N

°®

" ~"SOUND

° A PHYSICAL TEXT BOOK FOR PASS AND:
' HONOURS DEGREE CLASSES

C By
K. BHATTACHARYYA, M. sc.

Hed® of the Department of Physics, Serampore College,

g Second Revised Edition

! HINDUSTAN PUBLISHING CONCERN,
PUBLISHERS & BOOK-SELLERS

- 167/4, BIDHAN SARANI, CALCUTLA-6

e A e ™ ; oA 10



Published by :

@
J. Ganguly, B. A. (Hons.) K0 |
Hindustan Publishing Concern ;
167/4, Bidhan Sarani o
‘Calcutta-6 )
g (-]
f . {
@ X > ¥
Copy right reserved by the author
LI 3
]
Price : Rupees Sixteen only (g
- Ol D °=
]
ol ° b= S >
\ ]\'\ 'Z/Srl— “
Jangipur College Library Kne ‘\\‘;“ sttt wl?,’ ‘.{ ® o
i , ne -
| T OO O 0 ~tenaatlt :
14257 = .‘
(]
P ()
% oPrinted by : G
o P. N, Paul. N

‘Lakhsmishree Press
@ [ 4
( 15/1, Iswar Mill Lane
eCalcutta-6
[ kT ; °
1 i

~ *
A 4
7 J
o 0 ; ‘
. g s 2 8 Y,
. ~ 0 y L
e -’ e . . i

.
°




. IN MEMORY OF MY PARENTS

°
>
7Y~ ® Y -
e
b, )
°
®
A
® ‘
o ° @ o
o
e °
5 ® b ad
~ S 1
i o \



A} Ja fw—————-—*
> i L L 3 L
s W 0
e
P °
'] ° ° Q

CONTENTS
| 8
4 ‘CHAPILER PAGE
3y // .
o * ! a¥. Simple Harmonic Motion 2 i
;e ’ 3 .., ?II. Damped Motion T 17 A
% B '§ \IH.‘ Lorced Vibration and Resonance 25
[ i IV. Coupled Vibrations oiss
o : AY. TFourier's Theorem Le 50
% : *VI. Longitudinal Waves in an Elastic Medium e et
v , i .‘%“ y . 5_\7,1'1/. Stationary Waves 76 T8
¥ 1 \YBFI. Transverse Vibration of Strings L v HiR90
¥ y ] 1X., Transverse Vibration of a Bar SO t
3 " | X. Vibration of Membranes and Plates - Jope AL
' Asymmetriec Vibration, Combinational Tones ... 126
¥ ]Seterminat.ion of Velocity of Sound ... . 133
Sound Measurement and Analysis o Atk
3 2 ¥ Vortex Sounds and Maintained Vibration . 155
% s : . Musical Scale, Consonance and Dissonance L Eeh e
Sriye f : . ®* The Acoustics of Buildings SIELT0
C s R L XVII. » Ultrasonies S T
: . Y f. ©  XVIL Technical Applications .o 186
; ‘ 5.t Appendix e hes
o
(] i A °
e ®
o e v e < ® @ H
=] : -
<) ) e e
@ Q
-] - - L4 . ’\..’




)
. + PREFACE TO THE SECOND REVISED EDITION
S o
e In this edition some portions of a few chapters have been

* rewritten, substantial alterations made here and there and
several new topics introduced and discussed- In effecting the
changes, suggestions received from learned teachers of Physics
were kept in mind. It is hoped that the book in the present
form will prove more useful to the students.
3 3 ‘ The author expresses his deep sense®of grgtitude towards his o
h | well-wishers for the encouragement and support received from
~ l them. e
Serampore College. K. Bhattacharyya.

6. 6. 67.

PREFACE TO THE REVISED EDITION

' TIn this edition the chapter on coupled vibration has been
| pactically rewritten with a view to making more clear the
,] fundamental principles involved. In the appendix, a new topic
";‘On acousfjc impedance has been discussed. A few additions and
alterations have been made here and there with the hope that
they will prove to be of advantage.
The author is grateful to Prof. S. N. Sarker, M. A, for the
o P,h'lp he rendereg by going through some proofs and to Prof. o
- 2 INGHD Bhattacharyya, M. sc. for kindly taking the trouble of
. e Che&kiné a fow mathematical calculations. He is specially
indebte® to his colleagues of the department of Physies,
' __Sel'ampore College, for the encouragement and support received 1
":.from them. He also wishes to expfess his deep sense of gratitude
1 i ~*T5 those learned professors who made favourable comments on
the bhook, offe'" . constructive guggestions and recommended it
~ to the students. . 3
Finally, Sri Joydeb Ganguly, B. A. (Hons.), Proprietor, ,
Hindugtan Publishing ancern must be thanked for empediting

o

e S | publication of the revised edition. 7
lSerampore College. K¢ Bhatéacharyya.
| 8. 11.. 65. 5 v A




PREFACE TO THE FIRST EDITION

The bhook is specially prepared keeping in mind the needs of
the students preparing for an *Honours Degree in Physies of
Indian Universities. Attempts have been made to treat the
subject analytically and to clarify those ‘‘easy” things usually
taken for granted by the<students, but seldom clearly understood.

The author feels 1o hesitation to acknowledge that in writing of -

the book most of the available standard text books and freatises
on sound have been freely consulted and made use of.

The author acknowledges with gratitude the kind help and
encouragement received from his colleagues without which the:
conception could not have been possibly realised. He is indebted
in particular to Shri G. D. Bhattacharyya, M. sc., Shri Sukhend=
Dey, M. fc. and Shri T. D. Mazumdar, M. A., all esteemed
colleagues in the Department of Mathematics, Serampore College,
for going through most of the proofs and cheking mathematical
calculations contained there in. He is specially beholden to:

Shri Parimal Kanti Ghose, M. Sc., Department of Applied

Mathematics, University of Caleutta, for llooking through a
portion of the manuseript and offering a number of welcome and
valuable suggestions. Thanks are also undoubtedly due to Shri
Joydeb Ganguly, Proprietor, Hindustan Publishing Concers,
Calcutta, for all he has done to have the bcok published in o
ghort a time. T
The author regrets several errors which could “not be
rectified due to conditions beyond control. An errata list,

Kowever, has been appended for their detection and rectificatior. . ™

The author will be grateful for any constructive suggestibns
towardsethe improvement of the book.

Serampore Co‘l]ege. K. Bhattacharyya.
% 16-. 9. 63. o :



CHAPTER I
SIMPLE HARMONIC MOTION

1. General equations: In the phenomena studied under
"Sound” we have to deal with pesiodic motions. The simplest
of all periodic motions is simple harmduic motion. In this
type of motion a system vibrates about the mean position of
rest and the displacement is a circular function of time.

Suppose a parbicle has mass m and its displacement ab any
instant is « from the initial position of rest. If the force
tending to restore the particle to its initial position of rest is. °
proportional to the displacement and in a direction opposite to
it, we can write as equation of motion

1%z . ; &
. T — sz where s is a constant called “stiffness” constant

whiah is the force required to produce unit displacement of'
the particle from its initial position of rest.

%

Writing SR
m

® (Z{—x'f-n =0 (1)
E . L) e
| "The above is an equation of second order. TLet z=Ae%t he a
3 . soldtion of the equation.
v‘ : dx a’w
aned — =X 4ext, —= =gt *4
: - Then kT de TE 24e ¢
Kr d’l
| Substituting the value of -(—u—f in (1)
Wehave Aext(P4n?)=0,  ° N
® Since e*! cannot be zero for all values of ¢ and 4% not ZQr0 ’
i «% 0’ =0 :

or «=tin ° S
e

. o o ° 3
Hence solution may he ¢ =416*"" or, Z=4,%" W,

‘ |

o o ..




2 SOUND c

Also equation (1) will be satisfied when
w=Ae*"t + B "t (2) o
where 4 and B are two constants to be determined from initial
conditions.
Expression (2) can be written as 2= A(cos nt+7 sin nt)
-+ B(cos nt —1 sm nt) -(A+ B) cos nt+i(4 — B) sin nt
Now 4 and B may be real or complex quantities contalmng
real and imaginary parts. But since z is real we can write

2 =ay cos nt+by sin nt (3)

where a1 and b, are the real parts of the coefficients of cos nt and

. sin nt respectively.
]

Writing 3 =12 cos € by=a sin €
we have # =a cos ¢ cos nt+a sin € sin né

where @ and € are constants given by

i ~ =g cos (nt—¢) (4)

a?=a? cos’etal sin®e=a,*+0,°

and tan €=b—1
Q3

Hence the maximum possible displacement in the positive
dlrectlon is @p=a when nt—¢is 0, 9m, 4z ete. ; the magniude

& of the maximum in the negative direction is also equaPto @
when nt —e¢=mx, 3m, 5 ete. Thus the particle oscillates betsveen
two points whichare ata distance a apart from the mean position ;
the quantity @ is known ag the amplitude of vibration. The
same displacement repeats aftér an interval of time 7' called
time period given by nT = 2.

/- ©r, the tipe period of oscillation
H QT 9-7! J,,b ° ;
=— = 4
S ° 2 /5 n S =2 » °
® m

Thus T‘= om ®/mass of the particle
Restoring force per unit displacement ]




SIMPLE HARMONIC MOTION 3

Since T is the time required for one osecillation, the number

of oscillations per second Nzi_,

L SR o
The meaning of the expression (4) can be made clear when we
" considerthe motion of apoint :
| P moving with a uniform 7
_angular velocity 7 in a
g} cireular path of radius a.
. Suppose the particle des- / l

f : cribing anticlokwise motion B 0 M

{ i ‘is at A, at time t=0;

E AOR is a fixed diameter and

¢ angle A04;=c¢. Let P be A
the position of the point
| at any instant?. Angle

POA, = nt. Hence the
projection OM of OP on AOB is OM=z=04 cos LPOM=

Fig. 1

a cos (nt—e). |
The ILJarbicle ig behind the fixed diameter by angle € at the
‘ ‘ starting position. The angle € gives the phase of the particle ab
the instant of start and is known as the epoch or the
| initial phase. |

2

o

Evalution of constants :
(i) Let us return to (3) 4. ¢., z=a, cos nt+by sin nt and see

< "T‘T"s .

how a, and Dy are determined.

| Sappose the particle is brought to a distanee 2 and then
releaged. Thus Zi is the maximum displacement and if we count

t the particle is released, we have 2=, at

s

time from the instan

3

?1 . time t=0
’; Hence, 21 =0 COS 0_+b1 sin 0
b} =a,
\\l“ Again the velocity at the instant of release must also be zero ;
,‘]\‘ ‘i' " now velociby%&;= — na, sin nt+nby cos nt \
i 9
) I\
/3 W
1 2?
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Hence 0=nb, : e 13
¥
Since 770, b,=0, ’ -~
Thus 2=z, cos nt (5) ’
Again let us suppose that an impulse is given to the particle
at its position of rest so that the velocity of the particle is v ab
time £=0,
Then we have ° . .
[ 3
=0  aftt=0 %
®
dz
;Z—t—v at t=0
«Since, T=ay cos nt+b, sin nt |
° (] "
" () a’l =O t,‘l A
i |
Now ([%= —n2y sin ni+nby cos nt }\ol
. M
I R
i = (e
i T ; (
2 oo V=nb;
o
o= &
7 '
4 - .‘
@  Hence, z=2 sin nt (6) L
7 ° o ~“@®
° Y V
Thus we see that @y and b, in the general solution T8) can be
determined from initjal conditions.
of oo °
(i2) Let us consider the general case when z; and v, are {-,he“'
e displacement and velocity ®f the body at any given instant #,. i
Let the motion of the body be represented by
6 z=a cos nT+Dd sin nT (7)
4 5
counting time T=0 when time t=1¢,. |
° @ e °
v _dx : (8)
oNo g shE } S b
W ar 4 na sin Y +ub cos T 5

°

Ab T=Q i e, A=t z=1,, %-_-’Ul-

SIMPLE HARMONIC MOTION b}
Puﬁbiug T=0, in expressions (7) and (8)

)
zi=a, v1=nb or b=;1

Hencze, substituting in (7), we have,
/lll .
=2, cos nT+—;L sin Y

But at® an instant ¢, T=¢—¢, : hence displecement at an
instant ¢ is

2=x, co3 n(t—t,) % sin n(t - ¢,) )
If in the expression (9), we apply the relevant conditions,

we shall obtain expressions (5) and (6).

2. Energy at any instant: Let us suppose that the
particle has a displacement @ ab any instant. The opposing force
at this displacement is sz. If the displacement is increased by
dx the work done against this force is sz.dz and this is the
increase of*the potential energy for a displacement da. Hence the
total potential energy for a displacement z is

z
[ sz.dr= o : (10)
- ) 0
Kinetic energy at this instant is
3 1 (dz)*®
ém(dt) 4
In an ideal system where there is no loss of energy due fo

friction ete., sum of kinetic and poteuntial energies is coustant
and is equal to the total energy of the system.

From (10), at 2=0, P. B.=0

d hence kinetic energy is maximum. Again at maximum
an : ; p .
displacement which is equal to amplitude of vibration, potential

ispla s X
is maximum whereas kinetic energy is zero.

ener




6 SOUND . (f

Deduction of Equation of motion from Principles of
energy :

Since total energy is constant

d 1 [dz |
dt{—+ i clt)} g |

s dm , 1 dz fl il
-9z, = =0
Sl R
oo |
FTASGPTE iz
Since %2; cannob le zero for all values of ¢ |
d&z + ST = 0 . ,."

and we arrive at the same of simple ~

harmonic motion,

differential equation

From z=a cos (nt —e¢)

2
(@) =n"a® sin® (nt—e).

dt
r
3 o 3 o ‘ o {
< Maximum kinetic energy ' \
1 (dw)” e
=-m = =>mn’a?,
dtlmaz 2 ¢ !
- Maximum potential entrgy | ¢
“cstyd 7,
LS wmnm) o s.a®
9 2’

The average kinetic and potential energies may also be
calculated in the following way

1[()dc

Averige kinetic energy=—""7—"— l \

=

SIMPLE HARMONIC MOTION 7

T
=—mfn a? sin® (nt —e).dt

mn @ jl—cosQ(vt—f) it
e mn @ 1 }T
o b
BT l.t s sin 2 (nt - €) N

_mn 112] ] mn’a
a7 L “8In

[sin 2 (-QTit.T—e)—sin2(—€]

2,2 2 7‘9 2 ’
_mn®a® _mn (-—sm Delin Qe)
® 4 8T'n
__mnZa® £ (11)
4

Thus the averege kinebic energy of the particle is half the
maximum kinetic energy.

2 o
Potential energy, when displacement is z, is =

Hence average potential energy over an oscillation is

T

g s fsx 2

N

o

(0]

=~s——f cos® nt—-&) dat
TO

8 )
sa® [1+cos Ant— e ]dt

2 ) 2
o
sa’ _sa’ (12)
> =2——11—. T/.)J —’—4’

?ﬁch is equal 0 half the maximum potential energy.




|

T

8 SOUND

« 3. Superposition of simple harmonic motions :

(a) Motions along same straight line of same periods
but different phases and amplitudes :

Suppose the two vibrations are given by Z1 =@y €08 (nt - €1)

and z,=0, cos (nt —¢€,).

Hence the resultant vibration is
T=g,+z,=a;+cos (nt — €y )+ aq cos (nt - €s)
=@y cos nt cos ¢; a4 sin nt sin €y
+aq cos nt cos €o+aq sin nf sin €,
=(ay cos ¢2+ag cos €5) cos nt-+(ay sin € +a, sin €g) sin 2l
Let a4 cos €3+ag cos €,=24 cos 6
and @, sin €3+ a4 sin eg=4 sin &
where A and & are new constants such that
A%=(a; cos €;+a, cos €5)2+(ay sin €1+ aq sin eg)?
=a12+ay*+201a5 cos (e1 —€2) :
@y sin €;+a, sin €,
A1 COS €31+ @g COS €g
Hence  2=4 cos(nt—3) (13)
t of

and tan 6=

Thus the resultant vibration has the same period as tha
component vibrations.

If instead of two vibrations there are several vibrations
of different amplitudes and phases but of game bime period,
the resultant vibration can be likewise deduced.

Hence =0, cos (nt—¢;)+a, cos (nt —eg)+ag cos (nt‘fs)’!""

=(ay cos e;+aq cos €g+++) cos nt

+(ay sin €5 -Faq sin €5°%) sin nt
Putbing @) cos €1+ a5 cos ¢4+ag cos €54 =4 cos 8

and @y sin €3 +as sin ¢y +ag sin €g+...=4 sin 8
we have =4 cos (nt —8)
where 4%=(a, cos €14 a, cos €5+ag cos egt-)?
~+ (a4 sin ¢4 +taq sin €a+ag sin €8+'“)2

and tan (}:al sin €; +a, sin €grrne
e e} .
@1 €03 €1 Fa, cOB €5 -+

0

SIMPLE HARMONIC MOTION 9

{b) Two vibration.s- of slightly different frequencies
along same straight line : Beats :

Tiet a1=ay cos (nt—€y)

and s =a ¢ cos {(ntm) t—eo}

n-+-m
251

ps]

. 7
We can write Z\71=0—7-z and 'No=

where N, and Ng are the frequencies of the two vibrations.

®

Putting — mt-teg=¢'g for the phase term of the second

yibratidh we have

@, =ay cos (nt— ¢q)
and s =03 cos (nt— &) /

o Compounding the two vibrations as in arb. 3(a) 5

p=x,+w, =4 cos (nt—9) %/

. ’

! e @y Sin€gTag SN €a

- . B an — v
_where a4 €OS e, +ag cos ez

2 2 s
and  A%=a,%+as" T20:0s €08 (e1—¢'s)
9 =a12+a92+901% cos(€1+'mt—€2)

Thus when 61__52.|.mt=(25-1-1):c where s=0, 1, 2, 3 etic.s

A=ay— 02
an@ when ol él—eg—l—'mt=2.sn
A=as+as
ﬁence the amplitude of the resultant vibration changes
he limits @1 — @3

the limits would have been 0 and 2a. Thus
eriodically with

between b to a3+ da-
1f a1 =02 then

the amplitude of the res
975 oy i
a frequency equal 0 o which

altant vibration changes p

is the difference of the two

component frequencies.
own as the beats and is observed when

n
nd of nearly equal

two sources of sou

" MThig phenomenon is k
\wo tuning. forks or any
1 5




10 SOUND

frequencies are sounded together. The method of beats is a
very important one in the measurement of an unknown frequency.

— Displacement

—Tme
Fig. 2

The displacement curve of a particle on which two vibrations

of nearly equal frequencies act along the same straight-line is
given above.

"(e) Superposition of two vibrations in a plane, at right
angles to each other, time periods being equal :
Let the vibrations he
x=a, cos (nt-¢€,)
and y=a, cos (nt—€g) 5
Displacement along y at any instant can be written as,
Y=ag cos (nt—ey+es —€g)

=ag cos (nt —¢€;1) cos (€7 - €5)

—ag sin (nt - € )sin (¢, - €3)

=a5.c05 (¢, —¢,)
ay s

/ Y
_azx,\/ 1—%XS‘.B (61—-e2)
F 1
=220 cos (2 =2) = %2, ¥, " —g%. sin (¢4 —<a)
@, - a1
dy

Or, Ja—]_;'—xz sin (¢; —¢3)=2x cos (61—62)——:1/_a_.
$ 2

S—— —

SIMPLE HARMONIC MOTION 11

: $quaring,
a
j o @1~
(G =) sin® (51_52)=»’B2 cos® (ex—€2 )ty -E:,

~ 2012 cos (ex—¢3)

2

Re-arranging,

2
2 2 Q1 _201?/13 vy
(lvlﬁ sin? (El—sg)zwn’*‘y -al‘;z cos (61 €z)

‘ 0 2 2 __2.7/;'0 e oo (14
Or, sin® (61“62)"&?’2 ag®’ alazCOS g <l
Thus the motion in general is elliptical and the position of

the particle at any instant depends on €1, €2, @1 and aq.

Case (1) Let €, —€2=0,

Then (14) reduces to
s L
@y Qg

0=

This represents a straight line passing through the origin and

kine an angle 6 with the-ve direction of X-axis such that
making g ,

_Qaq
tan O o~
Gase (2) Tf ey —€a=7T,
g ay Qs ;
j i ing through the
. e ts a straight line passing gh
This also refresen
origin. 5
Case (3) If €&2-3=7
2 1/2
—x—g“}'vﬁ—'l
Qy Q3

ts an ellipse with two axes coinciding with the
ents a _

This repres
X and Y axes.

?\g Case (4) a1=0s

}
J

ol R

—a and €1~ ©3
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2 Zjneye o . .
then z*+4y%=4% which represents a circular

path with
radius a. :

(d) Two vibrations of slightly different frequencies at
right angles to each other :
Lt the two vibrations he
Z=ay cos.(nt—e)

Y=a, cosf(n+m)t—e,}

Writing —mt+e, =38
Y=asy cos (nt—3)

As deduced in the previous article we have

sin® (e, —8)=2_+ 2 _ 202 s (e1—¢)
@ Wl R
Shape of the resultant path will depend on the value of ¢4 — 4.

It e; —¢§=sm where sis an integer, the paths will be straight
lines ; if it is (25-{—)%r the resultant curve will be an ellipse

with axes along the directions of vibrations, In the general case
the form of the curve will be elliptical. With time, 6 =¢, —mt
will change and hence trace of the path described by the particle
will gradually change its pattern and the greater the difference

hetw.en the two time periods, the more quickly the nature of
the curve will change. ‘

At any instant ¢

2 2
X x 9 Qyx
sin? (ﬁ-—fg +mt)= \.,+‘i“2 =y 2L cos (61 = +1nt)
i a3~ Az~ 0,109

At any other later instant ¢,

2 2
; : z 1
sin®(e; — v, +mey)=—+ LE - 2T
01 g S

cos (e —eq+mity)

The two curves will be identical,
if €r~€xtmty; =2%te, —e, +mt
o

tl o

whence m(t, —~t)=2x  Or,
o s m

e

SIMPLE HARMONIC MOTION 13

L
which gives the interval bebween consecutive formations of
@ b .
two Identical curves.

(e) - Vibrations of commensurate frequencies :
(i) Let the two vibratlions of frequencies in the ratio of
1:2 differing in phase by 8 and acting in the same plane be

impressed on a particle. Then we can write the component
displacements as
L ]

J =@ sin nt
A y="> sin (2nt-48)
Then y=0 sin 2t co3 8+b cos ¢ sin )
=20 sin nt ¥1—sin"nt cos 8-+b(1—2sinnt) sin 8

=207 /1-%5 cos 34 0(1-2 ) sin s
@ a a

2

2,2

40%2* z® 2 2 2z g
whence e (-‘Tz> cos?d=y2+b (1_;{) 8in28

922\ .
— Q’yb(l s ) sin 6 (14)
rD -
Fd
If the vibrations differ in phase by 3=§, then we obtain
P T 2 j
et = —1) ::0 506 J_f'
<a2 +b (.5)
AP 0
& chuation(lft) is one of 4th degree representing a curve

having generally two loops. If the vibrations differ by a
pha;e :% the orbit is then two coin’cident parabolas as represent-
ed by the equation (15). If the phase 8 changf:s with slight
* change in frequencies, the shape of the loop will also change
gradually. "

(16) Ii the frequencies of the vibrations are in the ratio
£ b:3, then we can ‘write, when the vibrations diffsr in
of 2: 9

phase by 8

)

z=ua sin nt
y=b sin (3nt+52
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y=Db sin 3nt cos 6+ b cos 3nb sin ¢

= (3 sin nt —4 sin®nt) cos 8+ b(4 cos®nt—3 cos nt;‘sin 3
3 8 2 3 2.1
= (_x_él_x?) b cos 3+{4(l = %F" 3(1 —m—.)?}b sin 8
a a () -
8 2 1 2
=(?E—@§ )b cos 5+(1 -'%7)2(1—437)19 sin 8
@ a a- a”

Transposing and squaring

22 AT e\ 3z 4z® 2 '
(1— —\(l——a?> bzsm?a—{y,—(;—;—;)bcos 5} «o (16)

a?/
Tf phase difference 5=0, we obtain
0 Sl
-ty S
The above represents two coincident cubic curves. If 5=.7‘:,
we obtain 5 4. by
2 _4z (i
e e B

which is an equation of the sixth degree giving an orbit of three
loops. In general if the ratio of the frequencies is N, the curve
will have N loops. !

If 6 in the expression (16) gradually changes, then the shape
of the loop also will change. ;

In those cases where the ratio of frequencies exceed 1 : 3,
it is more convenient to find the curve by graphical methods
as analytical methods become very cumbersome.

-
<

(4) Lissajous’ Figures :

The figures formed by two vibrations at right angles to
ecch other are known as Liswsajo’us’ Figures. These figures are
of importance in sound. With their help, the equality of or a
glight difference between the frequencies of two sounding bodies

can be tesved.

Tissajous used an apparatus known as Vibroscope to study
thoss figures. Tt is a microscope whose objective O is detached
and fixed with the prong A of the tuning fork Ty which vibrates
in a plane perpendicular o axis of the microscope which is,
let us. suppcse, herizontel and in the plane of the paper. Lirt

e

SIMPLE HARMONIC MOTION 15

T4 be another fork whichean vibrate about an axis perpendicular
to the p'ane of the paper. Suppose both the forks are at res.t
in the beginning, and a white dot P on T's is focussed. When
T, vibrates, tne image of P will appear to be a ,line
perpendicular to the plane of the paper. If now T2 begins fo

: % ‘ B
: " T

Fig. 8

vibrate, the image of P will have another perpendicular vibration
in the vertical line of a frequency equal to that of 7's. Hence,
due to superposition of two rectilinear vibrations, the image will
appear to be a pattern generally elliptical if N; and N, the
frequencies of 7'y and T's are equal. If Ny is slightly greater
than N, the pattern will gradually change and will repeat afier
an interval of time

w9 o 1

m Qn(Ns_N1) Nn‘Nl'

Lissajous’ figures can also be clearly demonstrated on a screen
by reflecting a ray of light successively from two mirrors
attached to a prong each of fwo tuning forks vibrating in planes
perpendicular to each other.

