Rlogp—f-a“‘{'RlogR) N:
_ R Nilog W T
=0 plies to our

If We compare this with (152), which. 28

gas . .
®0Us mixture also, we find that:

E
.+ R log its
ang 8='=C‘],,-log‘l”--Rlog;lﬂ-i'a
0 ’/{V/ (154)
C’(NU:N]_’ “ee ,Ng) —_ _._RZDN,logND_{_ e +Nﬂ endon
But the cor =y, doesmot&eP
SOt g to the
e constant C(No, N1,  pplies not only

TP Tts value (154) therefor
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. Hence,
. n_
gaseous mixture, but also to the original solutio
(152) becomes:

, , _,{V_—___N_ - (159)
SzéNMﬂm‘RgNm%W1M+N+EWWy
' f ;
It is convenient to simplify the last terﬂ}a ; neglect’flg
taking the inequalities (145) into aCC.OUDt' Al quantitles
terms of an order higher than the first in the sm

Ni,N,, .-+ N, , we find that:
1
N, —//ﬁ
W e 00 1 v
N°OEN0+N1+---+N0 N{)Og J_V;l_+_ -+'ND
L
No
w2
= No Ny, No
= —N, — Nz — — Ng»
and that:
N:1 N = Nilog ¥ (foriz 1V
Ogl_\’}_mfj_—ﬁ"ﬂ—m‘ogm o
Hence,
S=N080(T

'] g Ni'
PV LNUA(T, p) 4 R} — R Y N:IOB T,
Instead of t

1=1

ewW
he function : ce the B
functions: 5 8, we now introdu
ao(T, D) = so(T, P)
o (T, p) = s:(T, ?) + R
™00 = w5 4
ATD) i (156
We have, then: ALp) + R
S = ) Nt 2]
gm e(T, p) — R EN‘. 10g§§_ (157)
(Notice the difference in the Jip: 0
Although the quantitieg u.lrrnts of the twe
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. ntities result-
ing, functions of 7" and p, changes in thesre Z?naall, in general,
Ing from variations in the pressure are ve i)ses san Ao
S0 that w;, v;, ¢;, for all practical purposes,

iy iy i 1
sidered ag being functions of T only. o

In the theory of dilute solutions we shal{lafi oy e (149)
of these approximations. We shall ther

(149), ang (157) as follows:

U= Noull)

i1=0

V = i N;‘U.'(T)

= 0 N:
S = 3 NiolT) — R 2 NiloB Ry

B d S, we can it
With thege expressions for U, V, a0

free energ

lately write down the formulae for tT::l ke ;
?lle th‘ermodynafmic potential @ (see

21)

). We have:

.

N log ﬁ

F o 3 NI — TolD] + BT 2 VBT
=0

0 N:
g ,-log e
"—"ZN;J';(T)—'I‘RT;N No
=0
Wheg,

f(T) = w(T) — To:(T);
i e

To
the Cong dep!
E:ngé?ﬁ,u Compressibility of liquids.

of P i very Mo o from
ider v; as being independeﬂgimilm:ly, 1; 1 0 wrk
:quid isot! ea. 1lows
Perim, § o LOEEE, L irible amount 0 e in VO "lory sma
8lsg 4o lthﬂt only a neghgt}bil_; small chare )
they, °¢ Degligible because of the
f

observes
igtion in €M% T of Py W
Ordgy 'Om the firgt law, that the var indepe

; in
Vith th0 Show that o, also is pruct.wallY
® 8d of (156) and (151), that:

. av . . S
do;  08i _ _1(?31 +Pap . jvative

derw d
— = rtial 1], an
§ ag 0@ 6p ¢ of Py B0 P;; very 5%
O:PEE %i ang o tically indepenlgezce am./ap)
s i are prac o ence,
c"thlles Eghthhans side are negligible-

®Pends practically on 7 alone:

e e —————
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and

P = 3 N [uy( N
fmg e T) - 1 a -

2 ) = TolT) 4 po(T)] + RT 2. Nilog z]tfr

f=1 i

= 2 N fAT )
i=0 ) + pvi(T)’ + BT Z N log & (161)
= L AT '
2 i | o
Shalfi).col?motlc Pressure.
e :bl atsemipermeable
: € to the solv
f (fmlpe'rmeable memg .
und in nature e
cellls are very (;ft
?r‘mﬁmal Semiperm
errocyanide imbe

In dealing with solutions we
membrane a membrane tha
nd impermeable to the solutes:
For G‘c‘lnior aqueous solutions are f’f’?e“
— ple, the membranes of liviné
Sl e RlE, A VELY conven'®”
dded in ;m'brane is a thin layer of copP®
en a wall of porous material.
T solvent, 1 solution is separated from the
ifferenceyofa semipermeable membran®
and the py, pressure between the solutio”
i e solvent exists at equilibrium?;

his can
b
experirne:rxt_e shown by the following simp
1ls

nto a
contaj ;
we p mer with Semipermes,ble wa

ace g ;
irhl'()ugh ¢ SOlutlon of sugar ' “,ate].

Insep e to
eIt a vert; P wall of the containe® we

Wwhere the

AT Semipey ti

ind per cal

icated by g ‘heable wal tube, as shown in Figur€ 19,

this otted 3 Is of

insidelgfle Serves tq Eln(fg e etihe container have Pe?
b B0 e COntainer; 1cate the ght of the meniscus in
rises ebwater, and obgey @ now gi Dressure of the solutio?

that sin?: e t? e level o\;et?a‘t the mei‘container in a b2
g water hag e IScus jnsi ube
Equll'lbl'lum is reacheEaSSed from tﬁl‘ bath. Tlsll_de‘the- t >

certain height / when t}, © bat}, ; is indica
55 ¢ Kaovarthe leve(l3 fe Iscug ilnto the solutiom™
O the N the ¢, : a

w ube is ab

that the pre :
. ssure in th g
in the pure 8 solution ig ;. V&

water. The differen::z }-:Illghel‘ t(}? bath, showing

osmotic pressur f an (_.h e
¢ 0 . r e u

difference betw 1 If We *1s ¢ €
et 3 o 5

een the den51ty of w e1 alled th

er and h th 11

density of

P
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qual to the pressure

th :
e solution, the osmotic pressure is e
ven by the product:

. S O S
xerted by the liquid column &, and 15 81

Height, h, X Density X Acceleration of Gravity.

T ; . - ;
0 obtain the expression for osmotic pressure thermo-

?vyll‘ami(,aﬂy’ we make use of the general result that .the
trOIk done by a system during an isother.mal reversible
eHanSformation is equal to minus the variation of .the free
A rgy. We consider the system represented 11 Figure 20.
cylindrical container is divided into tWO par

Permeable membrane EF parallel to the bases 4 /
of the container. The part of the container on the left is

Jes of solvent and

filled with a solution composed of No mo
Tl yNoy .., N, moles of several dissolved substances.
he right-hand part of the , E c

contaj e

Witﬁmr}a’] is :ﬁ;ﬁgletsfly ﬁlle-d ore
pure

Solvent,

Since the membrane s€pP~
arating the two parts of
t?he container is permeable s
t‘l\?'llt}‘:)e pure solvent, there

ill be a flow of the pur® .
solvent, through the mgmbrane in both dn"ectlon‘_.sl.1
these two flows becom® he ?fjfmteriez; o
equilibrium, and there wil i er.ennd the right-
between the left-hand part of the container & e
banet oart,  This difference of Pres® P is equa

—

Solvent

Fig. 20.

rmeable membrane is

osmotic pressure. : ipe
Y : hat the S€ -

e BRERIERS tider an inﬁnitesima.l transforma@on c3f

i hifted an infini-

movable, and we cont :
ble, and mbrane 18 8

our system during which the €
tesimal distance toward the right, 80 that the volume on the

loft, increases by an amount av and. the volume on the 1‘1ghcti
decreases by the same amount- Since the pressure exerte
on the left fece of the membrane by the solution is larger

by an amount P than the pressure exerted on the right face
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of the membrane by the pure solvent, the work done by the
System is PqV.

During the motion of the membrane, a certain &moqnt
(dNo moles) of the solvent flows from the right-hand i
. the container into the solution on the left-hand side; -
diluting the solution. The volumes V and V"’ of the solutio”
and the pure solvent, respectively, prior to the transformd”
tion are, according to the second of equations (158):

V = Nowo + Nyoy + --- + Noty
V! = N:;Uu.