Lissajous’ figures may be obtained by Blackburn's pendulum
when vibrations are of low frequencies. This pendulum consists of

" a weight D suspenied by a thread CD which is attached to ano” her

thread ACB fixed at points 4 and B. The pendulum can vibrate

i

)
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in the plane of the figure with a time period 7, =2x ZL.where
)

A

Fig. 4

l:=CD. 1t is also capable of vibrating perpendicular to -the
plane of the figure as a simple pendulum of length Is=ED the

time period in this case being given by Te=97 \/lz_ B
22 By
g

A

> D

Fig. 5 E
changing the positions of24 and B, this length I3 can be stitably
changed, A record of the resultant of the two vibrations may
be obtained by using a funnel at D from which fine sand drops
on to a piece of paper and gives Lissajous’ figures.

e

G

-y

CHAPTER II
DAMPED MOTION

1. In the previous chapter we discussed free simple har-

monic motion. This is an ideal thing and is not observed unless
some energy is supplied to the vibrating body at a constant rate.

Tn all vibrations observed in nature, e.g., those of a pendulum .
or of a string ete, the amplitude gradually diminishes and

becomes imperceptible after some ‘lapsé of time. We ‘may then
concluué that there is a damping force on the vibrating particle
and this may be due to the viscosity of the medium, or other
frictional forces. For small velocity, we may take the damping
or frictional force as proportional to the instantaneous velocity

of the body-

9. Suppdse a particle of mass 7 is capable of inovinﬁ along a

particular axis OX and while in motion, is subject to a restoring .
force p10port1onal to the distance from a fixed pomt on the axis

and a frictional force proportional to the velocity. Then the
equatlon of motion of such a parﬁlcle can be writfen as

when s is the stiffness constant and % may be called the
resistance coefficient which denofes frictional force per unif

velocity, = being the displacement of the particle’ from the fixed

point at any instant ¢.

Re-arranging A J !
) - J

o
dt+r§z dt+x 0

{ s
Writing »° == and Qb ke have
K m m :

i

‘fufﬂ ?+,n2;i:=_o_ Nl i A
i : (
9 v
L b S
it
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particular solution of the equation. Then

dz =*e(t a’z =2 o f

dt s
After substitution in (1) we get
2 +2bt+n%=0
C. a=-b% Vba_nz' &
Thus the general solution of equation (1) can be written as

(=b+ Jo2—n?

=46 AR R

S U Nt

when A; and A4 are two constants whose values can he

e determined from initial conditions.

Cage (1) Damping force large so that >n
Tn the expression (2), let us put by = V2 — 52 ;

If z=a and d—“;='vo at t=0, we have

A +A3—a
"b(A1+As)+bL(A1 5 Az) Yo

or, —ba+b1(A1"A2)='l)o

whence A-_—A2=39+—Im-'
! Thus we geb A1=9(1+b—4%9—/9)
1
8Dd Ag—'-—(l b+vO/a\

This is an equation of the second order. Let  z=e%¢ be a

~ . An)

=B Bt —b,yt
then z=¢ (die ' +4se )
Differentiating
—bt, byt —byty , —b b -
\ %= —p0” (420 40" e L (badue = bidas”

DAMPED MQTION 13
Au‘ the solution for , substituting the value of &, ig
- a b+vo/a\ NbE—n2 ¢ b+vo/ - -
z= {(1 +%Vb2 —n”)e +(1 T '2__-_0:’2) YT t}
savh o l(3)

If the particle is displaced to @ and then released so thaf

tl:z:
at
tig. 6.

=9o=0 at {=0, the damped motion will be as represented in

—_— t
Fig. 6

Case (2) Let b be small so that <n, then

Jb —n2=i V2 _}3
Hence equation (2) reduces to

-—bt i —p3 —idn3—p3
g I (Aot & t+A, Vn? b”)

=0t {(Ay+4s) cos NuTBF ¢ +i(4, - 4,) sin VT =57 1}

Now 4, and 4g may both contain real as well as imaginary
parts. Let @i, as be the real parts of the coefficients of

cos Vnf—p® ¢t and sin ¥,,% —b* ¢ respectively,

‘ Then,
z=e—0bt (ay cos V2 —p2 t+tag sin Vp2=p21) .. (4)
=¢—bt (@, cos nyt+ag sin net) (5)

writing ny= Vn?—p?

e —

/2 AERTRAN (SR VAT v i3

S
Lo 7

Sy o gy 5o s/ e
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The velocity at any instant ¢ is /
Cf;; = — e _.bt(a,1 cos nit+as sin nqt)

R

- bt !
+e (—niay sin ny t+ny04 cos n.t)

Let the displacement and velocity of the particle at ¢=0 be
o and v respectively., p

Hence from“(5) and (6), putting t=0, we have

0 =0,
Vo= —bay+n,0.=—ba+n,a,
Vo +bn,
S5 az_o__b_ -
Ty

Substituting the values of @, and @ in (4) we have

_=bt e
z=ae (cos Nn® - pot 4 — 3—*1)03— sin V202t ) y
n?—b® ol
=Re=bt cos (1/p2—p2 t—0) oo )
@

“ where R cos O=g

R 51[1 0= M T
Nn?—p? y
e X .
so that R= \/“ ” +’Uo‘+9ab?’n ’
®

and tan 9— btvola
\/n - b3

it the bOdy is dlSplaoed fo a and then released, we must

d:c
have az—vo —0 at t—O and then we get

_ ane—Dbt AR5
fﬁ_ V?‘bz—-bz C(?S ( ‘/7112 ~ b2 t~ 6°) vee @ (8)
Where tan 6'= _,_Zj:t
SV BN d RIS T /

{5

DAMPED: MOTION 21

Ti&us the motion expressed by (7) or (8) is & damped oscilla-
téry motion, the amplitude decreasing exponentially with time.

-9 % j :
The time period 7= LT WG slightly greater than the time

1/71’ 2 .»
period for free natural vibration which

Noa

am?

parison with-n® a‘nd can be in most cases neglected. Thus time

. period of oscillation is very slightly affected by damping of

ordinary® magnitude. The damped oscillatory
represented by equation (7) is illustrated by fig. 7

Tieb Zos @1, Tay T ebe., be the maximum displacements of the

system in both directions ab times given by n,t-6=0, @ 2=;

Jf;z, — b2, Then

275 . ) S
—; but since n°=-—=
7 m

and b%= b“ is a telm of smallness of second order in com-

motion as

.37oete., respectively where 1y =

Fig. 7
_be
zo=Re %
b(0 +)
;rl"—:'—Ra w
_blo+2m) £ il
:U2=Re ) P
— b0 +387) ' T
Ty=—Re " ' \ A

Jangipur College Library

14257
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Thus, neglecting signs of displacements (

m._o=w_1 Tg n, 2
Ty Zg ZTg

Hen(;e B2 fog T0 2 1o #y
7 ogm T.log

Tg

ete.

Thus the damping coefficient 5 can be found out from an

e
Xperimental measurement of consecutive amplitudes.

rd

Case (3). If p—p,
the damped deaq bea
vibrutions.

then this is a transitional case when
t motion changes to damped oscillatory

We have from (3) ‘

=2 UL b+0,/ N Lol LN

Sira (1+ Uo/G) Nb3—nty _ Jjo—mi
4 «/b‘-¢) : +(1—Vb~+~b,—v_°%) oY

whenA the particle hag 4 dis

at t=0, placement z=q and velocity Vo

We can rewrite it ag

Vb”—?(l’*"/b” n®t—1+ Jor—n't )}

€xpand 3
Ing and neglectmg higher order terms since b=>7

|
H |
ence g— -e —bt {2+2(b+vo/a)¢} ;)

Thus éhe '
general solyt; e
be written ag Rationiic: critically damped motion 3P

) %Dd

DAMPED '‘MOTION 23

2. ‘¢An application of the theory of damped oscilla-

tions :
The theory-of damped oscilliation may be utilised in finding
. 0 o'
Fig. 8

the true resting point of the pointer of an oscillating balance

(methed of oscillations)-

Liet O-bs the true resting point of the pomter of a balance.
Lt the displacements be measured from the arbitrary mark 0.
Let 00" =«. Starting from the right hand side let @1, 23, s,
x4, x5 be the consecutive maximum displacements from O’,.z4,

zg,s being taken on the right hand side of O' and z g, 4 on the

left hand side.
Since it is a case of damped oscillation the displacement from .

the resting point is
z=ae"%? cos (n1t-6)

=ae~ %t cos mat neglecting 6
Hente z, +%=a, time being reckoned from the instant of

measuring T
-b.T
Then  Zg+«x=ae
— 20T
s L=ae

: —-oT —2bT"
© pytastas=a{lte + e } -3«

— ‘141 - T +1—2bT} - 3«, neglecting higher order terms.
0 x1+$s+w5=a{1_bT}_,(
R \

L
Qimilarly, €, —<=ae 2
—-8b€
and 24 —%X=0ae

( T 3bT
. “9+”‘=aie_b§+e }+2‘
=aft-Z4+1-20 a0

zat e ot ~ T}«
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Hence otz zitmg+ta,
2 3

=9« .

T1 ’
hus 00" and hence the true position of rest O can be found.

c\f“.d ]')lf.fel'e“tial equation of damped motion from
sideration of the energy of the system :

The diff ; !
from iht;ﬂ:zn-téal equation of damped motion can be obtained
x sideration of the energy 5 ;
(displacement at any instap gy of the system. Let the
proportional to gz,
ingbant is

i b l?e ; if the restoring force is
1e potential energy of the particle at the

The kinetic ene
rg : o
8Y at the same instant i m. (CZZtL" 1t the

(¢

particle fur i
e turther describes an element of displacement 8z, then the:

loss of kineti 8 St
Inetic and potentia] energy of the particle will be equal

: A
o the work done against the frictiona] force ;
2
Or, —(Z{S—ﬁ—-{-%m (@)2}:—;]{7 @2_1 S
2 dt TN
0¥ dz | 4%z ]
QAT e el RS

Since 22
ince i #0 for all values of ¢

ddge e
7t R s +sr=0
e

* chapters,
. conside

~vide amplisude and’p the angular

* and also let ano

CHAPTER TII
FORCED VIBRATION AND RESONANCE

1. Motion due to a periodic force : In the previous
we treated ‘‘free’” vibrations of a system. TLet us now
r 4he case when a periodic force of constant frequency
Tnitial transient vibfations will be

. and amplitude acts on it.
down and the system will settle down

get up which will soon die
to a sustained ‘“forced vibration” of the same frequency as that
of the periodic force. We can cite many common examples of
forced vibration, e. g., that of a loudspeaker cone, a gramoplione
soudd-box, a stretched wire under tension actuated by the vibra-

tions of a tuning fork etc.
nal simple harmonic force F sin pt act on a mass

Let an exter
toring force propor-

m which when displaced is subjected to a res
tional to displacement and a frictional force proportional to
velocity. If the system has one’ degree of freedom along a

given axi® OX, then its motion will be given by
a5

L sx-k@-i-F sin pt
dt

Mg = =

ness constant, & the resistance constant, F'

where s is the stiff
frequency of the simple harmonie

force.
Re-arranging the equation, we have
& A%z 4 oy % 4 2 =f sin pt
dt2+‘ dt B
7\7 2— = vea
where %:fn? n2=s/m apd f=F/m (1)

Let a value of #=21 be found out which satisfies the équation

di”l qum—‘“nzx =0
) L T e

ther value of =12 be the particular sowution of

the equation, SO that
d2w dmg g ¥ 40 fj
-———2‘2"‘2[7. ——-‘dt +n"Ta fsinp

(2)
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Then
a? a 3
d7(1'1+x9)+2b.2~t(2}1+1'2)+n (x1+a:2)=fsinpt

The solution z; is-the same as in the case of resisted
oscillation and is given by
zy=4,67"" sin (V32 —p% +6) e SRR
where 4 and 0 are cnnstants. '

To find zs, let us take as solution 2 =4 sin (pt—«). This
supposition we can make on the ground that the system will

ultimately vibrate with the same frequency as that of the

impressed sustained harmonic force. ®
Since  z,=4 sin (pt —«)

dzq
T Az? cos (pt—«)

ad’z
72 = —4p’ sin (pt - «)

and

3 . / o 2
Substituting these values of (Z—Z‘f and % in (2)

— Ap®sin (pt - <) +2b4p cos (pt —=)+n24 sin (pt — «)=Fsin p¢
Or, A(n®—p*)sin (pt - «)+25 Ap cos (pt —«)
=7 sin (pt —«+=)
» =/ sin (pt—«) cos «+f cos (p¢ - o) sim« . S
Since the above equation is true for all values of {, we can

equate the coefficients of sin (pt~«) and cog (pt—«) from both
sides.

Hence
feos x=A(n® - p?)
| fsin «=2b4p } (4)
."» Squaring and adding
P40 =" 170)
wheree A=——F (5)

1/(_7?»—2_;“1?’%”17
" Also from (4)
fan £ = —

2bp

nz_pa
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Thug‘;the complete solution for z is
. g=g,twe=A4,¢7% sin (V52 —p2 t+6)

f .
44 1 sin (pt—« 6)
\/(7];2 _p9)2+4b2p3 y4 ) £ ( )
_ 9
where tan °<—n,__pg

~ The first part of the solution for =, i. e., &, represents natural
igibrations set up in the damped system by the harmonic force
at the stars. These vibrations, however, become negligible very
soon as the amplitude diminishes exponentially with time. If
damping is very small, the natural vibrations will persist for a
longer time. The resultant vibratior_x z abt any instant is the
sum of the natural vibration represented by z; and the forced
sustained . vibration represented by x.. After a lapse of time
when #; becomes negligible, We can write =4 sin (pt—=)
which represents the sustained forced vibration.

"1t ¥/78—p2 and p are nearly equal, at the initial stage,
the natural vibration will interfere with the forced vibration
and produce beats. These beats are transient, as natural
vibrations become imperceptible after a short interval of time.

2. Response and resonance :
€Vribing z=A4 sin (pt—o() for the steady forced vibration, we
s @=-Az) cos (pt —=)
at
Hence kinetie energy at any instant
2
im(f) =1mA®p? cos®(pt - <)
dit ] ‘ |

Since the motion is a steady harmonic motion, the maximum

kinetic energy of the system is its total energy at any instent.

Hence energy of the system

=%mA2P2
fz
=1m,p2. o 2\2 2.2
LA PR LT
Imf?

= T G
_ ? @_2) +45°
o p "
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If p=mn, the energy of the system is maximum for a’.l.y given
value of b. Thus when the frequency of the driven coincides
with the natural frequency of the driver (without damping), the
energy of the driven system is maximum. This phenomenon
is known as welocity resomance or energy resonance or simply

resonance. Moreover, the decrease of energy upon the lack of

. coincidence is the same for a given ratio of frequencies whether
the frequency of the impressed force is too great or too small.

It means the energy of the system is the same whether

the angular frequency p of the impressed force .‘s s times »
D

il AL 9 g ji
or * of n. Wribing p——n= A, the kinetic energy at any
mistuning or the energy of response can be written as
7 Tmf? 3
Y e RSl e A SR )
77/‘5AZ+4Z)2 [ (7)
at, 2
and energy ab resonance En= “—”L J
4b*

Thus for a particular value of the amplitude of the impressed
force, the kinetic energy is greater for a smaller value of .

E
f
b

=

Fig. 9

' Again if we plot E with A we shall get response curves for
different values of b as'given in the figure above

jo

;.gni-_-.-z..d»JT“ - “‘

ey e

e T

e

A FORCED VIBRATION AND RESONANCE 29
Weave from (7

o

0 ERNa D Rl
E, n*A%+4b®

1

A e @)
1+ ib° .

For alP values of damping constant b, —];7 =1atA=0,z.e, at
m

jchis b1 dition for resonance ; agai T ill b o
n=p which’is the condition for resonance ; again 7. Will be zero
m

at very large values of A 7.e., when the frequency of the driver
is too large or too small compared to the natural frequency of
Bt i b s iheslipiblol End tn large 2 il i Bs
m
negligible even at moderate values of A, as the denominator in
the expression (8) then becomes very large. Thus for vibrations
with & small and » large, the response E at any mistuning A
will be very small in comparisonAWibh energy ab resonance and
hence resonance will be sharp. For the hypothetical case 6—0,
e 1.espoonse for a slight mistuning is almost zero as the
denominator in (8) tends to infinity. Again.if bis very large

the @riven.

B semains virtually of the same value equal to unity for moderate
Eln ’ -

<yatues of° A and” the response is very flat. The observations

are illustrated in fig. 9.

The ssharpness of resonance

i sometimes quantitatively

defined as the reciprocal of A

“at -which energy of response 18

half of that at resonance

mf?
Since Bn=% 33,

the value

o

of A atswhich energy of response

is half of that at resonance is given by :
Imf? Imf®
L ?"Zb—f———‘, 3 = %Em:%.-%i?)?

8 AT 40 A‘

o

~
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whence a2 A%+4p2=8p2 ,
V.
i = + ﬁ =g
JAN 1 2

The sharpness of resonance is then proportional directly to
the natural frequency of the system and inversely to the
.damping constant b.

3. Phase of tle driven system with respect to that of
the driving force :

‘We have
20
tan (—7‘2 _ppa
and sin <=2b~}41—’ from (4) ¢

From this value of sin «, we see that it is always positive
-which shows that % lies between 0 and =,

Suppose the angular frequency of the impregsed force~i.s
increased gradually from 0 to cc,

(1) When p=0, tan «=0. Hence =0
Thus there is no difference of phase between the driven and
the driver.

(2) When p <n
tan « is +wve ; it means that the di&‘erex']ce of phase has a
value intermediate between 0 and %
(8) When p=n
n
tan « =, Hence %=g- Thus at resonance, the driven
system lags behind the driver by an angle g

(4) When p>n

In this case, tan « is—ve, hence « is an AElel i tnaory

.quadrant or, ‘g<a(<:r :

Hence as p=> ¢ tan « =0 i.¢., « in this case is x.

——
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Tlhu_s for all values of p, « lies between 0 and =, being equal

4
to 3 at resonance.

Again since
1 2p
(n®-p*)
d<___ 2b(n*+p*)
dp (n®-p*)*+4b°p*
Rl
dp &

« =tan™

Hence, when % is equal to p,

7

" Thus smaller the value of b, greater the rate of change of
phése angle near resonance frequency. Relations of « with p

‘a1t given n fig. 11

4. Amplitude of forced vibration :

Tet us find condition when amplitude of vibration of the
driven system is greatest. We haye

A= f
V(n? —p’)°+4b’p’

. dA_ [—3o(n®—p®)x —9p+4b%.2p}
v Yoyl |

{n®—p2)*+4b2p2{2/,
An®—p?)—4b2
- P 4T

%4=0, when p= and (n*—p?)-2b%=0.
p




,in these cages 4 will be maximum g
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The former condition gives amplitude zero. Hence the
condition for maximum amplitude is 3
n® —p?=9b2
Or,

If b is very small

p2=n2-9p2

.
{ Ol2\Z
p:—-n(l - ‘“7},,«) .
n2 ) ‘
A ?
S S« LN
n

(9)

Thus the angular frequency for amplitude resonanceis slightly
smaller than that at velocity or energy resonance.
- The relation between the frequency of the driver and the
amplitude of oscillation of the driven at different damping
constants is explained by the curves drawnin figure12.  For all

values of damping the amplitude is 4= at p=0. Now if 018
e

q———j_J’h——y

—_ Sh

4 &> &35&3>L4>65
-Fig. 12
very large, the increage in 2 bp as p
than the decreage in \the value of
nator in.the expression for 4 increa

. .gel
! \ ig large
increases towards 7 18 )

denom!”
and thus the *Honce

ively
ab a%

02 —p2
ses with increase of 2
bp=0. Ifbis comparab

small, maximy ] , £ on? i
e n:: amph.tude oceurs at p2%=p2% = 2b% i e
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angular {requency smaller than the resonance angular frequency
by ap amount determined by the value of b. For a very small
-value of b, p is almost equal to 7. If damping is absent, amplitude
becomes infinite at p=mn, the resonance frequency.

5. Power supplied by the driving force :

Since energy is dissipated in each cycle due to frictional force,
this loss must be made up by the energy of the driving force to
maintain the steady forced vibration.

Suppose, at any instant, the force F sin p¢ moves through a
distance 6z in time 6¢. Then work done is F sin pt. oz.
Hence rate of work done
T

=}TOIF sin pt. %a; at

i
=%fF sin pt Xp4 cos (pt—=). dt [, =4 sin (pt - x)]
o

T
e [FpA (sin pt cos pt cos «+sin® pt sin «).dt
e
0 3

AT el
A _51 FpA. g sin o
aaTgr Y % 4
[ ¥ sin pt cos pt dt =0. fsin"z pt. dt:T/Q]
% o]
=Fp_{1._sin -

- Also work done against frictional resistance for the displace-

meng (5.2; iS k_" / adalnst fl‘icﬁional
614‘. Hence Iabe Of Work done =3 !
dt

T T ‘ 1
1(, dede o L6y geps oooo(pi— o) di
el =‘f7‘~“‘ = f p* cos :
orce f To dte dt T0
©
1 ’ =lrf12p2
=1—1. k. AQP ) T/2 2

3

{4
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Fp A.sin <_FpA4 2h dp
Now 9 oz
=F7)A_70A Xﬂ=k A%p?

2 'm 4 Ty

Thus the rate of supply of energy by the drivingforce is equal
to the rate of work done against the frictional resistance.

6. Advantages and disadvantages of resonance :

Resonance is both a useful as well as an obnoxious pheno-
menon. It is very sften utilised in finding an unknown frequency
{e. g., by a sonometer) or in detecting a particular frequency
present in a note consisting of a conglomeration oi frequencies
(e. g., by Helmholtz Resonator). In these cases sharpness of
resonance is of much advantage. Resonance effect is also
utilised in Indian stringed instruments like Setar, Esraj, Sarode
ete., which have additional strings other than the main ones
tuned to the desired notes of the scale.

But sharp resonance in many cases is very undesirable. A
microphone, a loudspeaker or any other instrument meant for
recording or reproducing music must have a flat response to the
range of frequencies meant to reproduce. Resonance to any of
the frequencies within the range will mean an undue augmenta-
tion of it and will result in distortion. A flat response curye
is obtained by making the natural frequency of the system
either much lower or much higher than the frequencies to be
reproduced and by making damping very largc.

7. Experiment on forced vibration and resonaiice :

Let us take a thin thread fixed at JANSan AN SIS [T R T
pendulums CE and DF be attached to positions ¢ and D
on the thread. The pendiulum CF is a heavy compoung
pendulum, whereas DF is a simple pendulum whose hob ig of a
light material like cork. Now oscillations started in CE will
force the pendulum DF to oscillate also, and since DF ig light,
there will be little feed-hack of energy from DF to CE so that
in this case we can take CE as the driver and DF as the driven,

Let us start with the thread of the pendulum DF short in

~comparison with the equivalent length of CE. The natural time

periods of the two are very different in this case. If oscillationg

=

A

e
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are stared in CH, there are at first transient oscillations in DF
which ultimately die down and the pendulum DF settles down
6o oscillate with the frequency of the driver. The amplitude is

Fig. 13

however very small hecause of the difference in the naturai
periods of the pr sdulums. The oscillations are almost in phase.
This should be so, for the phase of the driven is given by

e liio

» ST . <
tan - 7> Which is nearly zero in this case as n,
P p.a 2)<<

Now let us stop the oscillations of the pendulums, increase
the length of DF and start oscillations in CJ. We shall observe
that the forced vibration in this case is more vigorous and there
is some ditierence of phase between the oscillations of the two.
If the natural periods of the driver and the driven are made
same, resonance would occur as a result of which the vibrations
of DF-are most vigorous. The phase difference between the two
oicitlations in this case must be g. and we shall observe that
when CEis in the middle of a vibration, DF ig at the end
_of it and vice versa.

If we make observations with the lergth of DF very large
in comparison with that of CH, we shall still see that DF
ultimately oscillates with the period of the driver, but ag
expected, with a greatly decreased amplitude. The phase angle «

tanst zsz 5 i8 nearly # here as p is large in comparison with g,
n-—n i

As expectrd we would see the two oscillations taking place
almost out of phase. The position of CE and DF will be at
the two opposite ends of their displacements simultaneously.

* For further discussion on sharpness of resonance, see Appendix,
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CHAPTER IV

COUPLED VIBRATIONS

1. TIn the preceding chapter on forced vibration, it has been
assumed that driven system has no reaction on the driving force,
7. e., the frequency.and the amplitude of the driving force are not
in the least gffectéd by the motion of the driven. But when the
two systems are equal or are comparable in mass or inertia, the
roles of the driver and the driven may be interchanggd. Motion
of each system will react on that of the other and the two
eystems in this case are coupled with each other. This can be
illustrated by the following example.

A B
c D

o
°

Fig, 14

CDSal;pZose AL and BF are two pendulums.atbacheﬂ'to a t]’n.-ead

- and B.  1f the mass of 47 is very large in compariso?
With that of BF, then the vibration perpendicular t0 the
plane of the paper initiated in BF by that in 4B will be
what is known as ‘forced vibration, Now suppose both the

?erdulums are of nearly the same mass and length and mofiiff;
o0 aetediby Veiving Am "on initial displacement. I W]f'

b? Be(.m that BF soon takes up motion. The amplitud® ,O
:;lblzatéon of _BF_gradually incpeases while that of A& S't‘?adl:)y
the 'a'ffa(;:: A-Jlglj il come alimost to rest. And now the QOSIMOI-)om
-BF- Will be revergeq ; AE will now take up energy i
now gradually increase in amplitude wii

» 168 vibration will

that i i le
ena" my" BI:?’ gv:xll fall. This process will be repeated o i
fnergy 18 dissipateq due to friction

Q

k]
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o

P\
Let m; and ma be the masses of the two pendulums
respgctively. Suppose at any instant, 7, is the displacement of
the pendulum of mass m; ; then the force on it at that instant

d®z

de?

in the direction 8f displacement is my I which gives rise to a

1 : 2
reaction at the point of suspension proportional to— dd_;} parallel

to @;. Due fo mass-acceleration coupling, thé«force transmitted

d(;;l and

to the pendulum of mass mg must be proportional to —

2

can be written as —M;ZL_T' where pg is a constant depending

on the extent of coupling. If we neglect damping forces for

the present, the equation of motion of m4 can be written as

dBTo dgm
.“+ 2 “1 SaZT o — 9
T i At
where Sg is the stiffness constant of the system and z, the
displacement of mg parallel to that of m;. Let the displacements
be counted as positive when they are along a particular direction,

say, from left to right.

‘Arom similar considerations, the force on 7, due to motion
. fiz-'l‘z . ¢
of m, muest be preportional to— e and its motion can be

o

expressed. as

a’x a’x
My 'd—tzl'{‘l"l.ﬁgj""slfl?l::o ©)
It can be proved in the following way that p; =ps. Tiet us
multiply equation (2) by (%1- and equation (1) b % when we
get from them :
o {_1 (d_rl) 1 2 } A"@y dzy _ ,
d_t 2?’)’&1 dt +2 S‘Lxl + 1 tz dt 0 (3)
4{1 (drg‘)2 i xnz} d°8 dzspn o
;Z—j Q?nz dﬁ +2 242 +F‘2 dt_{ (Zt (4)
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/
From (3) & (4), after integration and addition we obtain,

{éml (%—')Q-Féslxlz }

1 A\ sl Iz, dr
+/L—1{—m2 \“) +5 8az, 2} 20 L (8)
o \2 (ut T dt " at

where C ig the constant of integration,

<

Let us suppose the motion is gtarted by giving m, an initial

velocity o at t=(. e
Then at t:O,-I (@)221 2 o — EZ'TZ':O'
: ¢y s g Milo™, T3 =g,=0, It

Thus the constant C ig the total energy of the ctupled
system and equation (5) is the energy equation. DBut energy ab

any instant mygg consist of the kinetic energies of the two
masses together with
Pl b (/7.7-2 2 / s
g2 s %) must be independent of #1 and pg, that 1s, #2

must be equal to fogs

other energies. Hence the term

Writing in equations (2) & (1) p1=pe=H
f motion of this coupled system as

A’z a2 .
e .67214-"‘#24'31”1:0 (6)
2 s i
o Az, . (7)

a2z
(lt2 +# al/21+521'2 =O

Since the moti

L j -jal
: On8 are periodic, we can write as & bri
solution for (g)

Ti=Agirt
Where 4 ig 4 constant,

Substibubing the values of d’z, in (7) we get

dt?
a’r, .
- Mo F"'szxz:[l-/}p%”’t

which ig 4y, equation of foreeq vibration,

“Thue the value o ! Bis
| of 23 my 6 i = BetPt where
anothay constant, 2 Must be given as 2, = Be

-
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2
2 ]
Substituting the values of ddTC’ @ %—;‘3 and 2. in (6)
and (7), we have
— My Ap® —pBp®+s,4=0 } ()
—maBp® —pdp®+s,B=0
whence A(sy - myp®)=pBp?® } .
. B(sg —mgp?)=pdp® (9)
i S Sp—mp_  up?
07', 2 a1 2
O oup Sg — Map

2 2 4
or, ppt=s15a—51mD* —mysap®+mamap

2 o
3 4 S$1.S9 _3_1. 2__122).._‘_ 4

ory, ——p -
Y mgmg MiMe My Mg
2 4 . . »
Writing B =] where % is known as the coefficient of
MiMg
Qo
St—p2, 32 =42 where 7, and u are natural
ing — =N 5 e L 21 bW, 1 2
coupling and = 173 e
angular frequencies of each when coupling is absent, we get
o ; -
/ 2 2, 2_ ,
p*(1—%%)—p2(n ®+ne®)+ni®n,2=0 (10)

S6lving for p°, we get
o (2 4m®)E Vi *+ns )2 =41 —k%)n, °n,°
p? =" =)

Thus there are two possible frequencies of each constituting

the ecoupled sysfem.

Let the natural frequencies of the two constituting the-

coupled system be equal, then
g e J‘ln‘ka

D)
ey
o l —_— ka ¢
Thus the two angular frequencies are given by
i n d o 1 ¢
pl_vl't']ﬂ &h 2z Vl—k
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/

Thus the two angular frequencies are respectively higher and

I?wer than the natural angular frequency = of each; the
difference in the two increases with the extent of coupling.
Now we can write as solution of (6) & (7) *
Z1=A; sin (pyt+«,)+ 4, sin (pot+«,)
T3=DB sin pit+p,)+ B, sin (z)gt-i-ﬁ;) } %
where «,, «g f1 /s are constants.
From (9) we have
g
# B—;p—z(sl—-mlp-)
_m1A< O A o
Bp* \my ) ;
M, A( A
a ST )
If P=p, = LNy
‘/1+k
B="1 4(7621-*-70 1) kmlA
] n 7
= [ 7n1 =
—_— 1 A os 2 /\/777:1_
‘/mlmz (o) 5 Mg <
Again wh =
o 7"2’2“#—1'], by substitution we can goliis
-k
B=-,/m 4
] Mg
Hence ¢ '
0L, rom (11), we get as solutions
1=41 sin (p,¢ ‘
: Jﬁ (Pat+4,)+ 4, sin (Pat+os) (12)
EQ ‘1 w7 . &
mz{Al Sln (291H‘,31) -4, sin (sz'ﬂz)}

(A) Mot

started by o:.:
i e velocity Uo to mq at t=0, Thus ab

A
ar
1 dr
T oy e e
[}’,t 0y o —0, .’,Dl':a;z:o

1=

. (¢]
jon
10n started by ipjtial velocity : Let the motio

et g ok a St i<

e

o
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\
JFrom these initial conditions we obtain from (12)

O=A1 sin °(1+.A2 sin A g 3

Uo=p1A41 cos L3 +padqs cos g l

0=A, sin By — 4. sin B J ... (13)

O=p1 4, cos By —pade cos Bs
The above conditions will be satisfied if we fake

Ay =oA,=B,=F,=0 whenp; 4;=p,4,.

Also %o=2,41=2pada

whence 4 =7_‘Q=7Ql/_1_+_lc
Yo, on

U %o Ji-k
and Ad,==2=——F—
1 on

Substituting the values of A;, 4g etc., we get from (12)

=1o_0< ti L nt T nt ) -
i 2n I 0 JI+E Sy N1k [
_/\/:);1 7_6__9(\/1—7 oin nt _Jl——l‘ ain : nb )J (14)
ma_@ My ¢1 g J1Fk A Ji—k
When % is very small,
) nl n _( nk)
r—— e d ——= 774+—
N1k (n zJan Vi-k 2
i st
aldo AI”AQ—EZ?L
Putting these values and simplifying, we obtain
xl-—:?fﬁ co8 ks sin nb )
% 2
— ki : b (BT)
m=-—\/ﬂ’.’!_qi‘3 sin —- cos nt
2 mg T 2

(B) Motion started by initial displacement :

Tiet m, be given an initial displacement @o at ¢=C. At that

instant
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Hence from (12), we have {

$0=A1 Sin °(1+A2 Sin A o
g:plAl. cos &1 +po 44 cos L g
O_Al sin Bl"'Az Sin Bz ’ (16}

=p1d1 cos By —pad, cos B,

We all
see that conditions are satisfieq i 6 = i
’ | 1=do9=p,=F=n
when e have 4,=4,="%0 ’ ;
5

2 gl

Ti=z nkt
‘ 0 €08 5= cos n¢
Ba=r /7 iyl
- B 4
Mo, 9 nt . (17)

Hquations (17) are illustrateq by fig
g. 15,
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) ;
(2) " Vibrations : stiffness coupled :*

®
Let mq and mo be §wWO point masses attached at points B

and C of a sbring fixed at the ends A and D. Let the string

be devoid of inertia-and under 2 tension T which remains
unchanged at small fransverse displacements 1 and xo of m1 and
ms in the plane of the diagram at any instant ¢ Tieb AB=a
BC=b and CD=c¢, so thab l=a+b+c

From the figure, the force on 71 in thepositive direction

2 z
of the displacement i 18 —T cos 0,—T cos o= — —j

SRy ;ml, if ¢, and s are small and neglecting variations in
length.
Qimilarly ferce ab the same instant on 7s is—T cos 0g

o Tg—T @
— T cos 0u=—-"T. 8 L =,

Ny c
Hence, °
2
mldd:;‘ = =l (i+}—)aﬁl+% To
a 18)
e 0 e | 1L (18)
and Mo dté = T(g"'-{)l‘e'{“ [).wl

We thus see thab the motions of M1 and Mg are in9uenced by

the displa.cements of mg and M1 respectively and can rewrite
equations (18) as

(Z_‘ia—:l—!—s Ty = P2
0 Al i (),

(Z"’wg A
and ma e +8,29= P21

xFor problem of equal masses My =1 and a=b=c=13, see page 46.
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Such vibrations are stiffness cou
neglecting frictional forces ag above.

/
pled and can be written

That the coupling constant i must be same in both
expressions of the coupled vibrations, can hes
the energy equation which will be for two
coupling constants

shown by writing
different values of

1 (@\ﬁ SR (108 el e
27n10 (Zt r +2 Slx 1+l"*2-{§7n2 (Tt") +§82b22}

T P1Z1%29=constant,

Hence p, must be equal to g, or Py =

: : Pe=p and the energy
~guation of stiffness coupleq vibration is

given by
lml (Lrl)z‘{‘ls R ((]xz i 2 5
9 dt g°1*a 51 -(Tt) ‘+§szz2

=~ PZ1Z,=constant.

I A DIE, :
Let us put z; = 4e where 4 ig 5 constant,

: then 2, m
s 1Dt g 2 llSt
be—zfe w(l;zen B is anothey consbant, Substituting the valueg
d’z z 5 '
of W"l and ng, Z1 and 25 in (19) e geb
4 (31—7711232)21‘ B }
B (s2-myp®)=p 4 (20)
From which we get 4
mam,p* —p? (Szm1+s1m2)-p.“+slsoz'=o 2 N
or ipt—p* (nlﬁ+n22)‘kz+nlznzz=0 ;
s ]
where “L=, 2 S2__ o — . (B
TG S rasill = Vo the coefficiens
1Mg .

of coupling.

From above we get

2
2.
Thus p has two possible p
higher than the other, Hene

(21)
eal positive values p
e solutiong fop displae
( i =}A1 emlf‘!‘Az o Pat

1 andpza one
ements will },q

") " 3
IR g =B Bwlt-i-Bz ¢"Pat
, o

the

VTS

k A e
. If &k is small, pl=n+§’—b and pe=n o

(]

. ment o
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v ; i T. e.
Let‘ml and m. have the same natural period, o
o

2 2
Mmq __ Mg or Ny =Nz

«

S1 ‘g
b ing my=mna=1mn
We have from#(21) putting 7, =172

p.2=n®+k and pa®=n’—Fk

From (20) we get

Amy

- 2 2
24 (SL—’NZ,‘LPQ): (72 =0 )

__4m (5.0 )
ke \/ml'm:a

=Av\/q£ (n1® _pz)/k
Mg

8 =pn24k, we geb
If n, =ng =n, then for p =0tk g

By
B= /\/’lng

; Qg g, have similarly
For pu®=n®—Fk we I

=,/ 4
Mo
ﬁence we can write for such a system
€, =0 sing(p1t+a(1)+ag sin (pat++2)
E{— a, sin (pit+B1)+as sin (p2t+B,_,)}

Mg

...(22)
Tog= -
motion is started by an initial displace=

Liat us suppose the o
of m, at t=0, when z2=0,

doy . @2s 0,
dt dt
Trom these initial conditions we geb
Zo=ay sin «11as sin o 2
O=p1%y cO8 %3 TPalg COS Xg
0= —ay sin B +ag sin By

0= —pias cos ByTpaas cos Haily
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.

The above will be satisfied if we fake o1 =x,=8, =52’= /g

when we get a, =q,="20, :

Hence from (22), we get; o

z
Z,= Eo(cos P1t+cos pot)

=:;cq{ cbé ( +£ % >
o n 2n)t tcos (n—gn’ ¢ }

o

L k
=®o co8 — ¢ cos nt
2n

Uband z =a3’\/m‘1{ Py k
2 9 777 Ccos 71/+ i) t+(}03(n—£ ¢
2 2n o o

= -k
=Zo \/L“ Sln — ¢ gi
—tsi
My 2n i

Expressi : o
pressions for ¢, and T2 are illustrateq by fig. (15) wl
and m, are nearly equal, Y 8. 119) when m,

Let xl and 339 'be the d.

e IR
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Then considering that the tension 7' remains unchanged
o o

5 fzﬂ— Til.;_rf Tg =T

e 2 3
= -2 g e s

= —g7. T2 Ze
67 ] +3T.l

dan/s Tg= Ty _.m Ta
m T : 73 T.Z/-3
= S

From the above

2
m.(%z(xl +25)=- ?)Z—T(xl +2.)

2

m.ZT (2, —2q)= _9l_T (xy —za)

Re-arranging
2

g 2(m1+x2)+?£(ﬂ'1+$2)=0

dt
a’ 9T il
d’i@‘(ail —2q)+ ZTn;(wl _332)_0
whence Al .y
21+ x2=a; cos A‘/E}_’T?H—b, sin 3T i
Im Im

T . /9T
~ o =0s €OS /_ t+bo SID\/~ t
i ‘Iz g Nomo - N Im

x1=%(a1 cos ,\/.3;77 t+b; sin 3T t+aq cos J*@t
lm lm Im

—+bg sin @t) {

X '\/lm ]

and :rg-:fq(al cos \/3£t+bl sin \/?_’I t—as cos \/g_Tt
lm lm Im

—bg sin \/91’ t)
Im

Thus both the masses may vibrate with angular frequewncies

AL
im im
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4. Forced vibration of a stiffness controlled coupled
gystem :

T¢ frictional forces are taken into account the equations of
motion of two systems of masses M1 and m, can be written as

dPwy g ATy ot

M1 e +kq T fslﬁl [ e : (23)
220 1z

i B G0

where k1, ., are damping constants, sy, s, the stiffness
constants and p the coefficient of coupling and the pariodic foree is
Fei?t acting on the lst system coupled to second system. We

must have solutions for the displacements in the steady state as
2, =A4¢'?t and z ,=DBe*??

Then substituting in (23) & (21) we have

(

A(31+751ip = "7741232) -pB=F (25)
B(Sg+k2ip = ’mzpz) =P'A

(26)
From ahove we have
B(i‘*‘+ﬁi1)—p2){il+k¢ip—p2)~ wB _ pE
Mo Mg M1 My MyMo F MM o
o, B(nf —P2+2b1ip)(nf -p“+2b2ip)— k2B=c ki @
: MmNy
A e oy
Bk 2l's i k b k i o =
where ;fl—ﬂll ’ nTZ —77'22, Ei“gbu ﬁ=2bz ¢
and coupling coefficient s i
Nmyms

From (27) after simplification we obtain

k
= : V'mflm'z
(na® =D Wn1* —p*)—(4b1bep® +k*)
+2ip{ba(ns —p*)+bo(ng —p*)

il

5 L N0

We; can write B Xt :
O RE RN
XY Vxigye®

—10 5,
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¢ Y
==
Wh‘ere tan X
~‘/—k—— . Fe =)
Thus B it

= Vl;(nﬂg_pz)(nls?pz)_(4b1b2p2+k2)}2 o0a (28)
+4p*{b,(n,2 — %) +bo(ns’ —p)}*]
Opiba(ny® —p?)+ba(ns® —p®)}

and tan 6= (nl"’—p")(nz"—pz)—(4b1bgp2+lg2) -+« (29)

From (28) & (29), we obtain the amplitude of vibration of m
and we see that the vibration lags behind the periodic force by
an angle 6 given by (29).

Also from (26), we have

4 =€(s2 +Tgip —map®) =m§B (ns® —p2+9byip)

1

B :
=__m; N(no® —p®)2+4b%p® 60

S N
=% Urs \/(1&22—2)2)2+4b21726%9 (30)
My
2bop
Y re & pl e et 2
where tan 6 =gy (81).

Bxpressions (30) & (31) give the value of A4 which can be
found out substituting the value of B. We see that the vibration

of m, is ahead of that of ms by an angle ' =tan~t __22_1?225
Ng =P
In the special case when 7y =ng=mn, by=bs=0 and .. 6=6"
=0, the amplitude of steady vibrations will be given by
jk 7
MM
B=
(DS R
The amplitude B becomes infinite at (n® -p2)2 =k

: % A
ie, atp=nZ o (for small values of n—2).

Since A=€\/m——2- (n® -p*)

m1
this also becomes infinibe ab the above two values of p.

In actual cases by and b, will never be zero and, therefore, -
A and Bwill never be infinite. 4 & B can be plotted with p and _
curve for each will show two peaks at certain values of p deter-
mined by 71, %2, b1, ba and k.

40

"
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4. Forced vibration of a stiffness controlled ceupled
gystem :

Tf frictional forces are taken into account the equations of
motion of two systems of masses my and m can be written as

2 d i

m LBl Loz —pma=Teirt o (2)
2 i 7

%%‘-*,’.’Z(ﬁgf*sz%‘“’”ﬁo e (29)

where ki, ko are damping constants, s;, s, the stiffness
constants and p the coefficient of coupling and the psricdie foree is
Fe'P? acting on the st system coupled to second system. We
must have solutions for the displacements in the steady state as

zi=Ae' Pt and 3 ,=Bet??
Then substituting in (23) & (21) we have
Alsy+k1tp —mq1p®) - uB=F (25)
B(satlaip ~mep®)=pA (26)
From above we have

B(—ﬁ+ﬁi1)—pz)(i¥+k¢iz)_p2)- p’B =t PH
Mo MNig M1 mq 7"'1.777/2 MM

ot B(ngz—p2+951ip)(ﬂ.2—p”+2b2ip)—k232 kg

(

mlmz
e e
S, 308s0 s kLo ik e AN
where e My =7 =t i 2b,, 7772_2[;,2
and coupling coefficient k=—-—t
"nlnl«z
°
From (27) after simplification we obtain
_ SR
B= Z = m1m2
(ne® - p*)\nyi*— —(4b1bop® + k2 )

sz{blkvzl —0*)+bo(ngd —p®)}

0 i )
Wg can write B X7 3
oG v n SRl st v
; 0 2 SRt Yxiyye'

E——————
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Wl?e're tan 6=—§
# 5 Fe_ze
Thus B= 1Mo |
VU('IL —-D )(n _pz) (41)1 oD +k )} (28)
+4p*{bu(ns —p*) +ba(ng’ —p°)}*]

2p{b1(n1 " =p®)+bo(ny® —p*®)}
A e O p*)ma” —p%)— (ebabag” +57) (A
From (28) & (29), we obtain the amplitude of vibration of my
and we see that the vibration lags behind the periodic force by
an angle 6 given by (29).
Also from (26), we have

4 =]—i(sz +kotp —mop®) =

SB (n2® —p*+9b,ip)

1
=m2B~/(no —p’“)z-!-%"’pZ &
Nl
NN e vl (30)
C N my
~where tan =—~22jS)—§ (31).
2

Expressions (30) & (31) give the value of 4 which can be
found out rubstituting the value of B. We see that the vibration
Qbep

-p
In the special case when n; =na=n, b; =by=0 and . 0=6"
=0, the amplitude of steady vibrations will be given by
v 7
= M1 Mo 1
(AR
The amplibude B becomes infinite at (22 —p2?)2 =2

of m, is ahead of that of m, by an angle 6! =-'tan‘1

1., ab ro—-n+ = (for small values of nliz)

Since A-—* \/mg (n* —p%)

ma
this also becomes infinite at the above two values of p.
In actual cases by and bs will never be zero and, therefore,

A and B will never be infinite. A4 & B can be plotted with p and _

curve for each will show two peaks ab certain values of p deter-

mined by %1, 7a, b1, bs and k.

4

3




CHAPTER V
FOURIER’'S THEOREM A

1. Fourier’s Theorem : When several simple harmonic
vibrations of commensurate periods combine, they may produce
scme type of periodic vibration ; again any commn i i6
may be anatlysedz‘into simple harmonic \?,ibrati})'f: hid
mensurate periods. Fourier's Theorem is of great importance
in the synthesis as well as analysis of periodic motions

When applied to the rlifpblems in sound, it can be stated in t}
following way. L G

“Any finite periodic motion can Pe. expregind 45 the

sumof a series of simple harmonic motions of commen-
surate periods.”’

Mathematically it can be stated that if

‘ : Y is an riodi
function of time ¢, then oA

Y=ao+ay cos nt+as cos 2nt+-ay cos sptt---

by sin ni+by sin It +b, sin sppdens ... )

The above series known ag the Fourier
written as a series of only gine terms or
Thus if a3=A4, cos «, and bei=1=14

series can algo be

only cosine terms.
s SIn X g,° o

A8=Vm and tan o, = b

O N e (2)
So we may write (1) as i

Y=ao+ 4y cos (nt+°()+A2 cos (2%t+a(2)+

+4, cos(snt+m)+...
The sth harmonie vibrationig re . ) i

Dresentedby 4, ¢
1 208 (ni-«,), )

Thus if ¢
are found oyt ImGay
the help of (2) the amplityges. and ’ ze can caleulate with
fandamental and the differe Phase angles® of the
.series (8).

the fundamental one heing 4
b1, byooete., in series (1)

of com-.

D ——
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3. Evaluation of the coefficients : In order to find out
@o in (1) let both sides be integrated with respect to ¢ from
0 to T, T being the periodic time. From (1) it is clear that

the displacement y will repeat a cycle when n¢ changes by 2% ;

97
hence periodic time =27,
n
JE i T s=o
Then f ydt = f(bodt’]“j as cos snt dt
0 0 0 s=1
T 8s=w
—}—f bs sin snt dt.
@ g=al
T
TUE
But f cos st (Zt=—1—[sin sntJ ==l[sin 92s® — sin O] =0.
g sn 0 ST

T
75
Also f gin snt dt= — l[cos snt]
4 SN

0

2l ]—(cos 93 — cos 0)=0

SN
L
.‘. a,OT= fydt
o]
T
S O - W
’ To

To find..out Gg let both sides of (1) be multiplied by
cos snt and integrated with respect to ¢ from =0 tot=1.
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Then
T Q
f 9 cos snt dt .
o A
p ©
=of(ao+a1 cos nt+ag cos Qb+ -as cos sni+) cos snt di |

T o 5
+f(b1 sin nt+bg sin i+ b, sin snt+-++) cos snt dt... (5)
J

I

Nowf cos knt cos snt dt, k being an integer
o

(]

T T

=.12[f cos (k+s) nt dH—f cos (k- s) nt dt] (6)

o

The 1st integral is zero for all integral values of k. The

second integral is also zero f )
or all int
k=s when it is equal to 7. Again ntegral values of %, except

f o T T

sin knt cos snt dt=2z| { sin ( :

) s snt dit Ql.fsm (k+s) nt dH—j sin (% - s) nt dt]
°o o

0o

=0 for all integral values of % ineluding k=
i .

Thus f(a,o-i-a% cos nt+a, cos Wnt+--e

s}

+as cos snt++) cos sut At

uE
+f (b1 sin i
| A nt+by sin 2nt+--..b, sin snt) cos snt dt

Byl oy

2

)

T

L ®
(4} ( )

4|t
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In the same way multiplying both sides of (1) by sin snt and
tegrating with respect to ¢ from O to T, we shall get

)

then in
g T
9% 5
bs= T y sin snt. di (8)

o

In simple cases, y=f(t) is known and hence the coefficients
can be calculated by performing the integrations (4), (7) and (8).
But in most cases, the function is not known and then We may

suppose the complex periodic curve to consist of small

portions of gtraight lines within known limits of time ; any of
the above integrals is then the sum of the integrals over the
different component straight portions. The process is, however,
very telious and there are easier approximate methods.
Moreover, the integrations can be carried out by appliances

known as harmonic analysers.

3. Analysis by Fourier’s theorem :

(a) Let the displacement curve of a vibrating particle be

given by y#O from t=0 to t=T/2 and y=Fk from t=—€ tot=1T.