If Ny increases b
equation?:

(162)

rst
¥ an amount dN,, we have from the f

dV = vydNy;

and the work done by the system is, therefore,

3)
P'U[ldNo. (16

The fj[‘ . ) is
i :ee energy of the solution is given by (159) and

; :
Ofn + lel + i + Nufa + RT(Nllog% + h + Nﬂlog ﬁ;)

0
o :
T 2 1 o e st i i o O
acing N, by N, and i =~
= Nyi=0. This gives: o

i Nofs.
e total fre
these two: € energy of our system is equal to the sum of

F=(Ny+ § '
0Tk NoMo LN fyd ey Nofy + RTZEINalog%"'

i=1 L
* Since N} decre
ases b
that the total volume remiir?: ua;lr::llc;:l':;egN v, we have dV’ = —yydNo» Bo

¥ g
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Since N, and N, change by amounts dNo and —dNo,
respectively, as a result of the transformation, the variation
in ' is given by

ar

dF = dNo

aF
3N

N
aN.;d 0

— -—I—;\Tq"dNnZNi-

must be equal to the work

The negat; f this quantity
Satlve of Ts 4 versible. Thus:

(163) because the transformation is re
T 0
ondNo = EN— dNo ; Ni,
0 i
or

g 164)
PUDN0=RTZN" (

=1
Ny, which is the volume occupied by No m(f)k;lsle? fdﬁﬁzz
Solvent, differs very little from the valema V(fﬁ?)) Neg-
Solution (see (145) and the first of equatl.ons 8 1;y i
lecting this small difference® and replacing Yot

(164), we obtain:

0 (165)
PV = RT >, N,

i=1

or
(166)

plance to the equd i
g, Equation (166) can be stated as follows:

v oo ists in disregarding

* It is immediately seen that this ﬂppFOXKmﬂ-thn1:0:f51:he solutes, and 1s
ermg containing the squares of the cqncentratwl ¢ made in the theory
herefore consistent with all the approxima

of dilute solutions.

tions alread

——— =TT ~ = g e =
R R R R T R O I O R R R R I R R T R R R TN =

T
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ini : iter £ 15%C,
equal 10 the containing 1 mole of solute per liter of water, has, a

The osmotic pressure of a dilute solution 18 an osmotic pressure:

pressure exerted by an ideal gas at the same tenzperaﬁf?“{n‘; a 2w 9881
occupying the same volume as the solution and con!azmgqties Prorimar = et
number of moles equal to the number of moles of the 5
dissolved in the solution.

@

dynes =
A S B 107 S = 03.7 ati,
1000 cm.?

In many cases, however, a chemical transfm}‘mation ]:ake?
ily inter” place when a substance is dissolved, so that the number o
is si : C el be easily ! stance ; |
Drtrelt‘};:f fsrlznrrll)lihthelmotdy?amlcal ; Ctzllltkciire»ltic theory- W.e moles of the substance in the solution need not be the same
e point of view of the k

consider a container divided into two parts by & Sem; i number of moles before the .SUSSTI;?&II?G?;:%Y;?G
permeable membrane with ure solvent 1In each pa;k; T.he most important example of th'ls i Ila NaCl is dissolved
Since the solvent can pass frcelp thr(;ugh the semiperme? Al fhssolved in water. When, for emmlp e’dissociate e
membrane, the Dr(;ssél)'eu;)n bot3{1 sides of the membrar® “le o Wa?er,.almost all the NaCl molef - els s in the solution is
be the san:m NO\'V. let us dissol;;e s‘ome substances 1 ql(;e and Cl- jons. The number of molecule

; ; : g e

. ] v d if no
part and not in the ot} Then the pressure o1 the tl}US about twice the number one would expect to fin
other. en the pres:

dis-
the dissociation rred. Some electrolytes, of course,
of the m AC] soluti i inereased bY - N oceurred. . + by ectrolytes
v e;nl;;allie ‘ffcnflgt :;he sollutl();} W 11} i?léndifssolved sub Sociate into more than two ions. For Stlonilflwhenyihé
stan i a2 WmRrtles prane &0 the dissociation is practically complete ev
ces, which cannot pass through the mem he

: S reak electro-
Solution is not very dilute. For the case of weak

which move about with a velocity that depends on T. Iytes, on the other hand, chemical equilibrium sets 1n

. - the
larger the number of molecules dissolved and the highe”

. e ’ into ions and the
temperature, the larger will be the number of impacts P r;t“‘ ¢en the dissociation of the ;;ecgligéﬁi?ation -
unit time and, hence, the greater the osmotic pressure:, 0 thC()‘mblnat;lon of these ions. : e
It can be shown from kinetic theory that the velomtéesby Aerefore, is generally incomplete. o
the molecules of the dissolved substances are not affec i . I .« We have already
the molecules’ being in solution, but are equal to the velOE’; . 827. Chemical equilibria in 5."011“(110;65) applies to chemical
ties that they would have if they were in a gaseous sta 8 N N that the law of mass actior e W shall nOW
Therefore, both the number and the intensity of the impac™ Cactions taking place in gaseous SY ] reactions occwrTing
of the molecules of the dissolved substances against he “erive a corresponding law for chemica
membrane are equal to the number and intensity of i M solutions, lvent and A1, ** S
impacts that one expects for a gas. The pressures exerte et 4, represent a molecule of the SO V? s of the solutes.
in both cases are therefore equal. i and B, , +++ , B, represent the molecu ec1 o o oquation:
o In order to calculate the osmotic pressure with the aid © ¢ We assume that a chemical reaction defined PY
R | (166), it is necessary to know the total number of moles © =2mB+ T me B, (167)
,, the dissolved substances in the solution. If no chemicf* NAg + nyd, 4+ -+ + ned, S5 g
i l Change takes place in the solutes as a result of their being i °an toke | {hese substances: If 7o _# e 0
! f solution, this number can be calculated immediately fro™ Solvent Jhace among - the reaction; whereas if 7o = Y
Bl the knowledge of the molecular weights of the solutes and the 0t also takes part I the

e percentage by weight of these substance

On] > selves.
i S present in the Y the solutes react among thems
solution.

; mical
i Us i i hall require that when chemica
For example, a normal solution, that is, a solution st as in seetion 23, we sha

s
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" 4
e a mlnlmum' J

equilibrium is reached, the free energy shall b 159, | -

The free energy of the solution is given, according to
by:

F=fNo+ X fiN:+ 3 £N
=] j=1

+ RT{Zl N 10{:%;" + 2N log%}}’ .
= 0 i=

where f; and f; are the functions of 7' for the dlss{ﬂ'v?li
substances A4; and B; which correspond to the func}cﬁn
i, +++, f, appearing in equation (159), and No, &¥is dis-
N; are the numbers of moles of the solvent and fhe

solved substances A; and B;, respectively. imal
_ Just as in section 23, we now consider an inﬁnitesm'lch
lsothermal reaction of the type (167) as a result of Whltsi
NU) Nl! ttty, Nr and N:: i N: Cha'nge by the am()lln

—€No, —en;, ---
1 ‘ . 10”
resp‘?cmf’lyi where € is an infinitesimal constant of P
Dortlonahty. Slnce F is 2 minimum at equilibl'lum’

van-a'tiop must vanish when the system is in a state
equilibrium. We thyg have:

y — €Ny €My, * " ,Em'a:

or

oF = TEN)——— — : i aF c BF =0
aN, egn, a_ﬁ{"i'f:;mia_zv;f

I)o &y )
e;ﬁ;ﬁg bly € and calculating the derivatives with the aid (?f
1 (168) (the f’s are functions of 7" only and therefor

0 not, v s .
ary during an isothermal transformation), we finc

on neglecting al] . 1168
Ni/Nyand N!/N, ?rms proportional to the small quant!

0= —nfy—3
nofo Zn;{f.--ﬁ— RT + RT 1og’f,‘}

i=] —
0

—_——

* Binee the variat;
. Variations i . el
Immaterial whether e I volume of g solution are alway~ very small, it 1

consy sqsn & (o n
volume or it constant presgmeder the equilibrium condition at consta

: , Ni
+ 2 mf{f; + RT + RT log 3,
i=1
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or
0
log Ny Ny No
NU No " ND

Zg: mi{f; + BT) — Zr: n:i(f; + RT) — nofo

- RT

The right-hand side of this equation is a function oifeni:
only. If we place it equal to log K(T), K bEH}g.ﬂ conven
function of the temperature, we finally obtain:

Nl)nl L (I_Vl)nr
M = F T

" (ﬁ’_)m
No No

This equation is the expression of the law of mass actl
chemical equilibria in solutions.