T, s <—T/—
Fig. 18
T T2 GRT T T
Then @o TOJ ydi ) de_CT’ ydit T( kdt)_-2
T2 T2 O
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T T
a, _1 J ol %
G ) LB dt=5f cos snt di e EST0 ao——‘%fydt
© T2 o
T \ 9 T
= L Jin on] _ il L
snT T T2L 9 4 2 -
A I .
_sn,T[ 8in 25T —gin 33‘]=0. o » ’
ok
A T ; T as=%f’y‘3°s snb dt:jﬁ_} t cos snt dt
il : e A o 9
9 Tfy Sin $nt dt:iﬂf sin snt gt
% T2 i i
)/ 4 okl ¢ ( _ % f :
= [cos m) b f;[s—r;(sm snt)] s | sin snt dt N
- £ bl : o 0 (Integrating by parts).
o 18 COSED s
snTl ©%% 45% —cos S”] ! __glf[—t—sin snt+ 21 5cos snb ]
R 2
If s is even, b,=0 A T2 sn sn o
and it s ig odd b\s=_97{'_ L i =0
2 snd! % X “ 5
Hence, y=7i_lf[ . T 9 i
9 | sin nt+§sm 3nt+:}) sin Spt 4. ] bs-_—_-f[y sin snt db
(®) Let ais ' 0
y Placement i ¢
time from O to 7, nerease unifqrmly from oto % in ‘ 0 :

_2 T s 21r3+—;1—2 sin 27!3]
' T osn s°n

_ 2k
; ' snT

I

E Kk . Ao Hotk ;
e t g Thus y=§—7—t( gin nt+% sin nt-+5 sin 3n
| 1o
e ‘ +'-'—s sin sni+ )
. Here Y_ % |
it yzl\;t Hence all the ‘harmonics are present. g
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i

(¢) The displacement decreases uniformly from % to zero

in time from ¢=0to ¢{=T/2 and then increases uniformly from
zero to % in time from T/Q to T

¢

Fig. 20

When 0<t< T/

. Yirelgil 9
T/2—t TJg °" ?/';k*fct

when TR<t<rm

Dy

2kt
t=T/2 s " V= 5=k

. 3
: 1
H ==
ence do TJ ydt
(0]

0

T2

ur
=Of(k—%kz)dt+%/f(§l“t~k)dt
'12

z) (% (

Gg== e

8 j To k. Tt) Co8 snt dH—%J-(%kt— k) cos snt dt
Tl2
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SURERY 2[(k : )Tﬂ (E
=—||— sin sn? —|— sin snt)
TL\sn o sn T/2
T2
ft cos smit dt+9 ft cos snt dt]
0 T/2

- The 1st two integrals are zero.

T/2
5 475
Ao @ ¢ cos snb dt+ t cos snt dt
T/2
(o]
Butft cos snt dt
=2 i snt+ - cos snt + constant.
N 202
AT ¢ 1 7, 4k(
g = T2 ;7, sin sut+7 cos snt) +F(;7—z sin Snt
i
== 21 S €os snt)
s*n ayp)

4k 1 1 ) 4ky 1 1
= — i e = \——=-
T2(3”7L2 £9° S Wen® i T”)szn2 SEE sn)

8k :
TEsens (F:os !

Thus when s is even, s is zero and when s is odd

1ﬂk

a
s T Egig?

T/2 ‘ o
k : k
Now bs =%[f(7o—?l—ft) sin snt at+ /((2( i ) sin snt dt]
0 ooy )
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=12—,[(—£cos snt)le +(Jg it snt)T ; o((Z) y=2A4 sin nt from =0 to ¢=T/2; y=0 from t=T/2 to
N 0 Y T/2 .

t=T :
- T/2 T % (Approximate curve of this nature is obtained in half-wave
—T—(ft sin snt dt¢ - jt sin snt dt)J rectification of alternating current)
[

T/2

ok .
T[ = (cos s:t—l)-i-;L(l_cos s7)

o/ [ 7 i | i3
5 ‘ft sin snt dt—ft sin sn¢ dtn , y /"\
(2] d

T/2 ‘ et i T/2 F
T/2 | 4 . :
: . . 9 ‘ Fig. 91
Agamft sin snt dt—ft sin snt dt : |
2 T/2 T AT/Q
: 1 b ao=§1fsin nt dt=ivfsin nt dt
== L ! . Iy
( n €cos snt+82\nz 81n Snt,) 2 _.(___ o 1 T [ 0
0 e iy om L LY snt) /2
'=(‘£cos sn)—(—g.;. i : i =—-;i4—[cos nt]
2sm n Ez cos sn) ; Tn L
=___T_co,ssjr =—~4—[cos7t—1]
sn - sn on
0 ” _A
bs:%[“% cos s?t+2‘k\2_k( T X b { Fiow
5 1. T Vsn g, 008 sn)] |
: n T/2
=f[—§7}: cos 3w 42 _ 2% 2 4 as=%fA sin nt cos snt dt
n n n 08 875] ) o a
=0 : | :
MUY 1+)[cos(s+1)n—1]
Nowasas=%= 4k _ IR
farlisias ~TE=3) [cos (1-3) n—l]
-3
y=]f+45[ 1 0
2 ' 2|12 €0s it ;
A 8 +32 cos 37’Lt+”. =__2__(_Ai___F_g\[ cos(1+s).7!—1] {
1 4 /
~+5 cos sni A
g2 2 + ...... ] \ [ a=1)m - ]
\ : Tam (s_l)ucos( )r=1
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Putting s=1, the first term in the expression is zero.

O

(s=1z
. eos(s—l)ﬂ“1=_2' sin B)
S o e =1 2n(s—1) °
=() when s—1
Thus a1 =0
e l_l]
—az—,A [3”: T
a3=0
il
“4_A[5m 37:]
05=0
o] [ELNCRBRU 312" -
““"l[w 5n]

& demd [(s—kll)zz— (s—llm]

where s is an even infeger.

T/2
94 - £
Now, bg= Tfsm nt sin snt dt
4 ,
Tj2 . /2
i __A_[ <2 4
) sin (s 1)nt]— [

Ta(s+1). sin (s-i—l)nt]

(0]

. SR
Hence bs =0 except b, which ig 4 0

b Al 1
Thus y= n+n{<§ T I) cos 2nt+(5—%) cos 4dnt
1D oos 6 4
q 5’ cos nt+-‘--~-}+ 3 8in nt

4. Graphical method of analysis -
_Suppose we have time-displacement cypye for a vibrati f
a complex type and the periodic time is known. i

displacement is given by We know that

e e L 3
y=ao+ E @5 cos snt+ E bs sin snt
e s=Lse s=1
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Putting s =1, the first term in the expression is zero

5 si=1!
since <22 (s—1) =~ 1% Pl sm2(T)”
on (S"'l) 27{(3—T,v
=0 when s-1
Thus a,=0
g =i [—1 -—_]]
It =
azg=0
a4=A[—1 —‘1‘,]
57 3w
as=0
a.,:A[_l _1]
Tn 5%

& ag= A [ 1 - #
' (s+1)x (s—1)x
where s is an even integer
T/2 ]
DA
Now, bg= Ffsm nt sin snt dt
; 3
T/2

=Tn—(;‘4~—1)[ sin (s=nt |~ —4_T
0 Tn(s_‘-l)- e (S+1)7‘I,t]

= 0

i) 4{(1 ]
% 4 J!+.7t §_I) cos 27lt+{l 1

Hence by =0 except by which ig 4

+(1——1‘\, cos 6nut - A
7 5 }+§ 81n nt

4. Graphical method of analysis -

_Suppose we have time-displacement cyypy ;
€ 1o

a.complex type and the periodic time ig ko ' a vibratioy of
displacement is given by Wi T know ¢, %
! a

S=® ]
s= AL
{! 1/=“-0+Zas cos snt+- E'b ;
R < = s 81N spp

5 §) cos 4ng

" svhich they may be sup
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S T T
. Where ao==—1-fy dt, as= gfy cos snt dt and
T e 1
0 (0]

~ T
bs =,%fy sin snt dt.

0

To know ao, the area between the curve and @ axis from

“t=0, to t="T is found oub by a planimeter ; then ¢o is the area

caleulated divided by the periodic time b

To find as, ¥ i multiplied by cos sni and the product is
The area bounded by the curve and z-axis

1)
from t\1:=0, to t="T will be fy cos snt. dt from which as is found
. !
out. In a similar way the product of sin snt and the displacement
y, for different values of t is plotted against ¢ and the area
between the curve and @ axis from t=0 to t=T will give the
T

value ofJ(y sin snt d¢t and hence b can be caleulated. The method

plotted aganist t-

o
is however very laborious.

5. Importance of Fourier’s theorem in Sound : When a
brates simple harmonically, the sound emitted

source of sound vi
But in most cases, periodic vibrations

by it is said to be pure.
are complex. Two sound sources vibrating with the same period

will be no doubt concordant, but the quality of each will be
determined by the component simple harmonic vibrations cf
posed to be composed. If the displace-
urve of a periodically yih=ating body, say, any point on the
string of a musical instritnent is known, we can find out the
different overtones present and calculate their amplitudes, phases
cte. In other words, the theorem enables us to study quantita-

tively the quality of a musical sound.

ment ¢

—



.depend on the elastic properties and density of 4

disturbance will travel outwards thyq
.called wavelength.

CHAPTER VI

LONGITUDINAL WAVES IN AN
ELASTIC MEDIUM

1. Progressive waves: TLet A bhe the outer surface of a
prong of a tuning fork in an elastic medium like air, Histtas
consider the state of particles of the medium in front of 4 when
the fork vibrates. ‘First, let us consider that the prong be given
a sudden velocity towards the right. The layer of air in ﬁ‘Ont
of 4 undergoes a compression which will reach on a contiguous
layer producing thers a compression, which in turn will act on
the n2xt layer and so on. Thus a pulse of compression wil] travel
towards the right. Again if we consider the fork to he sudcenly
moving towards the left with a large velocity, there wil] G
fall of pressure in the layer of air in front of 4, Particleg from
next layer to the right will move towards the Jeft due to thig
fall of pressure and this process will 80 on from layer to layer;
and thus a pulse of rarefaction will moye rightwards. The
velocity of propagation of this compression and rarefaction wi]

he mediym,
If, however, the vibrations of the for} are simple harmop
¢,

. of the forlk will
1tS mean position (jtg
ection of DProragation 6f
e particle ig forceq by
particle wil] he repeated
fork ang in thig time,
bration of the fork, the

a particle of the medium at any point ip front
have simple harmonic motion ahoyt
position when undisturbed) along the diy
the wave. Since the vibration of ¢}
that of the fork, any displacement of the
after every complete vibration of the
t.e, the time period of *a complete vi

The wave as described above ig 4 longitudsy
wave, the vibrations of the particies of the megj
the direction of propagation of the Wave,
particles uf the medium everywhere on g,
the direction of propagation are identi
wave is a plane progressive wave,

1l progrossiye
U being along
splacementy of
€rpendiculyy o
BV instant, e

If qi
plane P

ugh a distance Which jg

£

A _f
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‘\

2. Tharacteristics of a plane . progressive wave of
simple harmonic type : . |

(1) Every particle describes simple harmor‘uc motion alon%
the direction of propagation of wave, there being a change of
phase from poin t6 point.

(2) The arrangement without changing‘ its type advance?s
with a uniform velocity, its value depending on the elastic
constant and density of the medium.

(3) Any particular displacement at a particular instanﬁ. is
repeated at regular distances called wave lengbhs ; the ve]oc‘nt‘,y
and the acceleration of the particles of a wave length apart from
one another are the same. :

(4) If N is the number of vibrations per secon?{ of a palrtl.de
at a po?nt along the wave then NA=c¢, where ¢ is the velocity

of the wave and A=wave length.

3. Equation of a plane progressive wave : Consider a
C.t l(ale moving along the positive direction of = with a
wayve 6o

locity ¢. Let the displacement at any instant ¢ at =0 be
ve )

1=a sin nt

Fig. 22

To find the "displacement at P at the same instant, we must
{ IJber that the disturbance has travelled without change

r(fﬂ?e:zl from O to P with a velocity ¢. Hence displacement at

% 2 time (¢ —a/c) is the same as that at P at time ¢. Thus the
a

motion at P Will»be given by

E=a sin n (¢ —/c) 1)

If the wave moves towards the negative direction of the

is. the displacement at P at will be the same as that at O
x;:x:s:::[c geconds. Hence the displacement at P in this case
afte .

ill be
¥ E=gqsinn (t+a/c) | (2)



CHAPTER VI

LONGITUDINAL WAVES IN AN
ELASTIC MEDIUM

1. Progressive waves: Tet 4 he the outer surface of a

prong of a tuning fork in an elastic medium like air. Iet yg
consider the state of particles of the medium in front of 4 when
the fork vibrates. "First, let us consider that the

prong be given
a sudden velocity towards the right.

The layer of air in front
of 4 undergoes a compression which will react on g contiguous

layer producing thers a compression, which in turn will act on
the next layer and so on. Thus a pulse of compression will traye]
towards the right. Again if we consider the fork to he sudéenly
moving towards the left with a large velocity, there will' be g
fall of pressure in the layer of air in front of 4. Particleg from
next layer to the right will move towards bhe left due to thig
fall of pressure and this process will 8o on from layer tq layer;
and thus a pulse of rarefaction wil move rightwardg, The
velocity of propagation of this compression and r

; g arefaction i
.depend on the elastic properties ang density of th

e medium,
If, however, the vibrations of the fork aye

a particle of the medium at any point ip front
have simple harmonic motion ahoyus

8imple harmonie,
: of the fork will
1S mean Dosition “(jtg
ection of Propagation 6f
e Dparticle ig forced by
particle wil] he repeated
fork ang in thig time,
bration of the fork, the

position when undisturbed) along the diy
the wave. Since the vibration of th
that of the fork, any displacement of the
after every complete vibration of the
2.¢., the time period of #a complete vi
disturkance will travel outwards thyg
.called wavelength.

The wave as described ahove ig 4 longitug
wave, the vibrations of the particies of the me
the direction of propagation of the wave, If diSplacement :
particles uf the medium everywhere op 4 Dlang hean S :
the direction of propagation are identical a4 any instantartho
wave 18 a plane progressive wavye, » the

mal progressiye
dium bejng along

ugh g distance Which ig -
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2.> Tharacteristics of a plane . progressive wave of
simple harmonic type : .
(1) Every particle describes simple harmoniec motion along
i : i hange of
i i ropagation of wave, there being a c
the direction o.f o) ? g
phase from point t0 point.
(2) The arrangement without changing its type advanc?s
with a uniform velocity, its value depending on the elastic
constant and density of the medium.

(3) Any particular displacement at a particular inst?nt-tis
repeated at regular distances called wave lengths ; the vz ??1 y
and the acceleration of the particles of a wave length apart from
one another are the same. :

(4) If N is the number of vibrations per secom.i of a pa,l):b]f;le
at a pofnt along the wave then NA=¢, where ¢ is the velocity

of the wave and A=wave length.

3. Equation of a plane progressive wave : Consider a
c.t chle moving along the positive direction of z with a
wave to

locity c. Let the displacement at any instant ¢ at =0 be
ve 3

1=a sin nt

0 > X P

Fig. 22

To find the ‘displacement at P at the same inb:tant, we mush
o fin hat the disturbance has travelled without change
L alOto P with a veloeity ¢. Hence displacement at
00f fzrtniamf:(();n— @/c) is the same as that at P at time . Thus the
a
motion at P Will_be given by k
&§=a sin n (t —x/c) Q)

If the wave moves towards the negative direction of the

is, the displacement at P at ¢ will be the same as th.at at O
a:;:xw{;lc geconds. Hence the displacement at P in this case
after :

ill be
Vi E=gq sin n (¢+2/c) < (2)
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9me 0 Hence C'G'=(m+‘+6w+£§ oz )-(az:—l—é‘)=6a:-l-d—E oz
Since n=2xN= 0% ;. dz dx
equation (1) can also be written as 51 Thus the increase in the thickness of the layer is % oz and
. 2mc
§=a sin 7 (t—a/c) o if there is no otion perpsndicular to the direction of
=g sin 27" (ct—2x) ) propagation, the increase in volume is 4 (%f— 0x where 4 is the
and (2) as g area of ABCD or EFGH. :
. d§
oA . 2_7; . A = 61; -
o e e (ct+2) - (4) Hence 'Volume strain— 000 _\dS
Aoxr dzx
4. Longitudinal plave progressive wave in an elastic and the excess pressure causing this strain will be given by
medium : " k ds
= ==
-Let ABCD be a section of the elagtic medium of ares 4 az
perpendicular to the direction of propagation of wave. Leb, where 0p is the excess pressure over normal undisturbed pressure
EFGH be a parallel section of equal area 6z apart, ;.. CG=6z and & the modulus of elasticity.
% a 2 — 0L,
éx being an elementary thickness of the layer, Consider now the equilibrium of a layer of thickness 6z of a
A E v ] Al gl seetion ABCD of area A per-
/A pendicular to the wave : If %&_ A Al
B ]F ! B! F;\ z

is negative, 4.e., there is a {
compression at A, there will :
be a force on area ABCD : B |B'

perpendicular to it due to

! a G the medivm on its left- :
Fig. 23 hand side and this force on l
' i i i D :D
Displacements of ali particles on a plane perpendicular to 4o ABGDH;OW*”&S the Tlgh_t 18 — e b L B
~direction of propagatien are same at any instant Bite o — Ak cTa; Similarly the force , e
; 5 ’

disturbance, let the particles on area ABCD he displace

d to & af on A'B'C'D’ by the medium on

any instant, 50 that A'B'C’'D’ is tht? new displaceg Position - R 3¢
similarly particles on EFGH are displaced tq the new p ; Vi e
" represented by E'F'G'H'. Y i [ — Ak (d—a;-l-d—xgxé,v) : b/ +6 3
Fig. 24

Let co-ordinates of C and @ in the initia] Dositiong he 4 et e\ 28 40 (”_"54-‘1_2553;).
248z respectively. Then those of ¢’ and @ will be Z+€ ang b
an

q

This force is in the direction right to left on A'B'C'D’ due to-
medium on the right-hand side of 4'B'C'D'".

5

=
m+§+6.1:+% dx respectively.
~ - dwm

e
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Hence the resultant force on the layer in the posit;ive
direction of z ig

—ar {4 (%+%§ oz)

1”& ; o
=A% &5 8z
k dz® "
If Po is the density of the layer, then the resultant force will
be equal to P, Aaxd;:é
3 i :
Hence Y
di& SRR
pO dt2 = k .(l_xé

Or A& _ Ld2s
: el WS
at®  podx?
J2ENN a2

O (_;= =) (._‘
% at? dz? o (5)

where ¢ ik
(o]

Solution of equation (5) is given by
S=filct—z)+fo(ct+a)

where fy and f, ars two arbitrary functions and ¢ is the veloeit
of the wave ; filct-gz) represents a wave travelling in ths;

positive direction of x, while fz(ct+m)
AR { represents av
travelling in the negative direction, e

The treatment is applicable to al] cases
waves of small amplitude. In 4 liquid or g
modulus is the adiabatic byl moduluys.
bar of small transverse
Young’s modulus and fo.
lateral forces are brough
modulus. The cases of

of® plane Progress.ve
gas, the appropriate
; : In the cage of a solid
dlfne'nsmns, the modulug is the
ar? unlimited solig medium whey
t into play the modulus is the

solids are treated Separately ip

e large
axial

chapter. this

5. Acoustic pressure : Consider g sim
in a gas travelling in the positive directi
The displacement at z is given hy

ple harmonje wave
on of & with 4 velocity ¢

§=a sin 27” (ct—2)

= S SRS SN

i .
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&
)
. d§
and the excess pressure dp= —k—
dx
® _27ak

21
. cosT(ct x)

Hence the meximum excess pressure

5 o ak
pMaT= 2

(6)

This is known as acousbic pressure. Sometimes acoustic

pressure is expressed in its root mean squared value. The

R. M. S. acoustic pressure can be calculated as follows.

qr
2 9
Mean squared pressure=%f (27;—&]6) cos® “I—\n(ct—a:)dt
(o]

_ 1(2mak\® @=1(2«Tak}2
T( ) )'2 ADY

R. M. S. acoustic pressure= Vﬁ.w;k (7)

° 6. Relation between displacement and exeess pressure :

Let ¢ be such that, 27;_05;_27,3 where s is an integer, then at

that instant, from (3) and (6)

A B (o]
——e————> R
Fig. 25
o . Qn
§= — @ sln Ta: oo (8)
and 51)_:2_71@ cos [2—75(— x)]
A A
_ 9mak 9T b
S Co (9)
Plotting & and &p with @, we gef the above curves.

e

e
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Hence the resultant force on the layer in the posif;ive
direction of z ig

4k % {— ap (1 O o))

=AF ;Z—;’;E 8.

If Pg is the density of the layer, then the resultant force will

2
be equal to Po Aéx.f-é—tg.
Hence
G dz?

{}i§= kd2&
dt®  poda?

a%& 2 (22§ y
T e ()
where ¢2= L3
Po

Solution of equation (5) is given by

§=f1(0t“$)+fz(ct+x)
where f; and f5 are two arbitrary functions and ¢ i
of the wave; filct—g) represents o wave tra
positive direction of 2, while f2(0t+m)
travelling in the negative direction,

The treatment is applicable to all cases of
waves of small amplitude. TIn g liquid or g ga
modulus is the adiabatic bull modulus.
bar of small transverse
Young’s modulus and fo:
lateral forces are brough
modulus. The cases of

s the velocity
velling in the
represents a wavye

plane Progress.ve

8, the appropriate

. In the cage of a solid
dimensjong, the

t into play the modulus is the

. azzal
solids are treateq Separately ip

chapter. this

5. Acoustic pressure : Consider 4 sim
in a gas travelling in the positive directio
‘The displacement at z is given hy

ple harmonje wave
0 of & with 5 velocity c.

§=a sin 2}%‘ (ct—m)

=

=

SE—_—— CWERER= D= N

R S
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¥4 d§

and the excess pressure dp= —k%

% _2®ak

om
5 cos~)\—(ct x)

Hence the maximum excess pressure

oQmak

S pmazr=

(6)

This is known as acousbic pressure. Sometimes acoustic

pressure is expressed in its root mean squared value. The

R. M. S. acoustic pressure can be caleulated as follows.

T
A 97
Mean squared pressure=—%f (Ql—ﬂ) eoszT(ct—w)dt
o

_ 1{2mak\® g=1(2:mk)2
_T( A )'2 2\ A

o = % 72
.. R.M. S. azoustic pressure= x/‘B..wa" (7)

-

6. Relation between displacement and execess pressure :

Let ¢ be such that, gJ;V—Gt=2ﬂs where s is an integer, then at

that instant, from (3) and (6)

A
S

Fig. 25
§= —a sin %\Ew (8)
=2—§\“——k cos Z;g uE (9)

Plotting & and ép with @, we get the above curves.
3

e
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From the curves we see that the pressure is nérmal
undisturbed pressure at maximum and minimum displacements ;
it is maximum at points such as 4, B, C ete., and minimum at
41, B1, Oy ete., where the displacements are zero.

T
7. Bulk modulus of a gas and velocity of propagation :

‘When a sound wave passes through a gaseous medium, there
are rapid pressure changes at any point in the path and the heat
generated or absorbed has not sufficient time to be exchanged

with the outsiée. The process is adiabatic and the gas law in *

adiabatic conditions is

¢/ .
pv =constant, where ? is the ratio of two specific heats.

Differentiating,

Y s )
v Sp+pyy’ " Loy=g

whence ¥p= —'u@

and hence velocity of the wave ig given by P
S
Po Po Ste (10)

8. Energy of plane Drogressive waves -
of a layer of elementary thickness oy And M unitieross e ctional
area perpendicular to the direction of bropagation of wave is =

a5\ 2 T
Pa(e
%owdt)

Kinetic energy

u,ince fOlf a wave tna elli i h
S AV ng in § e-l-'ve i i
L dlrecblon of

§=ax sin QTWCI:“Q;)
4

K. E. of 6z at any instant

A sl O 8
3000L [-A\ COST(”-“’)J
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o~ Average kinetic energy of the layer per vibration

T
SO 2 cE 0k 2 2T :
o e U 2ot - 2)dt
=000z —3r f cos )\(c )
QTZOZG;Z J
= e /2 !
PodZ 22T
o o o
Tac 11
=p0(5£ TE—‘. ( )

| h a aae [)Otentlal energy per CyCIe (0] lbl at on can b
| l e verag f \% 1 (6] e
calculated n tbe fOllOWlng way. If the excess pleSSule 1n the

disturbed condition is dp, then average pressure 1s

e PoTlo T °F +7;°+6p =2)o+§£

where po is the pressure when the medium is undisturbed.

Since work done on a gas is pdv where p is the pressure and

§v is the change in volume, writing

Or, the average potential energy per cycle

- _Dbodz (" dE _k_§ f de dt.
1 et ! - i sz)
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Since ds_ _2%a
d

z A

T
5 fdg
oo —>dt=0.
% dw

+"+  Average potential energy of the lay

om
cos = (¢t —
) (ct—z)

o, er 0z per eycle
T -

e 1 dk\2
T (") dt
dx

96 T
=Poc oz (" 47nq® 9
or J Tfrcosz *)zr(Ct-.'c)dt

—Poc® 4% T
or T.z Oz

=Pyoz 2720242 gacction
12 .
®
Hence energy density, 4.6, o
wave front » CNergy per unit volume of the
=27;2p0 (A
(13)

Now, intensit
’ y of sound ener
8Y at a poin j

18 the

£ 00 Y ; Lt vt
unit time ; hence it is the energy c;ﬂiu:ect’;w i
ained in

cross-sectional area and of length ¢

energy flowing
Propagation per
a volume of unif

2P 2,2
oC a
%

"« Intensity=

Q
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JEnergy flow per unit area of the wave front can also be
caleulated in the following way.

At a poipt = along the wave

op= —lcﬂf
ax

*  Rate of work done per unit area of the wave front

ag .
. =0p. d—;
ArdCads
de " dt

Hence average work done,
7/
k( dédé
= ——| ==.=Xadt
Y= @) v d

c

If £=a sin gf(ct--x), then

ds 27a 27‘"(ct —x)

AT cos
(=
B o,
nd %;—_—_27’_‘“’ cos 7(015—:1:)
T
an2a’ch 22
= cos ct—x)dt
B (e1=2)

e 9x2acl _ om2a2Poc®
Y 2

TR 2

9. Relation between acoustic pressure an energy density =

" . From (6), acoustic pressure

omalk _ 2napoc”

OPmax = v N
\2
op, Cone)® _dmlateoely N
’ Intensity A? om2Poc’a
= onc
.*, Intensity or energy flow per second per unit area of wave
2
front= ;[(_’_5pmam) J o W (15)
‘ "L Poc

[
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10. Plane progressive wave in a solid rod ;

Let us take a bar whose length is large compared with the

lateral dimisension and C i e
on A\ i v'
I ¢ i e sider trans erse :SGCtIODS ibrate

A ¢

b4
O—

q---__..__-

L

Fig. 26.