The discgssion of (169) for the case where the—sc()]h;zn(tlggi)s
Not take part in the reaction (that is, Whenf?';;1 a—;s oo £
is the same as the discussion of the 1av.v . rticular, from
gases (see section 24). It follows, t111 p?-:he equifibl‘illm
equation (169) that if we dilute thesolution £18 8. - 0 ot
I8 shifted in the direction of increasing

: { determining
5 . 51mp18 way o
e ! 0 WIS L e have‘;uf):he case of gases. We know

the form of K(T)), as we did 1

; temperature. !
only that K(T) is a function fi}t?fnple of the case for which

thAS a particularly impf)rtfﬁle chemical reaction, we consider
€ solvent participates 11! :

the reaction:

(169)

on for

(170)

+ 4+ OH,
Hgo =H + 4 )
i+ hydrogen and hydroxy.
that is, the dissociation of water lnti [I)—rlﬂ and [OH] be.the
lons (the hydrolysis of “;}atgiz)}gen and the hydroxyl ions

Concentrations of the ¥ If we consider a cubic centi-
Hence, the ratios of

) )
(humbers of moles per &
Meter of water, W€

=

have Ve
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fr}llel number of moles of [H] and [OH] to the number 0 :
oles of water are, respectively, 18(H*] and 18[0H )

ﬁArIlJCIlJ.lying equation (169) to the reaction (170), we thus

1
18 oE = X))
or
[E90H] = L _ g ()
N ] 18 K(T) £,
W / .
ere K'(T) is a new function of the temperature only-

centfatgsfoe from this equation that the product of the con”
o consifls of the hydrogen and the hydroxyl ions in water
ant when the temperature is constant.® A raols

tem . '
whelljleﬁt;r :(; b prc_’dUCt is approximately equal t0 1.0 ;
that is, ncentrations are expressed in moles Per Jxtets
; [H*)[OH] = 10-u. (172)
n )
equalpsl;rzhwtater, tbe concentrations of H+ and OH~ are

) at for this case we have from (172):

[H'] = [0H] = 107,
If w )

) » § e produrt (172 in constant;

correspondmg decrease of [O(H‘] )} must remal
) It 18

€0 1 j
bposite oceurs if a hase is added to the water-

usual to indj b :
Symhol - ERLE Whgs acidity of a water solution by

the

PH = _Log [H+]. (78]

[H7] is €X°

(Lo
g€ stands for the logarithm to the base 10;
eans &

Pressed as hefore
iy Oreé inmoles per liter.) Thus, pH = 7™
From the 1ay

ould
eXpect, th | one W oul

of m : . .
488 action applied to the reaction (171), gince the

. atio [H+ -
eNominator ig (H*1JOH-1/[H,0] to be a function of T only- must
tl-? & function Ofp;?:,tr:{!al-ly constant, however, the numcrator rn]sgc thus
¥ in accordance with equation (171)- 1\cits usual

frtn _(171) is esse

fo ntially equivalent to the law of mass action o
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neutral reaction; pH < 7 indicates acidity; and pH > 7
indicates a basic reaction.

_ The above discussion of chemical equilibria in solutions is
incomplete, since no account has been taken of the electro-
static forces betweenions. It has been shown by Debye and
Hiickel that such forces are often of importance and may
affect the chemical reaction considerably. A discussion of
this point, however, lies beyond the scope of this book.

28. The distribution of a solute between two phases.
Let 4 and B be two immiscible liquids (as, for example,
water and ethyl ether) in contact. Let C be a third sub-
stance soluble both in A and in B. If we dissolve a certain
amount of (' in the liquid A, the substance ¢ diffuses
through the surface that separates 4 and B; and after a
short time, ¢ will be in solution in both liquids. The
concentration of (' in the liquid B will continue to Increase,
and the concentration of € in 4 will decrease until equilib-
rium is reached between the two solutions.

Let N, and N, be the numbers ?f moles of the tW(f)
solvents A and B, and let N: and N1 be the numbers ©
, and B, respectively.

Moles of the solute ' dissolved in A .
he thermodynamic potential, @, of our system will be the
Sum of the ; -0 solutions.
potentials of the two s . _
We have first a solution of N1 moles of C c.hssolvedt}nlli :
Moles of the liquid A. The thermodynamic Poieﬁli)lfl
Constant, pressure of this solution is, qccording to ( :

By = NL{Fu(T) + poa(T)} + MA@ + pu(T)}

+ RTN:log 35 (174
of
L\i]here fA: Jh y Va, and v correspond to fos Lo s md
¢ general formula (161). : les of
€cond, we have a solution which eontags %STl?ermo-
€ solvent, B and N, moles of the solute
q)ynamic potential is given by: ')
- y o o v
"= Nl ) + pus(D)} + NAT) P2 Lrs)

.
+RTN1 OgNE,

e e

____—
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where the e
quantitieg o ’ espond 10
f°’f"v°’andv10f (161){8, Si, vy, and v; corresp

e th .
is: ermodynamic potential & of the complete system

P = D, 4 by . (176)
“mperature and pressure, the €d
at <I) be a minimum, oo
88 a result of o 5 nfinitesimal transformation of our sys te
liquid p in(tjo ‘Z}}: lch. an amount dN, of (' passes from oy
amountg dN e llquld A. N, and N: will changé 0

® will he gi\;ein(tl)y—.- dN, respectively, and the variati®”

For a given
COndition iS th

€ consider

uilibriv™

USing (17
6 S
conditio . & (175), and (174), we obtain the ethbrluﬂ‘

A Po(T) 4 Ry log N,

N, + RT
) Ni il

or = SuT) + po(T) + RTIogW—i + BY

M

NA fl‘(T)-_j (r

A o SO )

v e =] ()] _ R, (178)

Ny

» ) depends only on the temperatt’®
o the concentrations.
Presses the following law:

solutions o 70 W0 differcr
f the same solute 110l the ratio

SUre and p
Quation (178) ot on

imW{zen: two dilute
"Mascible solvent

“S are ¢ : e
t contact and in equilibriui™

THERMODYNAMICS OF DILUTE SOLUTIONS 129

of the concentrations of the two solutions at @ given temperature

and pressure 1s constant.

ding one is the followir}g:
liquid is in contact with
een the pressure
lution for which

A problem analogous to the prece

A solution of a gas dissolved in &
the gas itself: to find the relationship betw
of the gas and the concentration of the so
the system is in equilibrium at a given temperature. e

Let N, and N, be the numbers of moles of the hqu;_ SIO _
vent and the gaseous solute in the solution, respec n:) ljlfs,
and let N, be the number of moles of gas 1n the gas

Phase. Since variations in volume of Fllsoflzl;l;lsgluﬁz
racti g -ed with variatl b
Practically negligible as compare - the term pV in the

of the gaseous phase, we can neglec '

X i i tion
expression for the thermodynamic POtent'lal oflgleyscs)lgl tthe
and identify this potential with the free energ

Solution. According to (159), thisis:

N (179)
NofolT) + Nifu(T) + BTN 108 77
: h is
The thermodynamic potential of the Bo Bty -
obtained from (125) by multiplying it bY the ’
of moles of gas:
. (180
NC,T + W — T(Cylog T — Rlogp+a+RlogR)] (180)
Adding (179) and (180), we obtain the‘thsﬁmoiizl;i;
Potential ® of the total system. Just ai}i: co(:ldpition for
problem, we obtain equation (177)- N essions for the
equilibri,um Substituting the explicit ex}zllrt' for equili-
derivatives .in (177), we optain as the conditlon
brium the following equation:

#(T) + RT log% 4L BT = CT

, + W - T(Cp!ogT-Rlogp+a+RlogR);

B
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. o numbers,
or, dividing by g1 and passing from logarithms to
we find that - .
CoTHW—T(Cp log P4asn fog By ik TImRT
LU, _ ertroniey o rsarnio
PN, ~ (181)
= &K1,

where K (T) is g functio

1 of the temperature alone.
Equation (181)

CXpresses the following law:

ssolved 1M 0
The Concentration of solution of a gas (?\zsgi‘essm‘ﬂ %
bquid qf 4 Jiven temperature ;s proportional to th
the gas above the solution, here 5 &
if the
It can be Proved in g simjjap fashion that ]fnttration?
i veral gageg above g liquid, the Co?cle ressure i
olution ig Proportional to its partia Io)f propor
the mixtyye above the liquid. The constant as well 88
tionality In each case depends on the temperatuf:i;ular gas
On the natype of the solvent and of the par
Considere(,

ez
. ; the fre
29. The Vapor Pressure, the boiling point, and

ing point of a

oiling
solution. The vapor PGS, télfh:: same
point, anq the freezing point for g solution‘are n,ct’qnt from &
as for the bure solyent. This fact is very 1111}3011 ¢ w in this
Practieg] point of View, because, as we shall_sm oints, &t
Section, thg | anges in the boiling and freezing Iljnoleculﬂl'
§ ®; are proportional to t,he of thesé
Concentrationg of the Solutes. The Obser‘.ratlon ethod ©
changeg affords, erefore, g very convement‘nlluﬁon.
determining the moleeyay concentration of the 501 il
€ that the solutes are DOLEYe an]y pure
or of the solution will contain o

In
that C&SB, the vap

Vaporized sol

n
- that, whe
vent, ¢ shall assume further tr:el’)arates
the solution freezes, only the pure solidified solven

out, leaving all ¢

€ solute still in solution.