Let AB and CD be \
two perpendiculs, i
aS: and z+0z respectively where 3z is a; S:l(;blons % th? EaTASe
uppose due to a longitudinal wave along the bment B
ar

the displacement of AB is & . at any instant

then that of 0D at the same

inst i c+%
ance will be g+d— 6z. Hence the

2 altered thickness B'D’

is SI—I—QE(SJ:.
dx

07 b} the longitlldlnal SGr = 6
d 2/62:.

Now consider the f

; orces actin : X
of thickness dz and area A, Straing on a slice of thy material
everywhere on the section ABCD ARE

abmisd—E ; hence the :
dz ’ e the fnagnitude of

force on area ABCD due to e
material of the bar lying on the left-

hand side of ABCD i d§
CD is AEde; Wher?

B is 'the Young’s modulus of the
material, this force being along the
negative direction of % axis. C G

The force exerted on section

EFGH hy portion of the bar lying on th Fig. 27
: e rig

ht hand side of

. negative directions respectivel

\
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EFGH will be towards the positive direction of # and is equal to

45 g )

a’s
~—.01.

—ABZ 1+ 4R
dz dx

Thus the: resultant force on the element in the positive direc-

' tion of @ axis.

A2E dg as
(artsrr A _‘-')—.4 13
(Aﬂdar:2 x Eda: Ed:z:
M ed RS
_Adez .

This must be equal to the product of the mass of the element

and its acceleration at the instant,

L asé azs
@ S§p— APSz——
ors Ade, =4 xdtz
¢_Ed%¢
oy “Gt® P dat
2 EE
or, %ti = 023—%; o (16)
“. ~ where ¢= JE/P

As in the previous case of a wave in a gaseous medium,
the solution of the equation (16) is §=f1(ct—x)+f2(6t+x)
which represents two Wwaves travelliqg‘along thelogs_itive and
y with a velocity c= v E/p-

city of sound in an unlimited solid medium :

we have assumed that lateral dimen-
in comparison with its length. In

11. Velo

Tn the foregoing article,
sions of the golid bar are small
an extended solid, the waves may assume transverse as well as
longitudinal character and the vibrations are complex.

Tiet us consider the case of plane waves propagated through
d medium in 8 direction OX. In fhis case no

an infinite soli ‘
n takes place and the aporopriate

lateral contraction or exbensio
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modulus will be the azial modulus X
E and the wave equation will he

dt* P dx?

so that velocity of propagation C; is given by 01=\/2§,
)

Let us calculafe the valge of the axi

: al modulus in terms of
Young’s modulus &

and Poisson’s ratio o,
stresses P, P; and P, are applied simultaneous]
O0Z respectively in the medium, OX bhe
propagation of the waves,

Let us suppose
v along 0X, 0OY
ing the direction of
The strains along OX, 0Y, 0Z are

2. . g
thenE UE" UE'
o bt Lac I oP_oP' P

T and — 7 ?-’rﬁ respectively.

Since due to the presence of the medium no strain takes

lace along OY or 07, — 2L P’ _oP'
place along or E+E

z 0 whence oP =1P'(1 - o).
Thus the stresses applied by the medium itself to prevent strain

perpendicular to OX is P'=p, _© ]
(o)

But strain along 0X ig

13_261)':13(1_21"’_):13{(%}

J8 gl i) 1-¢/ E (1-0)

This strain is diﬁ‘crent from what it is in the absence of
consfraints perpendicular to the length ag in the cage of
thin rod. :

We obtain the value of axial modulus ag

# E(l—o-) 1
(T=20)(1+0)

The -elocity of propagation O, frd he s !
aves in e
medium is then an unlimifed

A o T 5y

in place of Young’s modulus -

: 75.
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ft X is expressed in terms of bulk modulus % and rigidity

3k+dn
modulus 7, X=""—>
3k+4n
whence Ci1= 3p

If C is the velocity of propagation of lopgitudinal waves in

" athin bar,

Ci_. (L—o0)
[¢ —*/(1—20J(1+o)
71> 0.
g, 1= Vo763 -oximately and we see that O3
F?r c="4, 61— v/9°63 approsim

If 6="'5, C1 has an infinite value.

(-}



CHAPTER VII
STATIONARY WAVES

[)rOUreSSIV wav v )X 1” e wha
(=] € aves tla’ elhng 1n OPDOalﬁe dll‘ecﬁlons oduc h
) ¢
ar kno wn as Statlonary waves. In t‘:hIS ty o} t
]]e f waves, he

amplit ibratit ;
s u(.]e % Vl.b,l.atmn at any point  in the path of th
waves is a pefiodic function of e component
Nodes there is no vibrati ;
ration at all, whe

0 a ’ reas at S
pomf‘js called Antinodes, vibration takes 7l ?ertam other
amplitude. - place with maximum

A

B
Fig. 28
Leb two simple harmoni
) ) nic progressive v )

amp.htude,. period and magnitude of velocity Z:;’esl .of identical
.straxg.ht l}ne, ‘one in the positive direction ang Z; In the same
negative direction of . ILet the displacement af e other in the
any instant of

a particle of medium at z=0 ¢
s 5 ] 2 ue to the 5
?egatlve d.lr'ectlo.n be a'sin 7t and that due ;Zi: travelling along
in the pOS.lblve direction be a sin (nt4-8). The e Wav.e travelling
at a point P at a distance 2 due 4o :hbhe f(iixsplacement
i e :

§,=a sin n( t-}—?) and that due to th ARG
¢ e second wave ig

§a=0 sin {n( t_Z;)+ 3}'

Hence the resultant dis
placem
D at time ¢ is Rl Sararttie

bt timss e = )

two waves af

Skl ()

At certain positions called ’

. displacement afte
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Q\

N ; :
Thus the amplitude of vibration is a periodie function of @.

The yibration will be maximum when the amplitude is 2a or — 2a-.

nTy _
c

The amplitude will be 2a at 21 given by

o

an integer. It will be —2a at z. where %—g=(2m+1)n.
C 4

%:277;75, m being

Thus positions of consecutive maximum vibrations are separated

. . Cyg__ CW A
by a distance Zz—7 ===,
4 175, T oaN 2

=(2m~+1)7/2.

Again 4 will be zero at ¢, given by l‘%l _%

The next position of no vibration is given by

o ZL_:;& —8/2=(2m+3)x/2.

Hence positions of no vibrations are also separated by a

) cm :
Sistance @s — %1 = —= )/2. Thus we see that successive
n

antinodes or successive nodes are separated by a distance M2.
q
Also it is apparent that the distance between an antinode and
next node is half this distance, 7. €., Al4.
1t AB is a rigid boundary and stationary waves are formed

by ;ha incident and the reflected waves, since the resultant
displacemfenﬁ ot z=0 is always zero, we have 4=2a cos 8/2=0

whence d = .
Thus the incident wave cuffers a phase change of T in its
r reflection. In this case we have as the

expression for stationary waves in front of AB

£=2%2a siﬁ@—: cos nb @

pubbing d=m in (1)

7 9mcth ‘
or, &=2a sin Z;Tx cos—f— (3)
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In the case discussed, we have considered thaf reﬁg(;{‘:ion
takes place from a rigid boundary with a consequent phase

change @. If however, there is no change of phase at reflection,
the resultant wave will be given by

.2
E=q smy(ct+w)+a sin 2Iﬂ(ct -z

2Ty . 9met
Ccos 2 sin X o (4)
> 27et
TEE Sin % (‘5) s

H bl i nx
ere, there will be nodes when oy =/2, 37/2, 5x/2 ete., and

! Q7
-antinodes w e
antinodes when o 0, =, 27 37 ete. The nodal or the

antinodal distance will be the same, 2.e., equal o /9 i

If we plot amplitudes 4:=9% sin g z and 2a cos 2T z
A L 7

ith 27
with ==&, we shall get the curves for the two cases as given in

fig. 29 & 30.

Ax= 2a Sim g%tx

Fig, 29
Thus, if through one nodal distance the amplig i
in the next one it becomes negitive an i S

T d vi
the vibration is in the reverge direction V10fe Versa. Henee
Since £=4, cos o ctor E=A_ gip 2% R node.
S x A — g 8ln T ¢t the phaSe of b
Vibrationg

e o, e
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rem&ins same until 4, changes sign. Thus from one node to
next node, the vibrations are in the same phass with changing

o |

e

Qo

<,ll
o
é
I

Fig. 80 u

°

amplitude ; there is an abrupt change of phase by % in the
vibrations throughout the next nodal distance.

9. Stationary waves in open and closed pipes : Iet us
consider what happens when a half wave of compression
reaches the open end of a pipe. The front portion of the
compression pushes air particles outside the opening and spreads
out in the air cutside in which maximum displacement without
restraint is possible. As the front part of the compression has
spread out with fall of pressure, the rear part of the compression
in which there is increased pressure pushes out the air in front
of it rapigly, causing a fall of pressure behind it. The air particles
situated very near to the open end will move forward and this
state of affairs will be transmitted backwards from layer to
layer cousing rarefaction to travel inwards from the open end.
Hence a half-wave of compression is reflected back as a half-wave
of rarefaction and a forward displacement of compression is
reflected back as a forward displacement of rarefaction.

Thus the reflection at the open end is due to the openness of
the medium outside the end. The greater the expansion of the

" compression, the more complete will be the reflection: The

pressure at the open end is normal due to the joint effect of the
incident and the reflected waves.

But in actual fact waves are propagated outside as spherical
waves ; otherwise no sound could be audible outside. Hence
there must be some sort of density variation even at ths mouth
of the tube though less than what it is inside. As a consequencu

0
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there is a loss of energy and the reflected wave has a dimirdshed

amplitude, so that sound ultimately dies down unless maintained

by an external source. The antinode cannot be exactly af the

open end ; then in that case plane waves would have to be
transformed into spherical waves suddenly at the antinode. DBub
since such a sudden discontinuity is not possible, there will be
a gradual variation from one to the other type of waves and the

spherical waves have a centre slightly away from the open end.
Rayleigh from theoretical considerations found (in the case of

a tube fitted With an infinite flange at the open end ) that-a

correction term 0°8247 must be added to the length of the tube
where 7 is the radius of the tube.

In the case of reflection at a cldsed end, things are much
simpler. Compression will be reflected hack as compréssion
and rarefaction as rarefaction. A forward displacement of air
particles will be reflected by the rigid boundary as a backward
displacement of equal magnitude. This is also evident from

the fact that the resultant displacement at the closed end i§
always zero.

Leb up suppose a tuning fork to he vibrating at fhe open
end of a closed Dipe. ‘

Let a wave of compression be transmitted
towards

-the closed end by the vibration of the fork ; this
compression will be reflected back as com

end and in travelling outwards will
end as rarefaction which

pression from the closed
be reflected at the open

i again will travel inward d
striking at the closed end travel outwards as g

Thus a complete wave of compression and rar

formed and if in the meantime the fork executes
vibration, ;

a rarefaction.
efaction will be

: one complete
there will be resonance and consequent r

diak; \
the open end. adiation from

3. Stationary waves

in pipes: The
equation is

general wave

A pazt © gpe (6)
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When stationary waves are formed, the amplitude at @ is 2
function of  only. Hence we can pub

§=f(a:) o5 (7Lb+e) where € is a phase term.

2 d%E 2
S z) cos (nt+¢)
Then FTe n*f(z)

25 at
;%-: =cos (nt+€) d,_x—”f(x)'

S i
Substituting in (6) ot

2

2 d
—ngf(a:) cos (nt.[-e):a" cos (nt+ e) d—m?f(x)
or. L)+ =0. S

Soﬁ;tion of equation (7) is

. N { s
fz)=4 cos Zbcﬁ—[—B sin =~ A & B being arbitrary

constants.

. nT
Hence £=(Acos7—2—v+Bsm%) cos (nt+e) ... (8)

~

which gives the general equation for stationary wave.

(i) Open pipes : If a pipe is open at both ends, there will

be maximum vibrations and no density variation at the two ends,
e \

; c Sl = =], where
i. e.,%=0, tneglecting end errors) ab @=0and at & R

] is the length of the pipe-

6 (1 g 72450 o 22} con (4
But d;— c c c c

ag _
When x=0, EZ—Z’—O
£ 0="8 cos (ni+e).
’ c
Since cos (nt+€) is nob zero tor all values of ¢, B must be zero
mn

gl o nd in ™ cos (nt4-e).
dw- c v
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V4
s :
But L= =
u T 0 at also z=1
2\ e @i
or, 0___1% sin %Zeos (nt+e)

()

=sm where s=1, 2 3, ete.

smc
o ==
Jepct T
But 7=22%N, where N is the frequency of vibratiOn- of
the wave.
Thus on N =S%¢C
l
o so) 0
sl

Putting s=1, 2, 3 ete., the possible modeg of Vlbra.tlo
ns

are given b N—£ 2c @
R GO Gy

If a sound source emitting a note consisting of orf
of the above frequencies is placed a o DoTe

an open .
waves will be produced and the open pipe W1II)1 i end, stationary

Sonate,
(ii) Closed pipes: If the pipe is el
.zero for all values of ¢ at that point,

From (8) 9
0=4 cos (nt+-¢)
A=,

osed at g=, then & ig

Hence, £&=B sin 7% cos (nt+e),

ds _ 1 .
oy dx-o ab #=1 as density variation ig negligible there
as_ ne

I_Bu_t e s - cos (nite)

(i nl
or,l 0= > cos — cos (nt4e),

S

— >
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Hence, cos %Z-——O or, s /2, 3®/2, 5®/2 ete.,
since n=92xN
5 — _c_ R_c e C etC
AT AT i

which gives all the possible modes of stationary vibrations in
a pipe closed at one end. Here, harmonies whose frequencies

4%)}11'3 not possible.

Also the frequency of the fundamental in the case of a closed

are even multiples of the fundamental (i.e A

pipe is half that of the fundamental in an open pipe.

4. Energy of stationary waves : Suppose stationary waves
are formed in a pipe closed at one end and the fundamental
mode of vibration alone is excited. Then if the closed end is af
x=0, the displacement at a point « is

£=2a sin 2—7;% cos g—;rct from (2)

Now the energy of an element of volume Adz of the waves
at any instant is

E\2 2
B=3apso(S) +raeet(%) s,

iwhere A=area of cross section of the pipe]

The first term gives the instantaneous kinetic energy and the
second term the instantaneous potiential energy.

Hence
2. 2.2
= (16_7’.__ gin22®T o admct
A A
n? 2.2
4. 18%ssicy, 7 008 2% cos® —2’;6t cag (@)

To find the average energy the expression is to be integrated

with respect to ¢ from O to T' and then divided by T

T iy

9 i Qret ,,

Now %—‘ sin”fn)\—(;tdt=—1',s cos® ¥ dt=%
u.‘; O
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o'+ Average energy of the wave per element of length § 0:0 ig

472%q%c 7
AT s (S’ 22;c+cos2 g%m)

Y 47m%q2c2 :
—APS;chf_ T

Hence the energy per unit volume of the wave
_4n%a%c?

7.’ ot 0se (10)

.

: i gy is
» Whereas at the d
antinodeg %m always zero and

the energy is wholly kinetic.

At the nodes the kinetic €nergy is zero and the ener
wholly potential

To calculate ener f i .
gy of the stationary wave for the funda-

mental in a closed pipe, ex ]
> expression (9) j ; X
respect t0 # from 2=0 to g=73/4 (9) is to be Integrated with

A4
Now f Bln #(Zﬂ? °

[}

A4
’]Zf (l = cosﬂw)daz
S 2

. y A4
=Lllr—- 4 o
E(x 4.7:‘ COoS T)o T
=1/8
and also o
) A4
fc052 deac ;
(0]
Al4
f(1+cos 4”‘”)d
S A
w2
sh X ~
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Hence the total energy of the stationary wave in the pipe

VIR TS S ..
=5pX Ta o g\int ~+cos 2
APr2a2c3
| i £, 11
- (1)

Tt can also be obtained from the expression (10) which gives

a 0k . Tbus the energy

energy per unit volume of the wave as s

»' of volume AA/4 is

5. Energy flow across unit area perpendicular to the
dizection of component waves : As in the case of progressive
waves, the rate of work done

T

l‘ \ 70: Lg _,(_Z§
{ Iz ) dx di

Let, = take E= 4 cos &: cos (nt+e)

&
T
n2 A%k ne
Then w= —"2% gin @ cos 22| cos (nt-+e) sin (nt+¢) dt
C C
4 (¢}
| =10,
' Thus there is no transmission of energy through any area in
‘ the case of a stationary wave.
f 6. Longitudinal stationaiy waves in a solid rod : The
} wave equation for longitudinal vibration in a bar is as we have
‘ geen
A a*é_ Ha2S Ui
-4 PR —5a Ol
ok pdz dw
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Singe for a stationary wave we can write
 §=1(a) cos (nt+e)
s? that the displacement at any posifion z at ¢
given by the expression (8) i

. €., §=( A nr . nw !
cosks +B sin :) cos (nt4-¢)

’

time ¢ will be

Case (1). Bar clamped at x =0 and free at x=1 :
Here &=0 at =0 for all values of ¢ ‘
whence 4=0~ ’

=D N
»» £=Bsin - cos (nt+e)

s nB
Again —==== nw
’,g D= ;. cos ~ o8 (nt+e)

g
Now CB=0 atx =1

» a8 strain there ig Zero. :
cos El:-O
C

nl
e

Putting n=29xN, where B 5 el s 4
N=C 3¢ 5 N
4@’ g g cte )
Thus the fre
quency of the f
one end and free at the other isundamental tone in a bar fixed at
NS94l /h .
4 4N 5 s

All the odd harmonijeg may be present
Case (2). Bar free at both énds 3 .

g
H S g

ere 7 O0at =0 apg el { _

’ » Straing being z

regions. ero at those

._2\l, 2\l’ a 3 E;l eﬁc“
2. ., all th i
¢ harmonics may he Dresent, the f
fundamental being N=¢ feéquency of the
2

at one end.

= e
l 2&\/;’ double that for o bar fixed

¢ &
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o

Case (3). Bar free at both ends but clamped at the middle :
If we take the clamped point as the origin, then §=0 at z=0-

which gives 4=0
o

a¢ detl
Now %—0 atm—ﬁ.

i which gives cos nl_o
2

0 7&:3/2, 37/2, 5x/2 ete.
2

.

ChaaciEho
Hence N—,‘Z_l' of 9 etic.

This the odd harmonics may be present, the frequency of’

L sl s

the fundamental mode of vibration being 57 ?_
_ 7. Correction due to radius of a rod of circular section :

Tiet us take a rod free at both ends. The longitudinal dis-
placement ab any point at an instant ¢ can be written for the

sth mode of vibration as

. ST .
S=a cos .—Z— sin s nb

T & Kkinetic energy of the rod at any instant ¢ is, for the-

sth mode of longitudinal vibration is
l

4
az\*® STL o
S o4 (E) .dr=3PA X (sna cos o cos snt ) . dz

(o] (0]

=%pfl. s2n%a® —é cos? s nt,

A being the cross section of the rod.
Now we know that a lateral strain is always accompanied with
a longitudinal strain. Hence the transverse velocity at a point

5 =

dat dt

an_a (crr gﬁ) where o is the Poisson’s ratio and where 4 is
r
£ lateral strainy ,




88

SOUND

1
Thus the kinetic
ener
ey ergy of the rod due to fransverse

»

dn
. d. %p. 9rdr

(0]

1
c2.pmrt

| 2 (L)

o

I

G 7
NG prr® !'nzaznz
0

4 2 2 8T
g%, 08 s
41 12 S1n ] ©cos’s nt. do

Lo

=0%r%c® n2a%n?

4Z 2
T S ST (COBRSSI7L Ue

Potential energy of the rod at any instant
1
154 S(‘i’s)z. d
J dx

=14, 28

T 1/2. sin? snt

Since sum

of kinetic and potential energies is constant
1 2 9 9 Z

spAs°n%q 5 cos® spt+1. Edas?

= P
LAaeh L
12 2sm snt
4 _2
L8P O n2a?n® |
o 4 4

2
12 S g cos” snt=const.
Remembering a2

=4, we have after simplification

e e
w4n) Pn? cos? sni -

2
CE cos® snt
+ 7 Priotxtsins

2 s
o1 COS ™ snt = congh

cos? snt=const.

7 STATIONARY WAVES
. E;,tz p’.20?n2n282_
_yhence Pn* — =5~ S RPTERT 0

Ex®
T
n® = !

—_—
p(ro'ns +1)

Writing = gTE

—«/E
2
we get ey e
va1+ s
) =2_7£(1_7 nzszoa)
¢ N T 412
E

where e, Nl

: -ﬂz 20.2
or,y g =T (1+ -—4;7‘—)

Thus 1f the rod is

period' is increased by a factor

PP
1+ 1

For

fundamental will be changed to0

412
Hence the change will be g

e e
i .

o small value of Zl the change is,

>

the time period without correction

vibrating in its fundamental mode, the time

any other mode of vibration the time per

reater for a higher value of s. For

however, not appreciable

89 p



CHAPTER VIII
TRANSVERSE VIBRATION OF KSTRINGS

1. Velocity of transverse waves in a string :

An ideal string is a perfectly flexible thin filament of wire of
uniform diamete"and mass uniformly spread over the length

Let AB represent an element 8z of g string without stiffness

under a tension T' lying along X-axis when undisturbed. Let

A1 B represent the element when the string is displaced in the

plane XY. Let co-ordinates of 4,, B

; be @, y and
respectively. Let us suppose that the displacelrlne:t—:sx, 948y
a

and tension remains unaltered when the strin
plane.

re gmall
g vibrates in X ¥

Let 410 and B1D be two tangents a A4, and B
making angles 61 and 0. with X-axig.
element at 4, and By is T along 4
Hence, the resultant force on the e

1 respectively
Now the force on the
10 and DB, respectively.
ement along ¥ is 7' gin 02

— T gin 6,
=T(ta,n 90 =i ig
; »—tan 6,) [ 0, and 6, are small.]
o{ a2y
dw dw az) «
a?
e

But the force on dz=m. 8z @/
dt®

reflection fro

A RT AT L et . g—. S — — e ————————T— S —
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where 7 =mass per unit length of the string.

AL dzl/ S 3 CZB'U
56 Tc?a_z?’ z=m zdt—“

a
a%y_Td%

O dat®  m'dz?®
2
/ —=oF %},’g - (2)

where c= JZ
m

The solution of equation (2) is
y=F(ct —z)+ falct+) (3)

which represents two transverse waves travelling along the positive:

°

and negative directions of X axis with a velocity c=\/?_
j m

o

9. Stationary waves in a string :

Let th~ string be fixed very rigidly at =0 and =1; then
the two waves will be reflected back from the supports and will
interfere with each other.

Now.y=0 at =0 for all values of ¢. Hence

| ; 0= fa(ot)+a(ct)

Thus falct)= — falct).

Tence we can rewrite (3)

as y="Fa(ct — )= fi(evt ).
Hence both the waves are of the same type and after

m the two ends will produce transverse stationary

wayes.
Again y=0 at z=1 for all values of ¢.
5 0=filet=1)—fulct+1)
Or, fulct=1) =f4(ct+1)
Hence, s function is periodic whose value repeats after 2.
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’

Let us suppose that due to formation of transverse stationary
waves, any point of the string is vibrating simple harmonicél[?
the amplitude of vibration being a function of # alone as in th

e

case of all stationary waves. ~

Thus putting y = f(2) sin (nt+e€), we get

( A cos ~+B sin —) sin (nt+e) .. (4)

-

(See article 3, Page 80)

Now y=0at z=0 for all values of ¢

°

0=4 sin (nt+e).
Hence A=0. o

Again Y=0at z=1 for all valyes of ¢

0=2B sin %Z sin (nt+¢)

: : nl
which gives — =s®
g Z ) Where s=1, ONSIRf

Thus all modes of vibrations w
ith angular fre
Quency — and

multiples of it are possible. Hence we can writ
rite
Ui 2 Bg S]D

We can rewrite (5) as

S=c
= sxcl
Yy E(as cos —= -H)s sin Tct) sin 572 .
S=i l sos

(6)

2 sin (s@_*_e )

where @, and b, are new constants, such that B
Qg=
- 8

bl 8in e
and bs=DB; cos ;. y 2

(5)
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Equatlon (6) gives all possible modes of vibrations for a uni-
form string under tension fixed at z=0 and =1, the frequency of
the fundamental or the gravest mode of vibration being given by

* 0 9rN==

ory N=

. the frequencg7 of the sth mode is

s c NG/

N,=
a9l NV w

3. Energy of a vibrating string : If m=mass per unif

length of a uniform string and if ¥ the displacement of an elemenf
Jx at  at any instant, then the kinetic energy of the element at

that instant is $mdc (c(‘llf) . Hence the kinefic energy of the

whole string at an instant ¢ is,

1
W=2m s(@/)zdx
J dt

To calculate potential energy of the element 8z we can proceed
in the following manner.
Let 0s be the element in the dlsplaced position. The work

done against tension when the element is stretched from 6&r
to 8s is T(6s—06x) ; or the potential energy of the element is

7(8s — 8z).
From the figure (8s)* =(5y)+(5z)*

d 2y 1
- whence 6s=3x{1+(d—z) }g 8S s¥

—6:0{1 +§(dy) }, neglecting higher o
" Fig. 32

order terms.

Hence T.8s-2%z)= T8${1+?7 (‘—Zﬂ) } T3z

S
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o dy\® _{ .g_n_:c. cht )
( ) T 2 sin ;- sin =0q
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Thus the potential energy of the whole string is

l
T=2 )G
0

A + 4.7 ”;2“. 22, sin? 2—2@ sin? ( mz—¢o)+
l .
me® ((du\? A 2R e e s BinZl(SECY RS
e (d“x) B (7) 2 TNV M T
A :
& + s . klnﬂ . kqnm i}
terms containing sin X sin as factors where %,

l l

ok G=A/I
m

- The tobal energy of the string at any instant is WtV

SRS

Now the displacement at any instant at )

and /g are integers, but ky#%k,.

()

Now

l
j sin kl_.;rx_ sin —7# dz
(2]

when the striﬁg
is fixed at =0 and =1, is

=3 f{ cos (ks —%sg)- —-cos (e tks). }

S=o0
(27617
y= E(a cosﬂ+b gin STct . gip 5™ =1',[ l : L ﬂ‘]l
s=1 l 3 T ﬂ——(kl—kg) sin (k1 —ka). Tuilo

R v

l g x|l
which can be re-written as —%[m sin (k1 +ka) _l—]o =0

Y= ZAS sin. 372 L cos s?;ct d’e)

{

2.2

e [t 52 (28
()

where A4dg= Jas"‘—{-bs”

T e —

o 4 4,%, 99, gin® (cht ¢2)+ }
and ¢, =tan?! -a—“ {
% {
|
S=m $ l l
. g 8@, 1 % 2”31:) Yy
Now (%y= _ﬂTc s4. sin sl;—: sin (s];ﬁ_qss) : )y Now K YN el i) I(l 05"y d“’_'é
S '] (0]

s=1 3 i i ‘ 2




ND
96 SOU
202 i o 2”05_
ro Wt g et ()b 40t o (524
2 ._afsTch _
+"'+Aszs“.—ésmg(——L— ¢s)+ }
=
=mn202282Asz sinz(s—”lﬁ—és) ®)
41
s—1

In a simiiar manner, we can work out the value of the
n

potential energy at any instant.
1

me? [ (dy\?
Potential energy V=-—2_ S(%) de

6}

s=w

dy_ a2 )
But d—z=l—zsflscos 7 cos( 7~ %
s=1
S=D
. @2=n—2~2321432 coszw—wcosz(w—(}t ¢8)
RO R\ - l 1
S=

lqtx komx

~+terms having cos ] cos ] as factors where %k, and kq

are integers but %1 7ka.

1
But g'cos ka2 o hanty,
0

A 4
; 4
=% S{CAOS ?(k1—k2)+005 J'IZE (k1+702)}d.’2}
0

l G
== —gin = (ky—kq)
“s[n(kl—kz) T e

]
=0
0

l . Ty ;
+m sin = (701'*7752)]
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7 )
and ]. cos? s%dx= j-(l-i-cos QS%E) d.v=él
o 0 :

S= o
S
Potential energy V=Q%c— ngdsz cosz(@—‘f’s) (9)

Remembering that the frequency of the sth mode Ns=;~(l’-

and substituting the value of ¢ in (10), we get total energy W4V
S=w
=mn3] E A (§_c)2
gy
S=1

S=w
=M322A52N32 (11)
s=1

where M=m1, the mass of the string.

Thus the energy of vibration of a particular mode is propor=
tional to the square of the frequency and the squars of the
amplitude of that mode of vibration.

4. Plucked string

Let a string fixed at the ends be raised at some point of the
string through some small distance perpendicular to the length,
so that the two portions of the string form two sides of g
triangle and then released. The string is said to be plucked and
vibrations resulting ﬁhsereof are due to plucking.

l
s=1
f .. The total energy of the vibrating string at any
instant, WH7
' S=cp
_mm2c? 2, of . o [sTct o (smct
i 28 A {sm (T—¢s)+cos ( ; —¢3)}
s=1
2 2‘9:@
=W‘_02 243
al S AR (10)
iy s=1
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Now for a string fixed at =0 and @ =1, the most general

d’y _ «d%y . 2
golution of — = is as we have seen
5 a? dg?

§=w 4
Y= E (as cos s-;—ct+bs sin s%t) sin %’4

s=1

Let the string be plucked at ¢=h. et % be the displacement
at h at the instant of plucking.

Now 2‘:“0 at t=0
S=w .
Bt %=2(_as-&;6 Bin SMt_H) s_nc cos %) sin 222
l l
s=1
Hence at t=0 %
d"/ m-Z‘ b gin o8
_bl%g sin —+ bagnc i Qﬂx_!. ......
+bss% sin M;—m'*' ...... i
‘Since this is true for all values of z at t=0,
b1=bz=b3"'=bs="'=0
‘Thus for a plucked string, we get
S= m
S sTet
Y= @ sin — cos ——
! l
s=1 ‘
. T wet o0 Dk )
=a, sin - cos T_+a2 sin T‘” cos f’lLCt_i_ ______
+:--4a, sin 7 cos s—"f—t+
At t=0, y=f (=) for any value of z ig
=04 sin ’%-l—ag sin 2_’;_’”-1-
+...a, sin S_Jtz_a:+
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To evaluate @y, multiply both sides by sin STZ and integrate

; l
YT respect to @ from £ =0 to z=1.
Then as we have seen earlier
Z~ e
!a,s, sins%%(as sin §?’dz:=0
0
when s is-an integer but s,
- l l
Hence, gy sin_s%{:dz = @ —‘sin"’ ?}dz:as%
0 4 0
l
e Or, a, =2 s'y sin %4z
l l
0
(k)
i /17/1\7’\
—x —

! :
" ! Fig. 33

But at t=0, y—— (0<z<h)

"IZEZ__;SE_%—%% (h<z<l)

)

=

l

!
.. STy
Hence g 7 -8in s—'@dx:}—,'g 2 sin —Zdz;
o

l S l S
But g Z sin s;—xdx= -s% cos —;34-5 = cos wa—i—const.

Iz 3&9_}.

. STz
= e sin “—+ const.
s 2 E l ]

A
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L y I
s
S O SO
I—h) sm l J z—h[‘s‘n S i TJ

l—h)sn

=lf[_ Ui e tm o U5 T 2
L sm 6% T+W e TLJ‘(—kl——[cos ST — o8 iyﬁ]—b]

k Vs lh STh
LN ] 'R I 12 . sm
l—h[ o eos s7t+sn e et TL]

=k, I i
= _.+\ wid (4 sl
[sn (I-h)sz  sm(i- h)] o TL

(=}

kl® il?

—{-[\~ i G T e SR
) Sanzh_!-sﬁﬂg(l-h)] sSin T
=\]d8§ . th

8232h(l_h) sin T
l
S Y sin S—?«zdr
6]
=L . STh

ST e (19)

Hence we can write

o0 g=

B
l

=ﬂ_ L v ey o am A
nzhu_h)[ﬁ-SmT s1n 7 Co8 757.25 0
LS Gl s Gl

+2~2. sin T sin jl@ cos @4-

—_—

l : rRahs ] (18)

Th ;
us from the above relation we see that the sth harmonic

1 sTh .
Sy 7 . ST
+Sg- Sin—" sin cog Sk,

vibration will disappear if sin#:o,

h sa
%.6,, When —" =g i i
7 where 7 ig any integer.

or when s ="~Z.
h

Sea— S BT, N

L
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v M 3, =1/9, s =9n. Puttingn=1, 2, 3 etc., we see that the 2nd

4th, 6th and all the even harmonics will be absent. Similarly,
o
A4
where p is an integer, pth, 2pth, 3pth ete., harmonics will not
be present in the vibrations. In other words, we can say that
it the string be plucked at a point where nodes of certain
harmonics fall, then those harmonics will be absent. This is

known as Young's Law.

The sth mode of vibration at point 2 from (13) is

3rd, 6th, 9th ete., barmonies will disappear if ? =3. Thus if
)

4 sinsﬂb sin Sz cos 50
s l l l
9k1®

nzhu o h)'

Ys

@

where 4=

: ST
At antinodes for this particular mode, Q—Zz-:=:z/2.

Hence the maximum amplitude of vibration of the sth

mode is
AN
=0 sin—=.

4, (u) Dependence of quality on the manner of
plucking :

In the theory of the plucked string, it has been assumcd that
the string is plucked at a single point, so that y=f (@) at t=0 is
a two step zigzag. It is actually so when the string is plucked
by a sharp object like a steel wire or a plectrum. An infinite
number of partials will be required to make up the initial wave
and the note emitted will be very brilliant. If on the other
hand, the string is plucked over a certain length by a round

. object or finger, the partials will be more rapidly convergent and

the sound will be softer. Tn the extreme case, if the string be

4 .
in the form of a sine wave, SO that y=4 sm—zx- at =0, then only

the fundamental will be present in the subsequent vibraticns.

4. (b) Effect of yielding of the bridge : The string is
supposed fo be fixed at @=0 and z=I so that there is no
vibration beyond the supports. In practice, the bridge yields to
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7}

S 3

some 'extent, s0 that the vibration extends beyond it makin
effective length greater than 7. As a result the frequencies of all
the partials are lowered in the same ratio
still remains harmonie,

o 3
C‘/""

and tl;e note, therefore,

4. (c) Effect of stifiness of the wire :

The theoretical string is without stiffness,
mately true in the cage of a very thin string.
the restoring forte on an element is the com
acting opposite to the displacement.
there is an additional elastic force due t
quence, the partials no longer form a h
all raised in piteh, the higher partials

This is approxi-
In an ideal string,
ponent of tension
But if the string is thick,
o bending. As a conse-
armonic series. They are
by a greater proportion.

5. Struck String

The inijti o
he initia] conditions of g plucked string could be described as

E:)t:}f;i’s ;V:;lql;adtho;e of a struck string dynamic. Helmholtz and

i im;uf_r: ith.ai; When a string ig struck by a hammer, a

had veloc}ty zflnﬁ)art‘ed to the part of the string struck, and

T Thea points on .tbe string except the region

e ar.ld i 1.Waves Move 1n opposite directions from the
eflected at the fixed ends.

Let the string extend from g = 0to o=

: i 6
of such a string is given by The displacemen

S=wm @____i._, ~
Y= /a, sTcy h+4 g
§ a K
\ g CO8 T+bs s1n LT'ZC':) sin Sm
g==1

8 struck at apn infinitesimally short region

from o=} to =R+ A
= z. L i Sk
to the region at time = be; :ille Instantaneous velocity imparted

0, y= dy_, :
h g Y=0 and 7t 0 for all values of 2 except @
8 ort' region Az where it is .

Sinen 5= at t=(

Thus at i=

$=om A
= . STtm
- : Gs 8in =20 . - .
0 l =0 hence =0 <
?

8§=1
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Q §= @
oA, . smel . SEm . 0
Y= sin T7bs sin = i (14)
s=1
D §= @D
.. dy_m¢ 2' S suct
from which i ] sbs sin I T
s=1
P (¢l
At t=0 we cin write 7o =\ 53
5 dt 8

Omx + . ST
=7flfi(b1 sin ’%Hbg sinz’%---ﬂbs sm—’-l—+...)

Applying Fourier's theorem
l

) s7cb e A EERI s T ot
‘T 1 Yo SID 1
0
h+Awm
= _—_%7_‘5 S %%y, (*.' 10 =0 except in the
K l

region from & to i+ &)

ST
T smh
il _%1_{( coS S_ﬂb co8 s—EAm_SiDs‘"J-L sin s——ZAw—COS‘Z—)
s l l l
=%.“ZAE sin §j‘l_h

=2-l4 sin ﬁz;—h, writing u Ax=4

b = QA Sin s_y_l_;_l' see (15)
Hence e 7
= h 7 sTeh (16)
el 4, 924 1S ST S T T P 16)
y=7_,_c gsm T sin ——Z sin "—l
s=1

Thus the amplitude of the sth mode of vibration is inversely
The series (16) is infinite and convergent, but
han in the case of a plucked string. Here
ne of the nodes of any possible

proportional to s.

less slowly conxiergenb b
if the point struck falls at o

also,
mode of vibration,

then that node cannot be generated by the
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blow. Thus the truth of Young’s Law is established;bg_ y

the theory.

In the above theory the time of contact of the hammer with
the region struck has been supposed to be. negligibly small
compared with the periodic time of vibration. Kaufmann rejected
the above theory, as experiments showed beyond doubt that time
of contact i considerable in comparison with the periodic time.

Effect of touching the plucked or the struck peint :

If after plucking or striking, the point is touched, -all
vibrations will cease ; for those components which have not a
node at the point are stopped by damping, whereas by Young’s

Law those components having a node at the point are absent
from the very beginning.

6. Bowed string
Helmholtz, with the help of a vibration microscope, observed
the motion of a violin string when bowed, and came t0 the
following experimental laws.

(1) The vibration of all points on the gtring at any instant

always takes place in a plane. The motion of any point on the

string consists of an ascent with uniform velocity followed
by a descent at another uniform backward velocity., For the
middle point, the two velocities are equal. The displacement of &
D‘omt on the string can he represented as a two step straight
zigzag.

(:‘2) .At the place of howing, the speed in the ldirection of
bowing is equal to that of the bhow.

Basing on these experimental laws Helmholtz gave a theo-
retical explanation of uhe vibration of a bowed string.

We know that the gene1a1 solution for the displacement of a
string fixed at z= 0, and z=1, ig

S=on

U:Z‘(As cos sni+ B, sin snt) sin %f (17)

9w T
where n=2 =—=
T

S=¢p Z

dis (—sn 4 sin snt+sn B, cos s'nt)‘;in 8'7—;—”- (18)

b o

TRANSVERSE VIBRATION OF STRINGS 106

°t the point observed have 2 constant forward velocity Y1
f om t=0 to t=T1 and a constant backward velocity vz from
r

=T, tot=T. BY applying Four jer's theorem,
e ik

>

o 11
sme _ 2\ (2y) I
—sndg. sin T—T&(dz)' sin snb ¢

(¢]
% T <
=_9'( g v sin snt dt+ g — 1, Sin snt dt )
v T

0 1

____._< (v 4vg)+ (vy Fva). oS 51 Tl) {
s

© ovytva) e 8T (19)

9
S 4
T

X (ZJ) snt db
_, Similarly, sn B e == ] =7 S (dt cos

0

.F(vl'ﬂ)"'). sin sn Ty
ST
sn T
MQ-) Lo 2 T1 o8 —fo—l e i(96)
i ST 2 4

From (17), (19) and (20)

S=& T
, 1.osnT1 s (t—_l)} (21)

I

=
Now (17) can be written as
S (22)
. Sﬂ]} s c() 0 59)
y= Z cs 80 —7 sin sn(
'( A s=1

where « i8 2 constant.

Comparing (21) and (22)

ST TP )
2 ﬂx,w sin 3 1
o, 8in — n
L 4 es)
- T(’U +'Uv) RSt X0
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i

4 l I
Consider at = the contribution to the displacemess -

the sth harmonic vibration. It must be zero for all values of ¢.

7

Since vy+v, is not zero, sin Sanl———-O.Thepossible solution
is ~f——=— which is corroborated by the experimental fact

1 ! . :
that T8 at the middle point and 7, decreases with the
decrease of x.

Ngw let us consider a trapsverse stationary wave for the
fundamental vibration. If 4 is the amplitude at the middle point,
b2 3
—Z_‘

From (23) the amplitude at x is M) sin JETT

then the amplitude at a point z is 4 sin

2

Thus we come to the conclusion that M) is constant
7

or v;+v,, the sum of the forward and backward/.velocities is

a consﬁant and is independent of z. At x=l§. these two
velocities are equal

since =+ ===-,

Let @ be the amplitude of vibration at a;=z—2 ; then

v;l.+7)2 = _Qﬁ .2_“ =8£L
To%- 2= T
Hence the equation (21) becomes

§=® .
=8_a{( )1 . Smyp ., zT i
V=3 El - sin — sin s”(t_?z} oot (94
Si=

tbafhtiealzzzotheiry S ].Elelmh()ltz is based on the ohservation
zigzag. If; is actn 1(1) o o o e B TR i
i & ‘t‘ r'ua y 80 Whel? a violinist plays on“his instrument

g ab thi' normal position at about fgth to sth of the

g‘—v 4 L

o

- fwgsite to the friction
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C ‘:'»'ﬁ‘gpl.é?{ength. But when bowed at other positions, the displace-

ment curve somebimes deviates from the two step zigzag and
the theory fails there. Moreover, there is another weakness
of the theory. Young's Law is also true in the case of 2 bowed
string. If the bowed point is at the nede of one of the over=
tones then that tone cannot be generated by bowing. Helmholtz's
theory containg no factor depending on the position of the
owed point. E

6.(a) Raman’s analysis of the bowed string :

Sir C. V. Raman explained that the experimental displacemeht
curve could be obtained by the superposition of two “velocity
waves” of wave length 2, moving in opposite directions. Velocity
wave is®obtained by taking velocity as ordinate and length of
the string as abscissa. Such a velocity wave will be given by
parallel straight lines with intervening discontinuties. If the
two velocity waves in opposite directions move with a velocity

7 E', then from the resultant velocity diagram it is possible

m
to explain allsthe experimental observations of Helmholtz, Krigar

Menzel and others.

6. (b)) Action of the bow :

The bow maintains the vibration of the string ; the vibrations

of the string can be supposed 0 be ‘‘free’ as the period is not

affected in tHé leash by the bow. During part of the period,
of the bow pull along with them the bowed
part of the string and during this time the relative velocity
between the howed part and the bow is zero. Ipitially the string
but as the bowed point is being dragged along, there
component of force due to tension in a direction
al force exerted by the bow. At some
disﬁlacemenb, these two forces become equal and the string flies
pack and is caught again at some other position by the bow.
According to Rayleigh, the bow can maintain the vibration
due to the fact thab solid friction is greater ab smaller 1zlative

the resined hairs

is straight ;
ig an increasing

velocities. o B
When the bowed point moves with the bow, energy is

gupplied by it, and when it moves in the opposite direction,

0
0




for the fundamental than for the octave wh
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the frictional force between the how and the’ string oppq;:';;;‘rl*.
motion of the bow. It Vi1, V2 be the forward and backward
velocities of the howed point for interval T4, To respectively.
If F is the force applied due to bowing, then supply of energy per
cycle is

F/L3V1T1 —FpaV,T,

when pg, pg are the coefficients of static and dyramic frictions
respectively. If ‘@ is the amplitude at the bowed point

then i=V1 and ~ai=V2. Thus the supply of energy per
' Ih,
cycle is Fa(p, — pg).

6.¢) Wolf note : In instruments of violin family (bowed
strings) and also in plucked instruments, it is somefimes geen
that a particular note cannot bhe smoothly elicited. A# this
pitch the whole body of the instrument begins to vibrate and
a howling effect is produced. Such a note is known as
‘Wolf Note', G. W. White came to the conclusion that the wolf
note in a cello (violin family) coincided with the pitch of the
best resonance of the belly of the cello. ~

C. V. Raman explains wolf note in  the

following way,
According to his theory a higher bowing pre

ssure is needed
en the string
the instrument
ake up 80 much
an no longer be
e in which the

is bowed at one end, At wolf piteh the body of
vibrates with resonance and these vibrations %
energy from the bow that the fundamental e
maintained and the vibration basses over info on
octave predominates.

7. Qualitative study of the stringed instp

The stringed instruments
(1) Plucked, (2) Struck and (
harp ete., are the plucked
Tanpura, Sarode, Ving
type.

Again violin, viola ete,
Sarengi, Esraj ete., are
only struek instrumep
instrument, ©

uments :

can he grouped in three types

western instrumentg whereag Sit.avr.
ete., are the Indian oneg of this

» are bowed western instruments while
the Indian counterparbs.

Piano is the
t and there is no ®m

ilar Indian
2

| 0

3) Bowed. Banjo, mandoline, guitay

* VIBRATIONS OF STRINGS
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TRANSVERSE VIBRATION OF A BAR 113
- The frequency of vibration N is given by
NP g N= _\/E B?
- For the fundamenﬁal :
k E (188)° (’6)

Ne=oaVi R

If Ny, Noy Ng, N, ebc., are the frequencies of the different
modes of vibrations, d - .

Ny : N, : Ng:ete.,::(1'88)% : (4'69)° : (7" 85)’ efe.

Thus the partials do not form a harmonic series as in the case
of longitudinal vibration of bars or transverse vibration of strings.

(%) : Bar supported at both ends : In this case :

« (i) y=0 at 2=0

2
) 2—271:0 Stlc=0
(733) =0 at =1
2 y
(2v) i at x=1

From () and (42)
A+C=0
—4+0=0 whence 4=0 and Cc=0
.'. Equation (5) reduces to : _
y= (B sin Bz+ D sin hBx) sin (nt - 6) (D

From (m) and (7) i 4
B sin Bi+D sinh Bl=0 : '

From (iv) E
" — B sin Bl+D sin kBI=0.

e sm Bl 0.
Or, ﬁi=s:’v where s=1,2 3 etc

S
. ‘=n P
smce‘ﬁ i

?b=k/gxﬁ’ I : 2
R E 3 1
l53 ) |

23
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TRANSVERSE VIBRATION OF A BAR 113
- The frequency of vibration N is given by
\;“ ¢ =_ZG_\/‘—E o
: \ N N 5 B
- For the fundamenbal \ ‘
ikt E 5 (1°88)° V
N,= 23‘ = lz (6)

If N1, Noy Ng, Na ebc., are the frequencies of the dlﬂ:‘erent
modes of vibratfons, :
< N, : Ng : ete., ¢ : (188)% : (4'69)° : (7 85)’ ete.
Thus the partials do not form a harmonie geries as in the casa
of longitudinal vibration of bars ortransverse vibration of strings.
() : Bar supported at both ends : In this case '
. (1) y=0 at =0

sy (P
(42) Eg= at =0
(423) =0 at =1
2 ;
(3v) g??,/=0 at z=
From () and (34)
A4+C=0

—A+C=0 whence 4=0 and C=0
Equation (5) reduces to
y=(B sin fz+D sin nBx) sin (nt - 6) ()

From (m) and (7)
- B sin fl+D sinh B1=0

From (iv) s
" — B sin Bl+D sin kBI=0.

&  sin Bl =0.

Or, ﬁi=sn ‘ where s=1,23 eté.

2
&
smceﬁ Ek”
’)Z‘—k \/E Xﬁ“ l ' A
o e Syl E sk '

lﬂ
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Thus the frequencies are proportional to 1, 4, 9, 16 etec., and
the partials are harmonic. This method is utilised il/]k,;t.ihe
construction of musical instruments consisting of bars of’éraded
lengths, supported at ends. The bars when struck by hammers
emit musical notes consisting of harmonic part’ials.

~{c) Bar free at both ends :
! ay ady )
Here, e and:dx—“ are both equal to zerd at =0 and

z=1l. Thus the constants 4, B, C, D can be found out.
~ Now from (5)

2
Y\ _ b A2
(dw')—(—A cos Bz — B sin Bz+C cos hBz+D sin hBz)x
B2 sin (nt— o)
i (d?’y 2 :
an W)_(A sin Bz — B cos fz+C sin hBz+D cos hz) X

B2 sin (nt - 8)

Since

ay a3y

m and 7";3=0 at =0

we have A=0 and B=D.

e a’ a2
From the conditions that dT;?; and 3523:0 at =]

we have 4 (coshBl—cosbl)= B (sinfl - sinkl)
and 4 (sinBl+sinkBl)= - B (cos hBl = cos BI)
Multiplying crosswige and simplifying, we have :
ceshBl=gec Bl
Plotting y=coshhl and y
- will give the required values of Bl.

The values of 1 are given below
| 4.73 | 7.85| 10.996 | 14.187 | ete.

:Now the frequency of the fundamenta]

Ny=% /E (4.73)

VR AR e o S,

(8)

=sec Bl the points of intergection

7780

TRANSVERSE VIBRATION OF A BAR 115
and those of partials of different modes are
SO k B 85)%
. M=k B (@5

2%V P 2
_k /E (10.996)°
Na_g:‘?‘r\/ ;)' 1

Thus N, : Na : Ny : Ny ete. 0212 2.75:5.40 : 8.93 ete. -

Hence the partials do not form a harmonie series.

() Tuning¥ork : A tuning fork may be regarded (Chladni)
as a free-free bar bent in the form of a U. If a free-free bar is
gradually bent at the middle, it is seen that the nodes marked

A A n approach each other as shown
in the figure and the amplitude
of vibration at the antinode af
centre issmall compared to that
at either free end. The addition
of a stem at the middle point
causes the nodes to approach
further. Due to the vibration

Fig. 85 of the prongs towards or away
trom each other their centres of gravity describe small arcs
and consequently the stem has a small motion parallel to the
When the stem is pressed on a sounding board, the
vibration of the fork is rapidly transmitted to it

ppongs.
energy of

through the stem.
According %o the second view (Rayleigh) each prong of a fork

is regarded as a straight bar fixed at one end and free at the
other. The pitch of the fundamental as deduced ‘earlier on this

approximation is
e 5 /g (1.88)°

oz . I*

o~ g rectangular bar, the radius of gyration & sbonytai-n et

su;‘face =_—.,/ai:9 where a=thickness of the prong. For steel

vV Ep=524% 10°® cm/sec approximately.
Hence the pitch of the fundamental is
46%10%a :

it

2
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2. (a) Temperature variation of frequency : If Ho, Po
lo and E, p and ! represent Young’s modulus, dens?%¥ and
length at 0% and t° respectively, then E=E(1—yt)
1=1o(1+«t) and P =P (1 — 34¢) where y.=temf)erature coefficient
of Young’s modulus and <= coefficient of linéar expansion.