. at
iderations, tha
» from very simple conside N
O a solution at g given temp

€ can ngy, show
the Vapor Pressure f
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me tem-
e solvent at the sa ;
at for the PUle_SO tus shown in
lower than -1th;I§IS end we COI]SldeI' the appaﬁ‘;ped tube in
i ch)t consists of a 1'ed"al?gular_ssei)arated from
Fig'ui;etlm. ure solvent and the SOlutl?nef;femble membrane
which the p . semip p he
rer side by a t and t
each othe}I; 0111 th‘fsl(i} erl1~nd C' of the pure Zoilzejlg]ht because
at B. The leve 5 be at the same heig 11 be
T ively, will not solution wi
i, motio presuio; the level C of ' s peele)
0? o SRLTOiRD f}le dissolved substance lie filled with the
hlghel‘-. S’:lncetul;e above A and C will
Teglon in the ¢ : ol o gL
Vapor of the pure solvent (?HI% is established; the vap A
e first wait until equihbmﬂs lhOod of the meniscus
4 : ighbor
Pressure in the immediate ni:;l vapor Vapor of solvent
Will then he that of 4 Salat id phase, —— ]
in equilibrium with its 11(1110 will be
40d the vapor pressure 'lt equilib-
% of a saturated vapor - evident
UM with a solution. It Igat C are
'8t the pressures at A an re at dif-
~°t equal, since A and C a Since €
ferent heights in the vapor. ressure
les highe, than 4, the vapor %hat is, Fig. 21.
is lower than that at, Af;oVe the bove the pure
the Pressure of the vapor a or pressure &
SOlution is lower than the vap uant-itativelyr
Solveyt, ¢ in pressure, AP,t 2 d by a column
, is differenc ‘e exer , , an
, To c_alculate _th.lS d aalto the pressuls(zty of the vapor
\ ® Notice that it hlf fq If o is the deﬁl .
Vapor of height A. itv. we have:
IS the acceleration of gravity,

ap = phg. rted by the Iliﬁgf
e exert ution.
1, the pressure ej:n'eP o o S(;or the
y 1011 the o_ther hanc ihe osmotic Pre?sllt we haVe_ o the
. urr.m (’ID 13 eql{:l t?)f | the pure Sogf-gerénce be?gid also
1S the density ing the GIFE " ont,a
OZ?QJE% preﬁsu{f t(-llrelg;iccilﬂ‘?hgat of the pure
Sty of the solutio

ri

4 =
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that 0
, ared to
Deglecting the density of t}e vapor as comp

the liquid).
P=yp hg. . obtain:
Dividing the first equation by the second, we
ar _»
P p’

or

p Yo

e
- are the volumes occupl_ed Ibg \?apor Phas’
the pure solvent, jn the liquiq phase and in t ))rop Ol.tionﬂ-e
respectively (that is, v, and Ve are inversely Itic pressur of
P and p, respect-ively). Replacing th‘e 0-‘51’}"“3’1. the 82

by the €XPpression (165), ang assuming, fo

resent 1
Simplieity, that thepe is only one solute p
Solution e i

obtain (182)
RT N,
AP = v:] N, e VHPOI'
ich 3 . reen
Which ig ¢ CXDression for the difference betwe
Pressure of the sq

. vent. er
lution gpq that of the pur C.STLlltiOn js lo¥
€ fact thy, '® Vapor pressure for a so
an that, for the

0 the B
bure solyent i directly _Telateﬁlzn that
that the b INg poing, of a solution is higher t the bol L
€ pure Solvent € Teason for this is tha
Point g

2 essure

e temperature at which the VapOIj‘[vI(:flt at th°
€qual tq One atmOSphere_ Consider g pure so tmosphei’re‘
iling boing; j¢ APOr pressure Is equal to one ant keep!

18s0lve S0me substance in this SOIV?II fall belo™”
the tep, erat, Stant, the vapor pressure wi ssure bac
+ Henge ,in order to bring the pre
to it, Origing] :

aise the
1st T

Value of o atmosphere, we mu
ternperature

tion
id of equa

of the Solutjon, With the 31(1.10 derive an
= 2ud o] Cyron’s fQuation, one can cagl ?a solution:
XPpression for the Variatiop of the boiling point o

3

1
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THERM ¥

culate both the

ing this, however, we s}]:allincfl‘.lease in the boil-
Instead qf (»15(1)1:%313 or pressure and tthzd '
Flecrea'S Ny 1nf . olution by a direct me osed of No E_wlest]?e
10g point o A lilute solution Gemp ilibrium with

We consider a cll of a solute 1n equ number of moles
solvent and N, mo ';S,ent. Let N, be tllll ese From (148),
¥ sperof e pul'e_sod in the vapor p t}?e éhermodyllalmc
of solvent )Contgu(lle ), we obtain for
(149), (155), an ’

botential &, of the solution:

lgNl
RTN:lo Nt
Nogo(T, p) + Nioa(T, p) + °
(I’sol = 0¢A0 !

where doi =
(T P) = uy — Tog + pro, an
®old, -

: otent
o dyllamlc p mic
! be the thermo ermodyna
0 I\:*(::I)i:'(ff, ?t?})w solvent. The th

e is, then:
the Ny moles of the vapor phas / , )
’ Byap = Nowo (T, P); tal system is:
vap a
. he to
; tial of t
poten
and the thermodynamic

— Toy + pi1.

ial of one -mOI(;

1

) =i N 1‘:91(T’ P . ) (

=9, 4 9 » = NoeoT, P + Nowo(T, P)- ¢

8O, va i a

inimum

be a mi refore

e dition 1s We m isobaric

The ¢quilibrium conand Preséurei isotherma'l,ansferred

Constant temperature infinitesimal, Ivent are tr f such a

ave dd — 0 for {RI: moles of tl?e Soa,s a result Oamounts
t1‘amsform:adtion- =0 1—?0 the solution vary by the.

fom the vapor Pha:eis if No and A&fe must have:
transformatlon (tha - t’ively)’ then

Oand "—dNO ] resp 3‘1’ = 0;

i 0P _ dNugj{r'[’,

d® = dNo 37

183)

3 op _ 0P
= —e
5‘1“\]—; - aNu
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Replacing 1 .
explicit, expfes‘bslifn derivatives in this equation by thel
S as calculated from (183), we obtain:

eo(T, p) — i ;
oL, p) — RT N; = oo(T, p),

or
T, p) — oo(T, p) = rT V2, (18
This Cquation ND
Perature anq thPresses the relationship between the telg
€ Vapor pressure of our solution

Let Po be the

solvent gt the t Pressure of the saturated vapor of the puré

. emnperafiy, =
blon (184) if we D?I ature 7', 7' and po will satisfy equd

SDU(T, Po) _ qa(;(T, Pn) = B, (185)

When
1 m()].es of s y .
Pressure p of {1, va;s:ug:ciﬁ dissolved in the solvent, 1
>comes ;

Where Ap i P=po+ ap,
, S a
side of (1 4), inSIr)r; alyl Quantity. Expanding the left—hﬂnd
we find that - Wers of Ap up to terms of the first orders
RT Vi _
N, = #T, Do) — @G(T, ) + Ap {E?:pg(T, Po) M}
Ap 4 9eu(T o o
= (1] !
_ b {“‘g‘p’f—’") — (T, po) (186)
Since o is th Po ’
sol € thermqq :
¥namic potential of one mole of Pur®

ve

nt, we obtain from (123)
a‘Pﬂ(T; 770)
1o

—— 3)0,

Where Vol
0 IS the
Volum
€ of one mole of solvent ;and, similarly;

r
%™, po) _
o i
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where v; is the volume of one mole of vapor of the pure |
solvent. Substituting these expressions in (186), we have: f
RT N (187)

A l

ne mole of vapor is larger than |

the volume, v, of one mole of liquid solvent, Ap is negative;

this means that the pressure of the vapor of the so.lu'tion is
If v, is negligible as ’\

lower than that of the pure solvent. e n the
compar. ’ : med to be the case
pared to v,, which we assu (187) becomes

derivati ion (182), equation
on of equation (182) ¢n means that the vapor

identical with (182). (The minus si ‘
Pressure of the solution is lower than that of the pure

solvent.) o
We have deduced the expression for tl.le decrea_s;, ufl ﬂ:
vapor pressure from equation (184). With the aid of the

logous to the one just

same equation and by a method analog il j
used, we can also calculate the change In the boiling point

of a solution. -
. : ual to one & 0
the pressure p of its vapor 1s €d tand T = To+ AT