Hence substituting in (5) we have

_k /B, (188)° (1‘?/7t ’
N 27‘«/7:X loa X 3=(t 4
, » (1" 2\)(1+24t)

=No(1—y;°(_ t) (9)
i 2

Konig found that temperature coefficient of a fork +7a8 about
—11.2X107° per®. Substituting the value of « for steel in
(9), it can be shown that the change in frequency is more
dependent on change of B than on I. A valye maintained fork
II}ﬂtie of a steel alloy like elinvar (invariable elasticity) can
maintain its frequency constant to within a few parts in a million
Whe? the temperature is kept constant by a thermostat:

2. (b) Electrically maintained fork : The vibration of @
t}lnmg‘ fork may be maintained by an electromagnet.

M is an electromagnet, B a battery and C and D are galec{:ricf%I

-contact points. When the circuit is closed by a key, the current

\

- Fig. 86

asses i ; ] :
:re atbl::i:e;h; coil through the contact points and the prong?
v the clectromagnet breaking the circuib. In &
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more places and bowed with a violin bow at a point on one
edEé ggl\ﬁch is likely to be one theoretical position of an antinode.
The vibration of the plate throws off the sand which ultimately
collects along ﬁodgl lines. The plate used may be of glass, copper
steel ete., but not of wood which has different elastic properties
along different - directions. Chladni preferred glass for his
experiments. The plate may be held between the thumb and
a finger or a hole may be drilled through it and then fixed by a
.' gerew and a nut. The plate must be touched at a position other
than where it is fixed. For a good figure it may be necessary
to shift t#® point of toach. Generally simple figures correspond
to grave modes of vibration. g
The following are a few of the simple figures which can be
obtain:d easily on a squaré plate of size 30 cm. and thickness
9 cm. In these cases the plate is fixed at the'centre, touched at

: A and boyved at B.

B- : B

Fig. 41

. Chladui's original work gives about fifty fisures with square:

: plates. It is also possible to have nodal figures with circular,

elliptical or hexa gonal plates. )

_




CHAPTER XI P
ASYMMETRIC VIBRATION :
COMBINATOINAL TONES

N

1. Large vibrations: In the case of simple harmonic
motions, the restoring foree is proportional simply to displace-

ment. But generally the restoring force may involve square, .

cube and other higher power terms of the displacement and +we
«can write as equation of motion, neglecting damping as _
d*z

W+n”a:+°(x2+ﬁz°+---=0 ).

‘where z is the displacement at any instant ¢ and n, «, 8 ete., are
-constants. The constants «, B etc., are themselves very small
-and in the vibration where amplitude is small, «z?, fz3 ete.
-can be neglected. But if vibrations are large, they can no longer
‘be ignored ; these terms will affect the natural frequency (at
-small vibrations) of the system and in many cases will give
‘rige to a series of harmonie terms.

2. Asymmetric system : TLet us suppose the equation of
‘motion of the system is

™

i

ASYMMETRIC VIBRATION COMBINATOINAL TONES 127

3.\ Symmetric vibrations : In this case the equation of
motion 5
d’z 2
iy, L)
dt2+n z+Bz=0
If we solve this equation by Rayleigh’s method, we will see
that the solution will be given by

‘w=q cos pt+b cos 3pt b K ) (4)

Expression (4) shows that the vibration is symmetric about
the position of rest. In addition to the fundamental vibration,
there is the 3rd harmonic vibration. In this case also, p is
slightly lower than . '

4. ASymmetric system under double forcing : Let us
suppose an asymmetric system is subject to two separate simple
harmonic forces. Neglecting damping, the equation of motion of
such a system can be written as

T
m(fi—tf'*'sx'l‘kx’:Fl cos pt+Fy cos (g¢+6)

where F'; and I, are the amplitudes of the two simple harmonic
forces of angular frequencies p and g respectively and 6 represents
the phase of the second harmonic force with respect to the first.
Re-arranging.

d2z . ks | 2 ‘
dT"+n z+az® =0 (2) %-{-h’w-l-a(w’::.d cos pt+B cos (gt +06) e (5)

‘Equation (2) represents an asymmetrie vibratian. "'.[‘he asym- 8 % F F.

metry is due to the term «z® in the restoring force. If the where "’2=7@"=7_n,—’ A=;1 and Bf=-m"2

-equation is solved ky }{ayleigh's method of successive approxi-
‘mation, we will have by an appropriate choice of initial conditions

Z=a cos pt+b cos pt+c cos 3 pt+d cos dptte (3)
‘where a, b, ¢, d, eare constant and p, the angular frequency of
fundamental mode, is slightly smaller than n, the natural
angular frequency of the system when « is zero. The amplitude
@, b, ¢ and d are progressively smaller. The presence of the
term e represents asymmetry ; it shows that the vibrations are

displaced to one direction, A series of harmonic partials are
present ir. the vibration. |

Let us try to solve equation (5) by Rayleigh’s success“i‘ve
approximation method. At first, let us neglect <z” ; then we get
@ 2

‘fﬁ%’+n9m=‘4 cos pt+B cos (qt+6) weav t(6)
The solution of (6) is very simple and can be written as

z=a.cos pt+b cos (gt+6) A I In% )

The.displacement z'may be supposed to be equal to z,+z,
where %y is- the ‘displacement due'to the first force and %, due
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to the second. - The two displacements will be in phase with the : Eguatmg from two sides

i ,
; | two harmonic forces as frictional term is absent. Substituting: \J a= z[i @ (i= 2Bi 3
i the value of « as given in (7) in (5), we have X ‘ SawE g
5 | el el
W+n2x+4[a cos pi4-b cos (qt+‘6)]2 ],? I\4p® —n2) . 9\4q% —p?
' 3‘ «Lab ' «ab
‘ =4 cos pt+B cos (gt+6) (8) ‘ e s s ot
: . | p+a)*—n (p—q)P—n
| But {a cos pi+b cos (qt-+6)}® : ~ aaaly sl b
| 13 [ . ' : 4 2 = on? v
| =a" cos? pi+0v* cos® (qt+6)+2ab cos pt cos (qt+6) ‘ 5 f
0 b2 Thus we see the vibrations will consist of primary tones:
B (1+cos 2pt)+= {L+-cos 2 (qt+6) A B '
g2 ‘ whose amplitudes are given hy =gt and e g respectively.
+ab_cos{(p+q)t+ 6} +cos {(p — a)t - 6} . i

Cdis : ; ‘ If the ngtural frequency is equal to the freqdency of one of

“Hence Et_a+n”w=A cos pt+ B cos (gt + e)'_ﬂ_ cO; 2 pt the impressed forces, then amplitude corresponding to that.
d 2 . frequency will be very large. The amplitudes of the octaves.
will depend on the amplitudes @ and b of the primary tones..
{ Hence if @ and b are small, these vibrations are negligible.
Again we see that the amplitudes of vibration corresponding
to (p +q) and (p — q) respectively are proportional to the product
of those of the primaries. IHence these tones will be scarcely
perceptible if the vibrations are small. Thereis another important
The amplitude ¢ of the summation tone of angular

point to note. ; ‘
frequency p+q 18 smaller in comparison with that of the

difference tone of angular frequency p—¢, as the denominator
in the amplitude of the first tone is greater in comparison with. {

«b?
~—5 cos 2 (qt+6)

= «ab co8 {(p+¢)t+6} — xab cos {(p —q)t — 6}

s 2y |
-w. i e (o) '

of Thus.;ve (.:an regard the system to be under: the influence
several .simple harmonic forces acting. simultaneously, = The

;ngular frequeflcies of the forces are D, ¢ p+aq,p—4a,2p and
b ¢- The solution of (9) will be obviously

r=gqg y ! , ‘ i
08 pt+b cos (gt 4+0)+¢ cos t+d cos 5?}11:4-6) 0 : that in the second tone. .
? -lje cos {(p+q) t+0} 41 cos {(p —q)t?9}+g~ (10) ! To sum up, we see that an asymmetric,, system under the-

ie forces of angular frequencies p-

{ i f two simple harmon :
T n the vibration of the system

Substituting the Al
' ' i Val_ueg ot t? and %z in (9), we have % and g respectively will have i d: .
. ‘ components corresponding to frequencies 9p, 2¢, p+qan : p q,
frequencies P and ¢. - The additional

5 £
] it primary g s
in addibion. t0 tho lthan the primary ones are negligible if:

an* =p?) cos pt+ b2 — 42)
p " =q%) cos (qt+6,4 o(n® — 4p®)cos 2p? .

+d(n® - 442) ¢0s 2(gt+6)+efn? - ( 4 0%} cos {(p+q)t+6}

vibrations other

piaals X I
f{fz e Q)g}poe{(p__ Q)= 0} +n2g amplitudes of the primaries are small. 1 i3
=4 cos pt+B cos (gt +6) *a’ «b? ; ) .5 Combination tones : When two :)ones O;j:ed §m;‘;;
PG == IS0 gt+0) - / > : ‘. may be pr : :
5 €08 2pt 5 °08 9(qt+ $ancously sounded, an entirely neW tone may

: ist Sorge..

e 24 NN . 2 < " d bY a German organls Wi

@b cos _;{(P‘+'q)lt-‘{- 6}~ <ab cos (o —q)t—ef— «(a®+b%). phenomenon. wad first observe
5 it = g L) R 2 X

9

1

____..—A
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It was also known to the Italian

. violini S
n the middle of the scale, tn1st Tartind that two notes

a fifth apart, produce a tone whose

fﬁnes after the name of the violinist

i8 rege R

o a:tf;s IOtI.l the matter discovered another type of tones
mation tones, The pitch of such g fons. iy tpoiney

of the pitches of th
€ generating tones. T}
Y =) egea Ay
Summation tones gre together grouped as c difference and

Helmholtz in course of

ombination tones.

In orq ;
er to make the combination tones audible, it is better

of the is quite distinct
produce the summatior. o 0 I 8 rather difficult to
1on tone. In thig case the generating tones

should b i
¢ of low pitch ang probably a fifth apart, and the
ould be in the middle of the scale.

n the harmonium, first the note
ely afterwardg ¢ (1024). If the
Here tehr(; i diff'erence tone f (170°6)
i genera'tmg tones are in the
note ¢’ (512)811-mmat10n tong by the same
¢. Tho resulppne <0 20d then s’ (341)

resultang Summation tone o’ (853)

‘can be hearq distinctly.
-.treble of the seale,
'l.nstrumenb, first the
18 sounded along with
Will be hearq,

6. Objective reality of combin
Konig, Bosanquet and g physici

. ysicists helieved

; t:re entirely subjective, They

sl nes could not he reinforced by

other hang, showed that when

blowing air from the
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reality was unmistakably proved by a tuned resonator. He was

€ . . . . - . .
of opinion that combination tones have sometimes objective

reality. “According to him the condition for objective reality was
that the two primary tones must be very intense and produced
by the same mass of air agitated very violently.

B. Edser and A. W. Rucker proved beyond doubt the objective
existence of combination tones by a very delicate method. A
mirror of Michelson’s interferometer was attaphed to one prong
of a tuning fork. Interferenee bands were produced when the
prong was without movement, but at a slight vibration of the
prong the bands disappeared from the field of view.

The generating tones were produced by adouble siren through
two series of holes and the pitches of the primaries were such
that the difference or the summation tone if prcduced corres-
ponded to the frequency of the tuning fork which was 64.
The objective reality of the tone was proved beyond doubt by
disappearances of fringes due to the vibration of the tuning fork
in resonance with the pitch of the combination tone.

7. Theories of combination tones *

(z) Beat tone theory :

When two tones of nearly same the pitch are sounded, beats
are produced recognised by periodic waxing and waning of
sound withea frequency equal to the difference in the pitches

> of the component tones. (See Chapter I). If the difference in

the frequencies be more than about 15 per second, the beats
will be recognised as a separate tone. Such is the beat tone
theory sometimes called Konig’s theory. According tc this
view, the difference tone which is a beat tone cannot have
®any objective existence and, therefore, cannot be detected
by a tuned resonator. Actually Ko.r.lig’s and Bosanquet’s
experiments confirmed this view. But beat ftone theory
is incapable of explaining summation tone discovel;ed by
Helmholtz, nor the theory can hold good when conclusive
experimen?s prove objective reality of the combination tones.
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reality was unmistakably proved by a tuned resonator. He was
of ‘opinion that combination tones have sometimes objective
reality. “According to him the condition for objective reality was
that the two primary tones must be very intense and produced
by the same mass of air agitated very violently.

E. Edser and A. W. R\Icker proved beyond doubt the objective
existence of combination tones by a very delicate method. A
mirror of Michelson’s interferometer was attafzhed to one prong
of a tuning fork. Interferenee bands were produced when the
prong was without movement, but at a slight vibration of the
prong the bands disappeared from the field of view.

The generating tones were produced by adouble siren through
two series of holes and the pitches of the primaries were such
that the difference or the summation tone if prcduced corres-
ponded to the frequency of the tuning fork which was 64.
The objective reality of the tone was proved beyond doubt by
disappearances of fringes due to the vibration of the tuning fork
in resonance with the pitch of the combination tone.

7. Theories of combination tones °

() Beat tone theory :

When two tones of nearly same the pitch are sounded, beats
are produced recognised by periodic waxing and waning of
sound with «a frequency equal to the difference in the pitches

° of the component tones. (See Chapter I). If the difference in

the frequencies be more than about 15 per second, the beats
will be recognised as a separate tone. Such is the beat tone

theory sometimes called Konig’s theory. According tc this
view, the diference tone which is a beat tone cannot have
“any objective existence and, therefore, cannot be detected

by a tuned resonator. Actually Ko.1.1ig's and Bosanquet's
confirmed this view. But beat tone theory

experiments
of explaining summation tone discovered by
¥

is incapable
Helmholtz, nor the theory can hold good when conclusive

jective reality of the combination tones.

experiments prove ob
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(‘bﬁ/ Helmholtz’s intensity theory :

Helmholtz's intensity theory is the theory of asvsrfmmetric
vibrations of the system under the simultaneous influence of two
large periodic forces. In this case the equation of motion is

2
(‘Zi—tff+712x+o(z:2=F1 cos pt+Fy cos (gt +6)

We have seen earlier that the solution of the above equation is
T=a cos t+b cos (qt+6)+ ¢ cos ot _
+d cos 2qt+6)+e cos {(p+q) t+0}+f cos {lp —q)t — 6} +¢

Thus the above solution indicates the presence of difference

and summation tones whoge amplitudes are dependent on the
product of the amplitudes of the primar

@cos pt and b cos (gt+p).
when the harmonie forces
represented by «z2

vy tones represented by
Thus these tones will be“produced
are very intense. The asymmetry
i8 responsible for the production of the

d this term will haye significance when z is
very large.

(c) Waetzmann’s general asymmetr

y theory :
Though Helmholtz’s theor

¥ can explain most of the facts
about combination tones, it is sometimeg seen that combination
tones can be heard even with very weak Primaries., This can
not be explained either by beat tone theory or the intensity
theory. According to Waetzmann, these tones are produced in

mbrane loaded on one side.

membrane ig asymmetrie, thab-

to one direction, If such a
ed to two wealk harmonie forees,

The natural vibration of g loaded
is, the vibration is displaced
membrane is subject the general

ce that the curve will 1i
By Fourier's analysis, Waetzmann

he Drimaries, the Summation and:
ed by the membrane,

econciles the beat tone

e above the:
line of zero displacement,

showed that in addition”to t
difference toneg are produc
theory thug combines and r
the intensity theory.

Waetzmann’s.
theory and.

———
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CHAPTER XII ,
1 ND
DETERMINATION OF VELOCITY OF SOU

1. Determination of velocity of sound in open air by
2 metﬂ'(::t‘e\'perimenb on the velocity of *sound in -OI;:g
: o eztié by Mersenne and Gassendi. The mefjh.odc co;:sl; i
e t of the time interval between noticing a
SR S iving by the ear the report of the gun f‘rom a
g a:];]lderj;eocil:y is determined by dividing the distance
h

distance, ng station by the time interval.

between the glljl ang'::;e :zcilv‘:o errors : (i) error due to.WiDd
This method -l.s sub] SR e R in the experiment
velocity and (i) e”:m »  In the method recommended F)y.bhe
SHEET equaftls(::?er;ces in 1738, the wind effect Wé'!.S ehmmﬁ-
French Acfid‘z‘:l cf)iring and observations from two stations. The
ted by recipr

°C was 3322
i f sound reduced to 0

f the velocity o

mean value o

metres per Secor-]da; to get rid of the human element Or. perﬁonai

Regnaulb tl“e. tering the time interval between the 1nstani.3 o1
equation by reglss thoe reception of the report b'y el:actrlca
fizing thoy S ansending gtation a wire in the mrcu'lb o.f a'n
method. Atqthearaph is broken by the shot. The circuib 1;
.,,electricaI. chronog entarily by a thin membrar.le when sou}xj
\1-e-estabhshed 11}01.:0“ i, The B inﬁel"!al is found out by )
reazhes the recelvm; Sa style actuated by an electromagnet °,n a‘(
4wo marks made Ynstanﬁ speed by a clockwork. Regnalillb,
drum revolved atta c:he conclusion that lag in the recordiog
came O

’ ad ion of a
however, me order as the personal equation

a
instrument was of thes

+rained observer.

e to the conclusion that velocity of sound
_Regnault cam

: Ise. g
. intensity of the pu
sed with the 1n » hod :
rea -atory methods : (a) Hebb’s met o P
2t LabOlai :éhe ;neasurements of sound veloci y n i
Accutacy 9 bject to several factors, such as vind velocity,
thods 18 su

inc

air me
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izg:vonal equation,' intensity of the wave and temperature of ai~in
een two stations. Hence the results obtained by rliﬂ'e;ent;

expari
perimenters vary. At the suggestion of A. Michelson, Hebb

devised an objecti
jective laboratory m i i
velocity of sound in open air. 1 B e

- o :

il 10:’1;;1;2 are two .carbon microphones placed at the foci of

T al paraboloid mirrors M, and M, made of plast
: verah er
ris. A high pitched whistle of known frequency is placed

M
M2

T Ta

/]

'M ’fi,“ Pad 'Ml

Fig. 492

at the focus of, say, My

. 7
batteries to two separate win 1 and T'; are connected through

dingg P
transformer T having three Windinlg;nd P, of aospecial type

1s connected to the third winding The telephone receiver

Sound emitted-by the whistl
reflection from the Thodd at the focus of M .
of M,. The resultingt:vo FREEorS will be collected at tl:e faofter
N e c(;unbd In the telephone will be the :us:
of the apparatus consi : y T3 and Il e receivin ‘Ve.C. Ol‘
along the axis At-,s1S lng.of Ailz and T, is gradualls Loll.tflog
L interm.edi : Celitam.pou'lts sound will be reinfor S;il ed-
e i oaas zfe:;omts 1t will be annulled dependingc;n i?
T e two sounds collected at the {',wot"ﬂ.,e
equal to the wave-l it s i or minima willofl-
e ength of the sound emitted by th i
<y is known. Thus velocity is deterr:in de i
ed.

* condition; resonant sba
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Febb's results gives the velocity of gound as 331°29%°04
The personal equation and uncertain-

metres pex second at 0°C.
f the medium are eliminated in this

ties in the conditions O
method. Py
Kundt's tube method :

Tt is one of the gimplest methods
gound in a gas Ox% solid in the laboratory.

:%A B E_f___———:—;ﬁ-’—" —
R
g

Fig. 43

of measuring velocity of

A glass tube about 150 cm. long and about 5 cm. diameter
has an adjustable stopper A at one end. Into the other end
projects a disc B fitted to the end of a glass or metal rod clamped
at the middle point C. The tube is thoroughly dried and fine
]ycopodium powder i8 sprinkled into it in small quantities. The
metal rod is rubbed by a rosined cloth, so that longitudinal
gtationary waves appropriate to a rod clamped ab the middle are:
produced in it. The fundamental tone which has the maximum
amount of energy will have 2 wave-length 4s=2ls where.l;=the
length of the rod. Iicg is the velocity of the longitudinal wave
in the solid and N the frequency of vibration of the fundamental,

=9l x N. The adjustable stopper A is gradually shifted

then ¢s ' 3
lycopodium powder in the tube collects

till at some position the
in little heapo ab some gefinite equidistant positions. In this

tionary vibrations are set up in the air
within the tube with producbion of nodes and antinodes, and
lycopodium powder collects ab nodes which are the positions of
7ero displacement. 1t 1 is the distance between two consecutive
owder, then Cg the velocity of longitudinal

heaps of ]ycopodium P
.waves in air must be equal to g XN
ca_le
Cs ls g
- [E U
or g 8 Iy T 3

the Young's modulus and density of the

where E and P are
" the velocity in air can be

golid rod.* , Thus knowing B and 75

determined.
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4. Applications of Kundt’s tube method :

The following are the applicaﬁions of the Kundt’s tul 2 method.

(a) Measurement of velocity of sound in any gas :

We know that velocity of sound ig given by

o=\/"2.
/)
Thus knowing pressure p

and density £, ¥ the ratio of two
specific heats of g g8as can he det

ermined.

(3) Determination of velocity of sound in a solid 3

(¢) Determination of dependence of velocity of sound on
temperature, pressure and humidity 3

nodal distance in each tube. The
8as at different condition of pressure
» al30 can he rapidly compared.

The velocity of soup
method must he corr
8uppose v, and Vg are
radii 7; and T2 Tespe

and temperature ete,

din a gag determineq by Kundt's tube
ected for the radiug of the tube. ILet us
he velocitieg determined with tubes of
ctively, then if v be the velocity in open
Sl v2=0(1-k/r,). The
8 tube of infinjte radius.
ies we get

air, ‘we can write o,
correction ig zerg with

From the two
©Xpressions of the veloeit

v="1T1=0,r,
‘\'
7“1_7'2

* See Chapter M.
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e . Striations in Kundt's tube : AntinOflal dises : X
Wheq the vibrations are vigorous, in additlon.’ﬁo tfhe co;lttia(cmu;):
of dust particles in heaps at the nodes, there is :t ormOf 9
striations consistifg of particles acro'ss the bo : om S
horizontal tube. The ridge like formations are m}t:le I:;ies i
at the antinodes, disappearing altogetl.ler ?t t e. ninten.se.
phenomenon is more marked when the vibrations are

-

) . Fig. 44

g - p . i hydl 2
I&O]ll ex 1 01 I!lﬂtion Of Ildges fl om
\ i lalned f:he f {he (o]
d) DamiCal CcOo DSIdel atlon Of fOI ces b et ween bWO ver 9 S]llall
1 Sb ream Of alr. He fOund bhat tWO S\ma]l Sp]leles
Daltlc es in a T

; res along a stream of air
b . o elie their centres a 5
of cork with the line ]211;;11:;81ine is perpendicular to the stream,
1

Kz)‘nig showed that the
s end on to a sbream of

experience a repulsion ; ;
X n.

there will be a force of attlact;;)c]e

force of repulsion between two par

air 1s o

AR

F1=675p 7'18 7g

Of attlactlon bet een th m
a‘nd t‘he fOlbe W e ‘Vhen brO&dSlde on to

~ the stream is v

RN
L 0

F2=3,1p 7'18 )

radii of the spherical

! e
where p =density of air, 71, 72 th tres and o° the mean

7 e cen
particles, @ distance between th

; stream. X tube will be
R * squared velocity OftFI;ZB ontljjon MO AORSLAE Of} o l?appens to
artie f them
T;llllilsf tiwoefch other and when anyone O tres being
repelled from

; ‘oining their cen
; line joining
ticle, the y ach other.
P anOthtjrepZ:;ils, the two will be attracted to e
- transverse to th

2 of
tinode as v~ O
ced near the an
: i .more pronoun a node where
This effect Wl.l'l biximum and will be absent af
i Y
the air stream 1s m
it is z2ro.
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More recently, investigators have used instead of a solid rcé a
loud speaker unit or a telephone diaphragm fed by the “urrent
of pure wave form from a variable frequency oscillator. The
power supplied to the loud speaker unit may be as much as
consistent with the construction of the speaker unit. The other
end may be permanently closed. The frequency of the current
into the coil of the loudspeaker is adjusted until resona'nb
stationary vibrations are produced in the tube. Using such a unit,
E. N. da C. Andrade and others noticed greatly enhanced forma-
tion of striations. In addition to the striations, they obsial""ed
that when the vibration is very vigorous, there are disc like
formations of dust particles across the tube of great sharpn_ess
and the distance between two such consecutive Antinodal discs
can be measured with great precision to give the wave-length of
the vibrations very accurately,

E. N. da C. Andrade has investigated motion of air inside 2
Kundt's tube in great details. By introducing very small particles
like those of tobacco smoke, he observed that there is motion of
air parallel to the axig of the tube from antinode to node and
back again along the axis. SQych motion was predicted by Lord

Rayleigh ang was experimentally verified by Andrade. In
addition to the general cireul

round each dust particle,
set them acrogs the tube be
round two nearby particleg
of the vortex motion increage
hence, the formation of ridge
when the goung intéhsi’.;y is
Konig as regards formatio
the basis of the experimentg

6. Velocity by resonan
laboratory method of dete
A tuning fork vibrating at g
end of a tuhe whose oth
variable‘height. The leve]
some length l1 of the tu
vibrations.are set up within
end and an anfinode gt the

ation of air, there is a vortex motion
Andrade explained that the partif:les
cause of coalescing of the vortices
into one single vortex. “The vigour
s with the velocity of air stream and
S or antinodal dises are facilitated
very large. The theory given by
n of striation seems o be wrong on
of Andrade,

I'mining the velocity of sound in air-
frequency N ig held near the OPeD‘_
er end dips into a column of water cf
of water column ig adjusted till ab
be above water. surface, resonant
the tube with a node at the closed
open end. Taking into account the

(4

t air column : This is a very simple
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faCb that antl (o] 1] h 19 aw y n ndy an
n de ocecurs S g t a fl‘Om the Ope e we C
write I — l'k') Whele k— 6 18 the COIrectIOD fol the Open end.
t s?\

2 g

If l" 18 bhe next leSODant Iengt}] Obhalned by ad usb]n the

llelbht Of the WateI coluﬂ]]l, ther} bo ethel‘ Wlbll an antlnode ab
l) n en an e ose en ere wi e ano er

—IIOde and a 1 W m b e tube. In th]S case —22 l }17-

we geb after eliminating end correc-

9 1 8,
From the #two expression e i

X locity of sou
ions = =1Ig—1, and Ve '.
e : e ¢ sound in a gas and the moleculla)n
. The velocity o . Rl
\\ elZcityv* The velocity of sound 1In a ga i
v (A v h t p=§
‘ vD From kinetic theory of gases we know tha
O=I/ e r
\

i lecules.
: locity of the mo
i squared veloc! '
where 72 is the mean
VpT—/z__?_’——Vg.A
Hence C2=———3P = s
h ean velocity of the molecules, we kn
is the m
I % ot 4 o)
—3 = 1
kinetic theory 172 5
Vs ?jrv 2
L 3 _-_X 3
. VL3
; or, C=Va1 =

Ihlls \Y I(i 1 y ()i sour in a ga a]ld t}le mOIe oc
C d g S
t}he e ular Vel lt‘

: 13 St
are of the same order. d in aliquid: The relation ¢ \/p
: f soun ] /
B CLOT 7 is the adiabatic
liquid. Here lasti-
: in the case of & X isothermal ela
e apphcable;iases the adiabatic and lz: £
elasticity. In.dmoziﬁer by a very gmall amount.
cifies of liquids
a liquid should be g av
hermal volume elasticityan
o

& .