T be the boiling point of the pure sol_ven
the boiling point of the solution- Since the vapor pressure

ili int i to the atmospheric pressure, p,
at the boiling point 18 equal Oure ok o |

; ess ‘
it follows that the vapor pr Since N, = 0 for the pure }

temperature T is equal to P- ;
solvent, we find, with the aid of (184), that:

@o(Tn, P) - tpé(Tu, p) = 0.
ion, we obtain:

Applying (184) to the solut
= RT Iil
ool To + AT, )

N !
Since the volume, vy, of 0

(188)

= f,ﬁtln(Tﬂ 2 AT’ P) No

d side of the preceding equation

i 11 terms above the first, we
in powers of AT, and dropplR . : T
obtr;in, with the aid of (188), the following eq;atlon.

alP’(Tﬂy p) - V1

ar {feTp) 2L b= R

Developing the left-han
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From (124) we have:

aﬂgD(Tn_.p) '
—on o D)
aT, g0,

where ¢y and o,
oo ATl P
o are the entropies of one mole of solvent in the

liquid and va
_vapor phases, re :
two equations, we now ’Obtilzi(’.t“’ﬂy . From the preceding

AT{qt — N
{gﬂ 0‘0} = RZ 0 '——? 1_ (189)
Let A be the he '

at of Eove oo
If we permit Vaporization of one mole of solvent.

one mol -
¢ of the solvent to vaporize at the boil-

ing point, T
iy o, the amount of heat absorbed is A, and i
e change in entropy. Hence B

!
60_'0'[)":&_
0

AT = EAﬁ N,
L T (190)
This is the €xpression for

boiling point of
the solutj

pure solvent. Si 10D and th :
B 5 e Gk oiling 28 Poizt of the
from the equation Ehat of the pure Solg pomt of the solu-
proportional to thn hat the changge in ;\;]ent. We see also
As an example e“I,n Olicular 00n0entratioe boiling point is
normal solution of si);leau zpply the abozeoi the solution.
solution, we have: substance in yate, Cll;ttmn to a
* Yor such a

1000

N, = 1; N 5=
1 o A= 54:0
8 X lsca‘loriES'

R = 1.986 calories; Ty = 373 1ok

= EW
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lE)We can express both R and A in calories in equation (190)
ilfcmlse their ratio is obviously dimensionless.) Substitut-
g these values in equation (190), we find that:

AT = 0.51 degrees.

The same formula (190) can also be used to caleulate the
The only

Bl.xange in the freezing point of a solution.

dlffel‘ence is that, instead of having a vapor phase, we have a
solid phase. A in that case represents the heat absorbed
by one mole of the solvent in passing isothermally from

the liquid to the solid state at the freezing point. This
where A’ is the heat of

heaft is negative and equal to —A, 1
fusion of one mole of the solvent. Tor the case of freezing,

(190) becomes, therefore,
RTy N (191)

AT = = 37 Ny
¢ the freezing point of a
nt; the decrease

tration of the

ee tha
f the pure solve
Jar concen

From this equation we §
Solution is lower than that o
15 proportional to the molecu
solution. A

In the case of & normal solution 11 wate

r, for which

_1_(,)_{19' A’ = 80 ¥ 18 calorieS;
Ni=1; No= 38"
R — 1.986 calories; T, = 273.1%
we find that: -
AT = _1.85 degrees.

¢ in all these formulae N, rep-

It should be Il1 - amber of moles of substance present in
resents the actu® electrolytic solutions, therefore, each ion
the solution. 01;1 9 independent molecule. Thus, for
dered 2 1 ctrolytes (having a high degree of

must be conside o
the case of very Sis obtained by multiplying the number of

oticed tha

dissociation); the number of ions into which a single
moles of SffJ :he solute dissociates when in solution.
molecule 0%

)y
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Problems

1. Calculate the osmotic pressure and the \Cariation in ﬂ;‘?
boiling and freezing points of a solution containing 30 grams
NaCl per liter of water,

2. A solution of sugar (CsHiOg) in water and a solution of
NaCl in water have the same volume and the same osmpt-lc
pressure.  Find the ratio of the weights of sugar and of sodium
chloride.

3. Discuss with the aid of the

phase rule the equilibrium of &
solution and the

vapor of the solvent,

ation of a saturated solution (the ratio of t%‘z
© to the number of moles of th

: ‘mperature. Express the logarith-
mic derivative of this funetion In terms of the temperature an
the heat of solution. (Assume that the laws of dilute solutions
can be applied also tq the saturateq solution. The formula can
be obtained by applying a methoq analogous to that used for
deriving Clapeyron’s equation,)

4. The concentr
number of moleg of the solut
solvent) is a function of the t,

CHAPTER VIII

The Entropy Constant

the
t theorem. Wehave already seen that
30. The Nerns A

v 68):
definition of the entropy given by{ EiQ)
S(4) = ﬁ ik

. . incomplete
] initial state, 13 1 state
: itrarily chosen Iniux the initial stats
e 1Y {Lﬁ?;ariness in the ?howe oiant in the defini-
because the ar ld termined additlve.coniﬁfferences of the
Introduces an un Se we deal only with quence. We have
. a . e y -
tion. As l_ong ompleteness is of 10 COIrlisse (for example, in
entropy, this mch wever, that cases arks VI) for which the
alre:?.dy f(-,und: e(;us equilibria, Chapteimportant- In 1;h.1s
el vty gai is constant becf)mes a principle that e
knowledge o}f1 Tllintl.oduce and discuss
chapter we sha

o tant appearing in
determine the addlfll‘\lfl‘? c;?:nsiple’ which was
enable us to de 18

Oy rd law of
the definition of the e eferred to as the ther

t, is often T
) ered by Nernst, o of'e theorent. pse.
?hljrc;‘;dynamics or as Nernsts riginally stated by Ner

5 ich it was 0 stems, but it has
In the form 1n F:&linly to condensedaszous sy’stems also.
this theorem app;tended to apply ﬁg‘fing form:
%i‘lrlce ther;azze&fs theorem in the fo
emay s

ys be
tem at absolute zero can alway
every SYs

The entropy of
taken equal to z€ro-

Since we have deﬁn:
any two states of a sy

between
ifferences of entropy -
d Onlflilzebi)ve statement of NtErI:;St ﬁ
be interpret’ed Physicilge?: tIlill'e T = 0 have
theorem must system ab g iously convenient to
possible states of & t is therefore o:)Vl LD & 0 ns the
the same eﬂtropgé states of the system
choose one of t 139
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standard stg ;
to set the er?::oo ntroduced in section 12; this will permit us
The entropy 1;3; of the standard state equal to zero.
including the dd-a.n y state A4 of the system is now defined,
additive constant, by the integral:

where the int : -
from any stati,g;iljlf taken along a reversible transformation
In this book we h= 0 (lower limit) to the state 4.
tulate; a few Wordgi ol Zealinde Nernst’s theorem as a pos-
will serve to demon';g;izrr-ltmg llts theoretical basis, however,
‘ 1ts plausibility.

We have se
en th .
at a thermodynamical state of a system i

where 7 is ¢ og m,
alled th
speaking, = is no € Pprobabilit .
’ t . y of th ]
Eﬁe i ewl dylf;]riﬁrrc;babﬂity of the staiesfjs is ascz;l;gg
. ermodynamica] al states that co ’ :
rise to a serious d?ffgte. This seems ;’e;pond‘to the gl ‘feg
state corresponds ¢ culty, since g give el sl 2o glvl
© A0 Infinite nympep ’(I)lf ghermo.dy?aﬁca
ynamical states:

This difficulty i

Y 18 avoided ;

the following devi:;-ldEdm classicg] Statistical hanics bY
; al mechanics

The dynami
ical states
i f
whi,lre T is the number of ze 2 system form 4 .
;&Cd. St&t? can therefore bgrees of freedom OFthm arrayt
8_5; t el;x:ens;onal Space, which i; ecal‘l cint in &
state .hownsfead of an exact, represee - the
preci.:s,e i‘-er’ -Whmh could be gi?rt he dynamical
the St;;ce)m 115(1)11; ‘I;;I?swp_hase space ofe?he Y designating the
. ? n ; i :
introduced : & approximage Iizg.t representing
: es £ o
GI'II‘heuPlr;as?1 §1.;}a.;e Is divided into g y i i
cells all of which have the same h er
VST °f very small

-Vol
U.Ine T the State iS
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g the cell to which the point

then characterized by specifyin
Thus, states whose rep-

representing the state belongs.
resentative points all lie in the same cell are not considered

as being different. This representation of the state of a
system would evidently become exact if the cells were made
infinitesimal.

The cell representation of th
introduces a discontinuity in
system which enables us to cal
combinatory analysis, and, hence,

Boltzmann relation, to give & statistic
entropy. It should be noticed, however, that the value of =,

and therefore the value of the entropy also, depends on the
arbitrarily chosen size of the cells; indeed, one finds that, if
the volume of the cells is made vanishingly small, both =
and S become infinite. It can be shown, however, that if
we change 7, 7 18 altered by & factor. But from the B91tz-
mann relation, S = ¥ log m, it foﬂows_that fn 311‘1determmed
factor in 7 gives rise to an undetermmgl a,dd3t1ve constant
in . We see from th g considerations that the

classical statistical mec d to a determina-

tion of the entropy const ; .
The arbitrariness associated with and therefore with

i i icture can be removed by
the entropy also, 11 the classical p1c
making uﬁz of tl;e principles of the quantum t.heory_ The
reason for this is thab the quantum theory introduces a

i P te maturally into the definition of the
e qu;f a system (the discrete quantum states)

¢ the arbitrary division of the
o cells. shown that this discon-

i i istical purposes, to the division

tinuity i valent, for statisuios ’

olfn}(,l}llty 1; :;1:15 pace into cells having & hyper-volume equal
ep .. Planck’s constant (b = 6.55 X 1027 em.2

mber of degrees of freedom of the

ithout entering into th
may note here, w1 . g into the
system. We 1 y :de the scope of this book, that in a

outsl :
pased consistently on the quantum theory

e dynamical states of a system
the concept of the state of a
culate = by the methods of
with the aid of the
al definition of the

e foregoin
hanics cannot lea

ant.

without having
phase space int

statistical theory

y S
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all indetermj i
¢lerminacy in the definition of 7, and therefore in the

dei:;t;(r);liof the entropy also, disappears.

e conlgsp:z)c;l dt;h: Boltzma}nn relation, the value of 7

preted, thereforel IC{TS =’0 Toorecs i it 10 18

thermodynamscal ,.g ¢ ernst’s theorem . states that to the

responds only onz ade of a system at absolute zero there c‘or‘

s of Ty ynamical .state, namely, the dynamzcﬂl
nergy compatible with the gien crystallin®

struct
ure or state of aggregation of the system

The only ¢
: Y circumstar .
might be in errop ances under which Nernst’s theorem

dynamical states ofﬂlre those for which there exist many
the number of g hOWest energy. But even in this ¢asé
deviations from tho L iates must be enormously large' }
though it is net, ththe theorem are {5 pe appreciable.
, 1t seemsezji?ctlcall}r impossible to conceive of such

emely unlikely that such systems

actually exist
In nature,
Nernst’s theorem ig gene?allyev;ri?g therefore assume that
1d.

We shall
now
ernst’s theorem develop

Al-

S0
me of the consequences Of

zero t y ture ;
0 acertain valye .y hCTeAses from the absolute

(at constant Let ¢ i i
it tho Tt Dressure) oy gy () POits thermal capacity
mperature changeg b, o CPerature s 7, Them

absorb an ¥ an :

el aartnotl:lx;t Ef heat q¢) _ g‘(“;)tgg dT, the body will

equation (192)) by:emperature il M the.refrgle eptrop%’ (‘:{f
€ given (S

B f ey
o T dT.
We can obtain the first ¢o
from equation (193):
capacity, C(0), at abso

(193)

of N
l::e 05t that iernst,S theorem
Z€ro were differe the thermal
ny,

1 Of the order of ¢", where & is the numbey of ing] from Zero,
3 €culeg i
Sin ¢

he System.,
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the integral (193) would diverge at the lower limit. We

must therefore have:
c() = 0. (194)

This result is in agreement with the experiments on the

specific heats of solids. S
We shall limit ourselves here, for the sake of snnpl?mty,
to the consideration of solid chemical elements, and pel .form
the calculations for one gram ator of the eleme‘;nt.- Fsillzcrﬁ
22 is a graphical representation of the general way 11; \re i
the atomic heats of solids depend on the i1“;1(3111per5h;L;lt 2
found empirically. One can s€€ from the gureAt i
atomic heat actually vanishes at a.bfsol.uFe zexy‘o}. Whicz}al -
temperatures, C(7) approaches_ a limiting value
very nearly the same for all solid @
elements and which lies Very i
close to the value 3. Slnce
this limiting value 1S practically
attained at room tempgraisur;z, s
this result is an expressio
the well-known law of Dulongg1 »
and Petit, which can be state ey

as follows:

tomac
. om temperature have the same a
gk v elemeﬂti?tﬁg?ﬁ (that s, the product: spectfic heat X
a

heat, which 73 8q£he same for all solids and is equal to 3R.).

atomic weight ist )
rmula for the specific heats of solid ele-

very good agreement with experiment,
he basis of the quantum theory.
be written in the form:

A theoretical f_O
hich is 11
od by Debye on t
ession can

ments, W
was deriv
The Debye ¢*PT

o(T) = 3RD(§>, (105)

isa characteristic constant of the substance, which
diménsions of a temperature; it is called the Debye
D represents the following function:

where ©
has the

temperaiTe:

a

B R e
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3

1
~qop [T (196)
D(§) = 12¢ l

ee—1 eVt —1°

of &
Since D(%) approaches the limit 1 for large values )

. . hich tem-
it follows from (195) that the atomic heat for hig

. law of
Deratures tends to the limit 3R, as required by the la
Dulongang Petit,

For small valyes
the integral in (19
second term in th
an infinitesimal of
of £. For £—0,

smit of
of £ we may replace the upper lmﬁahe
6) by infinity, and we may neglecomes
at expression because that term be(’:al es
a very high order for infinitesimal v
we therefore obtain :

o 3 4.‘“,“ 3 (197)
D(E) ) 1003 z'dx = T 43
) 12&£ e Rl

From thig aSymptotic expre
followin

& expression for the at
temperatures

in the
ssion for D(§), we_ob.taﬂfl i
omic heat in the limit 0

Using the Debye formuly, e ¢an calculate the entropy
om of gy

of a gram at our substance 1, bstituting (195) i
(193). On doing this, e find thaty Substitutihg

- TC(T) il L T dr 5
Replacing D(#) in

lact (199) by itg explicit,
find that?:

expression, W€

2 The following integral formulae are used

L =
@ dt i t 2Bqr A el
—=12 £ds =i )
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9
T3 g ;gadg‘; e Iog (1 —e T)}
S =3k 4@ =1 B
3R10gT+4R——3Rloge+ ces,

alid for T > 6, that is, in the

i nd
ibeve: Ghg last FOHILG 2 thich the law of Dulong a

range of temperatures for

w discuss
Petit holds. id of Nernst’s theorem, we shall no
With the ai

i to
id from one crystalline form i
the transformation of alesi}f s{mll consider thte t;insiﬂ‘:l:t
pnother. AS exf}?;l; ti,n. Grey tin is the i iah ceiton
jEm i ey O (li white tin 1s Stabl": ot uagi- to 19°C or
low tem,;I)\;raiu;iii;I;n temperature, T,, iseq
tures. e 1ir e
292°K. . .1 from one of these i
Lhe transformatloilé Zi:ll(?gous L ARy :f:‘iljlegfmimt of
forms fo the of}hel‘ Thus, for exam-ple, o the grey to the
mmeliing pfs 8210 the tin in passing from Q, is equal to
heat is absorbeTt‘ihzasyheat of transformation, @,
white form.

e erature.
transition temp tion
: -atom at the the transiti
935 calories per gr%mi: the stable formb}?likf):l"m down to the
Although grey 1miin can exist in a 1ab1 ossible to measure
temperature, W}iltees It is therefore p
lowest, temperatures.

ray from
ite tin all the way

ific heats of both grey and white t1

the specific

ition temperaturt.e.
ratures to the transiﬁt:zlual;the atomic
the lowest tempe forms are no

; e two .
The atomic heats of th in the double integral, and intro-
n in

: tio ve obtain:
p r of integra integral, v
4, terghiauging thisi;iaeble in the second in .
ducing 1/£ as a new

z * dz
1 @ m_z_aj_i[ Egde_Bj: ef—1
” dt Iy zﬂda:f g2de +12 L =1 =
= =12 1 i —

1
' s = Adz _ log (1 —e m)-
= 4w

z — 1
(4
0

ymptotic expression:

. owing as
large values of w, we obtain the foll
For

o« g 4 P
/D(&)?=3+]°g“’

0
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hea,t. of e * "
white tiig tﬁ?s:fnz {il;‘fn temperature is less than that of
The transf " perature.
at temper;tsgagoln from white to grey tin is nonreversible
the grey form is stebolw the transition temperature (since
spontaneous tra fa . b_elow the transition temperature, 2
to the grey forlrf ormation can occur only from the white
ever, the transfor . .At the transition temperature, how-
If Sy(To) and IS’n %;11011 between the two forms is reversible-
temperature of 0121 o) are the entropies at the transition
respectively, then z glr am-atom of grey and white tin,
mal transformat;j » APplying (69) to the reversible, isother-
1on from grey to white tin, we obtai,n :

SuTo) — 8y(Ty) = f e dQ _ Q (201)
If we indicate the atomi = W L
AT and & mic heats of gr ite ti
ST, with the 4o eCtively, we oo ixﬁgsf?t(?’t)m =
of equation (193), as fOIIOWS‘1 0

5 [ Sem
0 ;

- T So(Ty) = CQ;T) dT. (202)

0

thus i
obtain fropy, (201) the equatio
n:

Q =T T C T
{ G op [T ey
T dT}, (203)

process in terms of t, U of transformat;

: e : rmat

atomic heats of the twq ;Orms : ion, @, of the
of tin,

In order to test the valig:

results of th ical i
e numerical int Numerically. The

€grations gyq.

y =12 el

To CI(T) degreeS ;
L TdT = 10.53 H—EEI‘—-—
€8reeg

Since Ty = 292, we obtain from (203)
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Q = 292 (12.30 — 10.53) = 517 cal.

s value and the experi-
an be taken as strong
heorem. The small
be accounted for by

mThe good agreement between thi

e‘;gtal value, Q@ = 535 calories, ¢

difs ence in support of Nernst’s t

oy erence between the two values can
€ experimental errors.

,32. The entropy constant of gases: In fsection 14 we
calculated the entropy of one mole of an ideal gas (see
€quation (86)) and found that:

S = C,log T+ RlogV + &
The undetermined additive constant @ which appears in this
€Xpression is called the entropy constant of thE_ gas.

If we could apply Nernst’s theorem directly to the
iormula (86) for the entropy; we could b Ep S tdete;fﬁleag
ro ilh entropy must vanis

m the condition that the s At hE

s this, however,
0. If we attempt t0 d%t-han J side of (86) becomes

term ri
illﬁnitg Vailodg ‘3; zrlgt;i;f an infinite value for the entropy
)
failure of Nernst’s theorem

Constant. "
The rea this appare? z
for idiifZic;Esf?; thzt wI; assumed, 88 %?e of the sz)ptzl"tles
o el Esen A et AL sy i
Fiseors i dg ’hown the beginning of t, e preceding

e already 8! .5 incom atible with Nernst's t'heorem.
=etion) Hhat i is difficulty could be sought in the fact
& 5 even approximately like an

o
One way out  aa pehave
.+ 1 orhood of absolute zero: all gases

that no real sub
nelg ;
7 emperatures. It is therefore

ideal gas in the %" %10 Jow ¢
condense for suficl®t 2 ly (86) i
ormissible to apply (86) to a gas in the

physically not pr )
neighborhood ¢ 4 from this consideration, it follows from

But quite ca’p pics that, even fqr.an ideal gas (defined as a
quantum €7 1og have 2 negligible size and do not exert

le :
gas whose ﬂ;"h other), the specific heat at very low tem-

forces o gecreases
es
peratur

in such a way as to vanish in the neigh-
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borhood of 7' — 0, Thus, even for an ideal gas as d?ﬁnfﬁ
above, (86) can be applied only if the temperature 18 It
too low. . rard

By statistical methods and also by a Stmlghtfmwlate
application of Nernst’s theorem, it is possible to calcu ;w
the entropy of an ideal gas for all temperatures. In 5
limit of high temperatures, the entropy takes the fc.)rm (8 b
with the constant a, instead of being undetermined, e).r
pressed as a function of the molecular weight and the othe
molecular constants of the gas.

: : : - which
The simplest case is that of a monatomic gas, for whi
e entropy of one mole is given by:

S = Rj';log T +log V + log (2’”1'}{—34‘"-"— ;
atomic weight; £ is Planck’s constant
= C. G. S. units); 4 is Avogadro’s number
®); and w is a smal] Integer that is called ﬁh‘;
statistical weight of the ground state of the atom. The value 0
 for different atoms is obtained from the quantum theory;
we shall give the valye of @ for all the examples considered
here. ¢ is the base of

th

(204)

where M is the
(=655 x 10

st obtained by Tetrode and Sackur-
In order to show that (204) can be put in the form (86), we
must take (34) into aceo On doing this, we obtain
for the entropy constant of one mole of g monatomic gas
the expression:
3 5
2 z T
a = Rlog (_L%’{fjl)‘. e

3
= R(-—5.65 + 5log M 4 10g w)_

We can also write the entropy of an
form corresponding to (87):

(205)

ideal Monatomic gas in a

3 5 5
5 (2rM)2Re, %
S = R{_z.logT—logp+10g i_hg‘zrfi} (208)
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in thi k; we
ulae in this bqo ;
We cannot give a proof of these form ples showing the

exam
shall therefore limit ourselves to some first example, we shall
applications of these formulae. -AS &he vapor pressure for a
cgr?sider the problem of calculatng b
m_
solid monatomic substance. ¢ the substance at the te
Let p be the vapor pressure © ¢ (and the pressure)
et p ; Keeping the temperatur oy increas-
perature 7. orize one mole of _the S}?ls arocess, the body
f:onst;mt, xlve vagery dowly. During t
Ing the volume

1
f heat, A: equa
: n amount 0 S
absorbs from the enwronlnentranole’ not per gram). Sin

qzation (pe bstance occurs
to the heat.of w:'apoufzil‘;l;l)e one mole c?f Srhe S
the Vap01‘1ZE}:L]t10nha(; ze in entropy during
reversibly, the ¢
tion is: o
T tropy of
the en

.on (200) for o aton,
. : e expressio ' ntropy of
Using the app;oxﬁﬁula (206) for the €
the solid and the
we obtain:

SvnpDr

5 5
ri) Eert _ 3R log T

A !
R{glogT-—logP'['"log ; __4R+3Rlog9—-T,

a i
b

A
i S (207)
—’-‘—'—'_—i

—e
-7
pared with (98), Wilj%v?i

] The factor
. ul ’s equation. the de-

T}fls fogl;m Clapeym};lavmg taken into acciunt iy
obtained s from Outr of vaporization on theh. e}infemained
208 Emso he he& r of proportionality, w md —H
pendence " efactohas now been completely dete e
We see tl?a'e in (98)(’)f Nernst)s theorem and trhe S&C ur

rhe Us€

3 t of a gas.
in (207) bifmul o for the entropy

p—

PITT el

o should P¢ g
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Since in many cases we have to deal with the vaporization
of a liquid and not of 5, solid, (207) cannot be used in general.
As an example of the vaporization of a liquid, we shall
consider the vaporization of one mole of mercury, because
this element hag 2 monatomic vapor. ,

The boiling point of mercury is 630°K. This means tha}t
the vapor pressure of saturated mercury vapor at 630°K is
equal to one atmosphere,

We shall now calculate the entropy of one mole of mercury
at ' = 630°K and P = 1 atmosphere by two different
methods and compare the two results.

Method 1. The Sackur-Tetrode formula (206) applied to
our case (the atomic weight of mercury is 200.6) gives:

S =191 x 107,

Method 2. We start with one mole of solid mercury at
absolute zero. Tig entropy, according to Nernst’s theorem,
18 zero. We then heat the one mole of mereury, keeping

© one atmosphere, unti] jts temperature
ha.:<3 reached the melting point, Tociing = 234.2°K. During
this process the entropy of the Inercury increases; its value
for T = 234.2°K can he caleulated with the aid of (193):

23,
Seonia (243.2) = f " c) d
0 T -

Seo1ia(243.2) = 59.9 x 107,

We now let the mole of mercury mel, at atmospheric
pressure. During this process, the body absorbg reversibly
an amount of heat equal to the heat of fusion fqy one mole of
mercury (2330 X 107 ergs/mole). The change 3, entropy
resulting from this is therefore obtaineq by <; >

i 5 . IV]dm the
heat of fusion by the melting point; that is, the Changge %
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entropy is equal to 2330 X 107/243.? = 9.? X 107, The
total entropy of the mole of mercury is now:

7
Shiquia(243.2) = 59.9 X 107 4 9.9 X 107 = 69.8 X 10"

Next we heat the liquid mercury a.nd rair§e its %ml?erail}ﬁ:
from the melting point to the boiling pou;i.' uring
process, the entropy changes by the amg;;io éT)

°) = BT,
Sliquid (6300) - Sliquid (243-2 ) o '[-;3-2 T

. Usin
where C,(7T)) is the atomic heat at constant g e:frgzateUthig
the experimental values of Ci(T), ‘;’g 28 x 107. Adding
Integral numerically. Its value Is 1" uid mercury at the
this to the value of the entropy of the liq

melting point, we find that: 26.2 X 107 = 96.0 X 107.
0" + 26. Taia
Shiauia(630°) = 69.8 X 1 ] .
tauia(630°) it the mole of liquid mercury to vaporize
We finally permi As a result of this, the mercury

at atmospheric pressure. 630° absorbs an amount of heat

3k tihe temperatie =I:.orization of one mole of mercury

t of va i t is

(30300 x 10" exgo/mol). Tho change in_ entropy i

th : fore equal to 59,300 X : /16 m;Ie of mercu,ry vapor

fi eli? Oth qn for the entropy of the
nally obtai

at the boiling temperature: " = 190 X 107,
S =

ement with the value found directly
This is in excellent agrge Sl
from the SackurTTetrz have just obtained may be taken as
The result which “; of the expression for the entropy of a
an experimental pg?;ﬂar calculations have been performfad
monatomic gssc sfBot, and in these cases also very satis-
for argon and © found.
factor§ agreement W2 ——
. nization of a gas: the thermm{nc effect.
33. Thermal {o established the law of mass action (equa-
In Chapter V “‘Zmical equilibria in gaseous systems.- The
tion (139)) fc;g;ent (the factor which does not contain the

constant coé
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. n-
temperature) on the left-hand side of equation (139_) cf?he
tains the entropy constants of gases that take part I

: les
reaction. The knowledge of the entropy constants enab

us, therefore, to caleulate this coefficient completely-
Since we gave the e

Xpression for the entropy constant Oéi
gas only for monatomic gases, we must choose, as all -
ample, a reaction in which only monatomic gases take Pa%
It is evident, that n

in
0 reaction of this kind can be found

chemistry, We shall therefore consider the following
nonchemica] process,

a gas, such, for exam

en ple, as an alkali vapol‘;mlz
heated to g very high temperature, some of its ato

become ionized : hgy 1, they lose one of their electrons, a’E

are thus changeq intq lons. Tf, for example, we denote g
Na, Na*, and ¢ sodium atoms, sodium ions, and electron®
respectively, the Process may he represented by the reactiol:

Na = Na+ -+ e. (208)

| g0Uus to the che
chemical reactiong,

s sodium vapor gy very high temperatures, we actually
have g mixture of three different, gases:
) Na, h&Ving & concentration [Na]; sodium
& 2 concentratjon [Nat]; and an electron
£as .(a, £gas Composed of free 9190t~1'0ns) ha.vmg a concen-
tration [e]. ;

mical equilibrium for ordinary

these three Substances behaves like a monatomic
ay theref

, ore apply the general results, in Pﬂl'tif"
}11&1'; €quation (139) of the theory of chemical equilibria
1N gaseous systems tq the ionization process (208).

Since all the gases in the mixture are monatomic, we must

use the first of the €Xpressiong (34) for the molecular heats
of the gases. The entr

. . OPY constants can be found with the
aid of equation (205 » and the statistical weights « are
equal to 2, 1, and 2

for neutra) sodium, sodium ions, and
electrons, respectively, we place M = 23, the atomic

Each of
gas; we m
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weight of sodium, and neglect the very Sm&ﬁrslg?:ngg
between the masses of sodium atoms and i veight of ,the
that we may also place M equ.a,l to the -a,toimtfG .xonsg G is
sodium ions. The atomic “"elght it ?ec fI the mass of
the mass of the eleetrons divided by e Od note by W
oxygen) is M, = tgss. Let us ﬁnallzd deto ionize all
(= 4.91 X 10~ ergs/mole) t'h(.} ke \{;Ve have, then,
the atoms in one mole of sodium vapor. !

i rans H’ntoms = W-
ZmWi = 2 Wi = Wions +Wetee

N . . 1 139 ]

Making all the necessary substitutions ml qulizg?li’t()rim)n

we finally obtain, as the conditiop for thellfn z;he following
in the thermal ionization of sodium vapor,

equation: i

[Na] WA i T%e’*—T.
NaFTlel o . p)?

: m as
) e convenient for
) 0 a more co .

This formula can be put into ¢ ion, that is, the

ionizati
follows: Let z be the degree Og.lomza
fraction of atoms that are ionized:

[Na*] 5

xr = [ﬁ‘;]—_l:'['mﬂ’

and let n = [Na] + [Nat] be tilhev Zo’ﬁllecrtl(?
sodium (atoms -+ ions). We have,

ncentration of the

[Nat] = na; [Na] = n(l — z).

h sodium
. ent for eac

Since there is obviously one electron pres

lon, we have:

[e] = [Na*] = nt,
and we finally obtain:
e}
1;2 (Qﬂ'ﬂftf?}f T% e RT
= —a
" eT R4 s -
’ 39 x10°7T710 7.

re la;.
5
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Equation (2 :
(209), which was first derived by M. N. Saha,

has found
severa] 1
stellar a‘tmOSphere;rnporta‘nt applications in the physics ©

As a further g

li .
we shall obtain tpp cation of the Sackur-Tetrode formula,

e he e :
8as which is in equili};c Pression for the density of an electro®
aﬁmetal s heated to arlum with a hot'metal surface. When
off a cont; Sui?mfnﬂy high temperature, it g1veS
electrons. If we h block of
- ] a cavi we heat a blo¢
reetal will fill the ca:} ty, the electrons coming from the
ua_che.d, when g5 ma 1ty until a state of equilibrium is
0;11“" ltllne by the me?}; electrons will be reabsorbed P
e 0(31 ate the equi 'br'& a8 are emitted. We propose L
SIl,ei g}\;esaﬁty asafLunn:t.concentration of the electron®
: e the 1on of the tem
¢ num perature.
obgg of volume V. b%;“hof moles of electrons inside the
ed from (204) b € entropy of these electrons is
in it 3{) multiplying that expression by
(34) One mole Y V/N, since V/N is the volum®
and (29) of the el :
, We ectron gas. Making use ©

Where Wi-sth s N’(% RT -+ W):
fr €ener

expression : HETEY of the ¥
lectron gas, we now obtain the

$log T + log V.
N

3 5]
iy (2rM.R)® 2¢°
electrfozfse hEWe put M ) 1 h:’:‘i-‘i—_—jt

T :1:1 wfor the’el;ctl;? = the atomic weight of the
ner ik

t i By
he previous expressio?l Our complete system is th f
and the free energy I, of tli3 e (;
o e metal:

+ log

"
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F=Fy +N|:%RT+ W — RT{%logT-i- logV —log N

3 5]
2(2rM.R)® ¢*
4 1o 2R A,) ‘ f] (210)

be a minimum for a

The condition for equilibrium is that
uming that Fy is

given temperature and volume. Ass
independent? of N, we thus obtain:

dr

0= _

gRT+W—RT[glogT+logV—logN
MR &
2r M,
-]—1082( TrhaA,‘) e}+RT’

Passing from logarithms to numbers, we obtain the equation:

3 -
N 2@aM.R) e ik
7 = WT o BT =789 X107 T ¢ =T (211)
which gives, as required, the concentration of the electron

gas within the cavity.

Problems

ociation of sodium vapor at a
ressure of 1 cm. of mercury.
e due to the sodium atoms,

d the electrons.)

1. Calculate the degree of diss
temperature of 4,000° K and 2 P
(Take into account not only the pressur
but also the contribution of the ions an

2. Find the relation between the Debye temperature © and
the temperature for which the atomic heat of a solid element 15

equal to 3R/2. (Apply graphical or numerical methods.)
the electrons inside &

fic heat of the metal; the specific heat is
tion of the atoms. For a rigorous
he theory of metals.

3 The experimental basis for this assumption is that
metal do not contribute to the speci
completely accounted for by the mo :
gee any treatise on t

justification of this assumption,
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q system can

Monatomic vapor, 148
entropy constant, 148, 149

vapor pressure, 149
N

Natural processes, direction of, 56,
]
Nernst’s theorem, 139
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Nonhomogeneous systems, 3
Nonreversible engines and cycles,

7

0
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118, 121

Osmotic pressure, |
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9

122
in relation to the pressure of an
ideal gas, 122
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of a normal solution, 123
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Partial entropy, 107
Partial free energy, 7
Partial pressure, 9

Dalton’s law of, 10 )
Partial thermodynamic potential,
107

Perfect gas, 8
pressure of, 8,
Perpetuum mobile of the second
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Phase, 86
chemica.
rule, 91
space,
Planck’s constant, 141
Point:
critical, 64, 69
of inflection, 64, 69
triple, 93
Probability of & thermodynamic

state, 57, 141
as related to the entropy, 57, 141

Q

Quantum theory:
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in relation to the entropy con-

stant, 141, 142

1 content, 86-88
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Reaction .

endothermal gp
Zaseous, 98
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eversible engines, 32, 35, 36
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statement of, 30
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1 5, 136
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Specific heat, 21
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