= of sound in

c= \/716 where® is the isob \
Vo
of sp. hts.

better written in the form

=ratio




14
9 SOUND

2‘ .
liquidsﬁ:;xpg;';l[:l;:zal geterminatio,l of velocity of sound’in
of sound in water i ilgf) Sturm made a determination ok veloeity
a bell in water Whici ld6 on lake Geneva. A hammer struck
the water surface aASO flashed a quantity of gun powder above
counted by means c;f a D observer on the other side of the lake
between the observati quarter second stopwatch the interval
e On. of the flash and the reception of the

fe velocity of sound was found to he 1435

metres/second at 8°1(
and .
value of 14364 metres/seconifrees R v ihithe daletlates

M. WMarti i

velocity of soundnatlgigdmade an under water determination of
g, o S .eDth. of 13 metres. Four hydrophones
each other. A chars la]fght line at a distance of 900 mefres from
line as the Bef ie of dry gun cotton in the same straight
the nearest hydro I; ones and at a distance of 1200 metres from
on the other: Tﬁelorie e exploded first on one side and then
was recorded aut .leceptflon of the sound in each hydrophone

omatically in a chronograph., The mean value

of velocity of
sound at 15°C at
1504"15 metres/second. ab a pressure of one atmosphere was

The modern meth

liquids by application
later chapter.

i(is 1of detfermining velocity of sound in
ultrasonic waves will be dealt with in a

L}

CHAPTER XIII
v
“YSORJND MEASUREMENT AND ANALYSIS

1. Measuremefit of frequency : (:) Absolute methods :

(a) We have seen in chapter XI how the frequency of a.
tuning fork may be measured with a great accuracy by phonic
motor methods or stroboscopic method. Several tuning forks-
measured by the above methods may be takén as laboratory

substandards of frequency. If the frequency of a tone to be

measured lies near that of one of the forks, then it can be found

out by the method of beats.
(b) Siren: It consists of a disc with a ring of holes

equidistsht from the centre and rotating above another co-axial
dise with similar holes. The lower fized disc forms the top plate:
of a wind chest. In course of rotation of the upper dise, the two-
systems of holes coincide and a blast of air passes outside through.
the holes. The pitch of the sound emitted by the siren is then

nm, where n=n0. of equidistant holes and m=mno. of revolutions

of the disc per second.

The air blast is obtained from a reservoir,
maintained constantly by a compressor. 1f the two systems of
re set at opposite obliquities along the circumference, the

upper disc will rotate by reaction of the pulse of air escaping out

of the holes. Or the disc may be rotated by an electric motor
» whose speed :nay be regulated. In any case, the revolutions per
istered by a revolution counter.

where pressure is.

holes a

gsecond are reg

By increasing the pr
of the motor, the upper di
till beats are formed betwee

to be measured. BY slightly
understand whie

gc of the siren isx gradually speeded up:
n the note of the siren and the tone:
increasing the speed of the siren it
b note has the bigher frequency.

“is very easy to
thods ultimately depends on

The accuracy in the above me
the clock by which measurements are made.

“(e) Photographic method : The tone may be I’chi\ged by

roper amplification by a valve cireuit

a microphone and after D
ded on a photographic film crossed

the wave-form n@y b® recor
by standard time-marks:

¢

essure of air or by regulating the speed_
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(1) Comparative method : A sonometer wire with a
constant tension may be calibrated in frequencies by a set”of
tuning forks of graded frequencies which are again previously
determined by the phonic motor method. The length of the wire

is then adjusted till slow beats are obtained %vith the tone whose
frequency is to be determined.

2. Analysis of frequency: Analysis of frequency can be
conveniently made by means of a Helmholtz Resonator.

A Helmholtz resonator consists of an air cavity whose
dimension is small in comparison with the wave-length of the
sound to bs detected. One type of resonator A is a pear shaped
vessel with a pip at the back and an aperture called neck at the
front. The other type Bis a cylindrical vessel with a rather
long neck and its volume may be continuously variable. °

B
To calculate the natural frequency of vibration of a resonator
of volume v and a neck of length ! and radius 7, we must suppose

that the air in the neck acts as a piston and rarefaction or
condensation at any instant is uniform in the cavity.

A

Fig, 45

Let £=displacement of the *“piston” of sectional area $ at anyv

instant ¢ and let op bg the increase in pressure in the cavity.
Then ;

a’§
sd6p=sPl a—t%’ where P=density of air,
Since pressure change in the cavity is adiabatic, 8pv?) =0

whence dp= —¥p, 6_"
v

a*§ D)
o e DU I
dtz p v D.

%8 | Vps
Or, LS4+ P8¢
. ut"+p;v§ 0

hn" e _ 7 i

b
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whence frequency of vibration is
N=1 ;_P—_sr"-\/_?_. ( 02=ZP) '
¥ 22V plw 27V v P _

$is known asethe conductivity of the vessel and has the
l

dimension of a length. For a circular aperture (=0 ; Rayleigh
shows that in this case conductivity is equal to the diameter of
the aperture. Helmholtz and Sondhauss experimentally obtained

" that natural frequency as calculated is higher than the observed
frequency. This is due to open end effect and ! should be
corrected to I+ 67

The expression for frequency as deduced, refers only to the
fundamental tone of the resonator, but a large number of tones
®

(]

are possible.
2. (a) Distinetion between a pipe and a Helmholtz

resonator :

(1) In a Helmholtz resonator, the state of rarefaction or
condensation is the same throughout the cavity at any instant.
Tn a pipe resonabcr the minimum lex_Jgth of the pipe must be at
least a quarter of the wave-length of the tone to be detected and
state of condensation varies from point to point.

(2) Damping in a Helmholtz resonator is very small. If the
olume of the resonator is large and area of the neck ig small,
Zhen the vibration in a tuned resonator will persist for a long

time. Since the damping is small, a Helmholtz resonator is
. time. :
highly selective and the response 1s very sharp.

2. (b) Detection of a frequency by Helmholtz resonator :

A series of resonators of different natural frequencies may be
TR carhs placed at the nipple of the resonator which
used. e frequency of a tone sounded near the neck of
als its natural frequency. A thin reed of mica
ross the aperture of the resonator and tuned to its

fixed ac sency is a very sensitive arrangement of detecting
natural fred of a tone. At resonance, there will be a vigorous
the f:izc:lue::ihe reed which can be detected by a ray of light

, speaks when th
the regonator equ

vibra .
reflected from it.

\




volume ; thig may bhe

o ;
at;tl'] column of variable height, "
ere are g jecti
i resonatorevex:l hol;]ecblve methods of detecting resonance
' . ob wire mj

collar or 5 Rayleigh e
4 Very sensitiye atran

For 8reater gengi

phone placed across the

gement to detect the resonant condition.

This consigtg of t tivity a double resonator may be used.
WO resonatorg of Same natural frequency but of

diﬁ'erenb co 9.d

nd i
generally greatl:ecmt‘iltles. The volume of the outer resonator is
L dine Wirer '1an that of the inner one, A Rayleigh disc
microphone ig Placed in the neck of t®e inner

Teésonator. T}
selective ang h:;:;a”geﬂlenb.is extremely gsensitive as well as
by it, berceptible sounq cap be easily detected

£ the stream lines, wo shall see
regionsbped[ ab pointg 4 and B, and henge
hat the lineg Off Maximum pressure. It is clear
lon of flow, 5; How will be unaltered for @

hug 4 couple will act on the dise
iy .

dise placed at 45° to the axis of the neck is
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to turn it across the stream. : .

radius @ and the normal to the plane of the disc making an angle

6 with the direction of the undisturbed stream the moment o
Y

the couplé acting on it is, as developed by Kénig
M=% PasV? sin 20
where P =density of the fluid
and V=velocity of the stream.
Thus if 6=45", the moment of the couple is maximum.
In the case of an alternating current of air, the mean value

of the square of the velocity of the stream is to be faken.
In practice the disc is of mica of radius 1 cm. and suspended

by a thin quartz fibre 10 cm. long. The dise is suspended at an

angle of 45° to the plane of the opening of a Helmholtz resonator;:
a ray of light reflected by the disc falls on a scale placed outside..

Since the turning couple

it is also proportional fo
intensity. For a small angle
of deflection, the intensity is
directly proportional to it ;
the magnitude of the torque
SCALE can, however, be measured
Fig. 47 by a torsion head by bring-

ine back the dise to its original position.
% A Raylei"li; diso can be used with a tube resonator or a double
te]

resonator.

*onator and selectivity of the arrangement can be made
es

inner r
very high when th
resonators forming a.
of a continuously van'a
measurin

double resonator are same. With a resonator
ble volume, Rayleigh disc is a very useful
g intensities ab different frequencies.

Instrument of 7, ;
g’s formula : Konig's simple theory of a

Corrections in Koni
Rayleigh di
St Th
be negligible wh
with the wave-len
7 10

gc ignores the following factors.
diffraction of sound radiation by the dis¢ : This will
: en the diameter of the dise is small compared

éth of the sound-

In the case of a circular dise of’

is proportional to average V2,

In the latter case it is placed in the neck of the:

e natural frequencies of the two separate
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(2) Viscosity effect of the medium : The motion of the dise
due to motion of the medium in addition to its small rotatidn :
“This effect cannot be neglected when intensity of/sound is
measured in a heavy medium such as a liquid. 1In this case the
moment of the disc must be multiplied By a factor (1-8)2
where B=ratio of the amplitude of velocity of the disc to that

of the medium. The moment M then is
[=%0a®V,,*(1 - B)% sin 26

when the disc is set at an angle 6, V,, being the velocity of

the particles constituting the medium.

(8) Possible transverse vibrations of the disc: If the
the medium coincides with one of the modes of

vibration of
bransverse vibrating of the dise,
for the intensity measurement.
3. (a) Measurement of intensity by hot wire microphone :
If a heated wire is placed in a stream of ajr whether unidirec-
‘tional or alternating, there is a cooling effect on the wire due
to air draught. This principle is utilised in the design angd

construction of a hot wire microphone. Tucker in the first world

war designed it to locate the position of enemy guns and since
then it has been developed by him and Paris for detection of
sound and measurement of gound intensity.

Fig, 48

Bis a platinum wire made
‘silver sheath which is removed by
‘wound on a rod of glass ename] g
‘3 cenfral bole. The two ends of the wire are connected to two

»a.fmular rings of silyer mounted on obposite sides of the mica
«dise. The platinum wire ig very thin (‘0006 ¢m, diameter) and

from Wollaston wire with a
nitric aeid after it hag been
nd mounted op g mica dise with

then the disec becomesg useless
a

N cie—

i 5R1: SRZ and SR:;-

Response
->
»

e O
N a measure
.glves
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has a resistance of about 140 ohmso at 10°C. The.texzapir:.btzflz
rises to just below dull red heat (4.00 C) when a c1'1r1en othen i
30 milliamperes passes through it .and the reism;t;nce e ofi
bout 360 ohms. The arrangement is mounted in the ne
b L sonater C. When the resonator responds to a‘tone
Iiela;fl;lacgf: frreequency, air dranght in the neck cools the platinum
ey i i all.
AP i reSlStlj:cie:?s:ance consists of three components
The change OR; is the steady compo‘nenfi
2 y is oscillatory and proportiona
DR ZR’ Zim:ssc:fzm when p=2xN, N being the
e . and « the maximum velocity of the air-
i SRg is very small and is usually

in t
The decrease

frequenc .
stream in any direction.

.neglectedt; 4y drop 8B. which is proportional to the intensity
The stea

5 d by Wheatstone bridge method. It is 'm'ade o-ne
e bridge, the heating current of 30 milliamperes
e the'} ll)ri,h’e battery of the bridge. The out of balance
being Sul.]ptllfjga;vanometer, when the grid is cooled at resonance,-
eurrent 1n

=» Frequency
Fig. 49

¢ the intensity of the sound. '%‘haﬁ this is so
tally verified by Tucker and Paris .Who showed

f balance current is inversely proportional to th.e
thab the P :otance between the resonator and an elect;‘n-
§quare of the ;liurning fork in open air, the resonator being

maintaine '
callyd to the fraquency of the fork
tuné

has been e5PEXImET
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To measure 6R,, the oscillatory potential difference across
the wire is amplified by a valye amplifier and the output currers

which is proportional to the amplitude of vibration is passed
through a suitable measuring device,

Paris used the hot wire microphone with 3 double resonator..

The vibrations in this cage are coupled and there i
over a range of frequencies.

The grid can he calibrated over
this range by

a siren of known constant output. If the frequencies
of the separate resonators constitutin

g the double resonator are
made equal,

then there is almost uniform response over a s
width of frequencies, the response curv
asmall central dip.

and selective, special
nature of response wi
hot wire microphon

malll
e showing two peaks with
Such a double resonator is very sensitive
ly so when the frequency is low. The
th a single and doub]e resonators and, with a

e is shown in figure 49

» response being,
measured by the out of balance current,

3. (b) Absolute measurement of intensity :

A Rayleigh dise with a resonato

r or a hot wire microphone-
with a resonator is a very

suitable instrument to obtain relative
e same frequency, For a different
resonatorisneeded ang since responge

frequencies ig not definitely known,.

of sounds in such cases ig g difficult
matter. To measure intensity absolute]

frequency a different tuned
of a resonator af different
comparison_ of intensities

(2) Sound radiometers : Altberg
tlie intensity of sound waves
by sound waves reflected from it
the method can he understoo
due to Larmor.

measured absolutely
from Dressure exerteq on a wall
S surface. The basic theory

of’
d from the following treatme

nf

Let us suppose plane sound w
perpendicularly on a totally reflect;
bo ‘itself with a velocity
waves. Liet B be the ene

aves of velocity

S a response-

® waves are incid

P
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o henee, energy of amount (c+u) E is compressejd_‘m a length
w. It B+ § Eis the energy density in thereflected wave,
5 e ) (c+u)E=(c—u)E+3E)
.0

Za1,
E+8E=ct@=(1+7_‘\(1 o)
I T R cl! c

=1 _{_Qﬂ approximately
] c »

. when ¢ 2“

Thus Z=2 o, 08BE=%E

E c
» < d in
i the wall, work done per secon
If P‘;s the pressure on h ‘

A SR e accounts for
it area of the wall against this pressure acco
; ar
moving unl

: o TP it
i length ¢ in front of i,
iner in the energy in a
the increase o PaeSB=E"
P=9%E

vy diation pressure is the total energy density in front of
e raIflaﬁhe wall does not reflect at all P =E. . y
d ressﬁre exerted by sound waves i T S

o Stea'y é)l following way. A little hole TS made in a
S 'm ]3 closed by a loose piston which is suspended

W yry delicate torsion balance. If the constants
from one ar[_n of a ;’e ce are previously known, the cc_>up1e am}i
of the torsion ba anure i R "Vhwb o
from that fhe press be measured by the deflection of a spob

b Ca[i rable deflection very intense sources
s olass rods exGited longitudinally.
SuChbas‘ t,calcu]at;ed the pressure as ‘24'dyne
o elvgvhich energy density becomes 12 erg_
fmu{l;o be completely reflected). By multi-
s

$he wall.

by
wall.

f light. :
Zf sgund were t?ken,
In an experiment,

e cenhimet‘er
wave
density by
imately)

per squar

supposing
sper ¢-c- (Subr

ing the enersy
c. appl'o.‘:

the velocity of sound (about
ly the intensity comes to be about

D W

3:0000 cms/s

4;00 ergs per sd: cm.lll)e
; (1) Optical metho

ight.
beams of lig ;.
] pa iy GWORED = aves traval where
are obtained f;ihrough which the sound W
5pece 4
_geross &

: ir.. When sound
ses through undisturbed a |
; other D28
25 the Wh

- second. L)
Aot Liet us suppose interference fringes
d:

Let one of them pass

D)
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waves are fillowed to move through 4, the width of a fringe witl
:if;zti‘oto mzrease. From ’the change in the width, tpe density
i Anm:n bhencoi the intensity of the sound waves through
fringe may SI;e :x L;a-culated' The increase in the width of @
e betweep a:;ed by the fact that rapid variation of path
change of the nd‘ . ?Wo beams occurs as a result of density
fringe in the ﬁ{];:i3 A ARe 4. Hence the position of a
e i e t;of v1e:w rapidly changes about the mean
be larger. Thzeamolife;SIStence off vision the width seems to
) s Stroboscop: ude of motion of a band may be found

The instrument can be calibrated

pressure in the g
pace 4, and i
system. ’ noti

. by taking air at different
cing the shifts of tpe fringe-

The int
erferometer method was introduced by To.l.)ler and

\ljyzmann and developed by Raps
- Intensity and loudnegs :

ropagation anq ip the case of

tensity
__anazﬂ 63
Hime s e
Poc

[See pages 70 & 71, Chapter V1]

ou i
dness ig, however, not DPropor

ency is from.

the sensitivit .

freqaencies, Thi mO:X, normal ear ig different at  diff

it o Imum pressure Variation (8 Ty
ndible sensation of sound af 95 Pmac) to produce

large as 10 4
ynes/em®, while it ; .
) 18 as J ' )
1300 cgcles Per second. The ear ig niow;; Pl PRt
about 3500 cycleg s h |
e ber second when th
audl.blhty 15 00008 dynes/em® onl epr
barticls at this' presgure is s ;
hydrogen molecule.

essure af threshold of

; the displacement of an eair

maller than the diameter of 2

The sabjective sensa

b
by what is kiown ag ‘on of loudnes

S at L
Weber.pechner a frequercy is given

L :
aw. The increase 8s in

" 4ill the the b
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3 2 . 0 ¢
the sensation of loudness is proportional to ~I[ » where 81 is the
small inerbase of intensity I. Hence, increase in the sensation'

level of the sound is=sg —s1 =k. logio %”, where % is a consfant.
1

If k=1 then sensation level of two sounds is given in Bels and

is thus equal to logio % bels.
. i 1

i I T :
The intensity level of two gounds is given by loglof"- and is
i

expressed in bels. 1f expressed in decibels, the intensity level

is 10 Iogm%ﬁ decibels, since 1 bel=10 decibels. The reference
s 1 . —

intensity for loudness comparison is 10 18 watt/cm? at 1000

nd (at r.m.s. sound pressure = 0002 dynes/cm?®)

of audibility at thab frequency. A sound

0 times this value is said to have an

cycles per seco

which is the threshold

having an intensity 1
of 1 bel or 10 decibels.

The sensation level of a sound of any frequency is measured

by the ratio of its intensity to the threshold intensity at that

decibels,

intensity

I I

i =10 log =L
particular frequency. Or, sensation level =10 log ¥
ot that frequency and I, =threshold

y. Since I, is very large at low or
tion level for a particular value of

where I1=intensiﬁy
intensity at that frequenc

high frequenties, the sensa :
‘Il is small at high or low frequencies:

‘Wa,) Measuremen

of a sound is measured relative

¢ of equivalent Joudness: Loudness _
to the loudness of the standard

o tone of frequency 1000 per second and intensity
ence pur This reference tone may be produced free from
alve oscillator. The sound whose loudnes.s
d out and the standard reference f;one ig.
py the observer from the e .dxstan.ce.
gradually increased in 1n§en31ty
to be equally loud. The increase in
ence tone from that ab threshold
t the equivalent loudness of the

refer .
10%** watbt/cm
harmonics by 2 v
level is to be foun

alternately heard

The pure reference
wo sounds appear

decibels of the refer
‘phons’ 0
/

tone i8

intensity in

Zovel i3 the measure 10
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found. T.he intensity level, sensation level and equivalent
oudness in phons are numerically equal at 1000 c. p. s, the
frequency of the standard reference tone. ' g

5 . .
i o IMeaSurement of quality : The séund produced by 2
vibsfc:" instrument reaches our ear through air. Hence if the
rations of the free air particles could be recorded, the quality

of the note i
emitted could be found out by performing Fourier

analysi o :
ysis of the vibration curve. The essential requisite of a

faithful recorder : ‘
1‘egponselecmdel of vibrations is that it must have a uniform
Raseovenithe fre.quencies comprising the audible range.

(o) Miiler's Phonodeik :

-

Fig. 50

" Hisa coniCal horn
ab the end of Q

+there i ( which on soft i: AP
A sili ;sba dlaphrlagm of glass of thickness abou;‘u;ggg i
v re or i AT N
centre of the Zp "‘;mum o0 inch thick) attached ltnfklll
laphragm passes round a small pal] ;ie (;3. 1 le
ey fixed with

a small steel spindle mounted on jewelled
e

connected to a spri
) / pring. On the 3
~oscillograph mirror which rotates S\Zlhnednleththc"iere
e diaph

A ray of li :
The'm t-hght 5 reflected from the mirror 4 .
o oion of the diaphragm is magnifieq abouiZ?Svmg Wit
he serious defect , ;600 times.

¢t in the abh ’ .

response is not uni g ove instrum :
ot uniform ; the natural B A 2?11 lsdbhat the
1e diaphragm

» but it is im i

‘, 0§ :

effect due to the horn ang the air folqjlble to eleminate regonance
mn.

h ey ¢ 1 1
phonodeik by tones of different frequenci Miller calibrated his
ncie

is a small
ragm moves.

bearings and is then"

8, but of constant ©

e
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(b)) Cathode ray oscilloscope :

The Qathbde ray oscilloscope 1is the ideal instrument for
-analysis of frequencjr and studying quality of a musical note.

The instrument is an evacuated tube containing a cathode K
P. The cathode K isa coated filament emitting
n heated by an electric current: When the potential
of P is made positive with respect t0 the cathode by apphc?,tlon of
a potential difference of a few hundred volts, electrons emitted by
the cathode are accelerated towards b?le anode P anqkthrngh a
hole in the anode emerge out as a thin beam and strike at O the

¢ a fluorescent gereen ab the end of the ?ube and cat}se
R there. A4 and B,B are two pairs of deflecting
i r o{';ential difference established between AA
lﬂafgs ;nd'linz:au{le the electrons 0 be deflected horizontally or
or B, B Wi S

vertically.

.and an anode
.electrons whe

y a distortionlgss microphone or a

: sived b y
diis Eo8 different frequencies

1
e soun -
1 whose response to

d microphone

calibrate
\\is known. i :
. ) o current 0D the microphone 18 afnphﬁed by a
R The ﬁuc‘tua ing 4 the g,mpliﬁed voltage is applted across the
WA amplifie” o nee of vision a vertical line through O

plates,5: B Dacin 00 The displacement curve of
will afjbear on the fluores : photographic ﬁlgl W
e oleEiiy heaill +e across the line in the horizontal
e curve, the electrons

it is moved L : grace of th

Wi tlona,l'y S .
divection. TO Obf':amta.lfta nt frequency by applying 2
V) 2 1zonta
? ave sweph hoTIZO



e studi
udied and wave form of gsawtooth

e phoﬁogtaphed a
and studied ‘
€ waveform caleulated o e

:ipe- The curve then can b
e Fourier coefficients of th

® CHAPTER XIV
VORTEX SOUNDS AND MAINTAINED
VIBRATIONS

1. Vortex Sound : (a) Aeolian tones :

Let us consider a fluid streaming past a solid, e.g., a cylinder-

ped in the fluid as shown in the figure. In the region behind:
uid will have motion as indicated:
tices rotating in the opposite-
bove a certain minimum

dip
the cylinder at B and C the fl
by the arrows and form vor

directions if the velocity of the fluid is a
value. If the velocity reaches a sufficient value, these vortices-

attaining a gufficient size will be carried along the stream,
the detachment taking place alternately from each side..

e -

3 A e ————
\%
Tig. 52
ge double cories of vortices is due fo-
the fluid and the surface of the-

two rows of vortices be i and
s in the same rowbe I, then it

The formatien of the

“the viscous drag between
obstacle. If the distance between
ive vortice

that between the successl
1-,%='28. Thus the distance

tally shown tha

has been experimen
game IOW will be

o of the velocity of’
of the vortices.

yortices in the
with the increas
jon and detachment

n two guccessive
velocity 5

te of formab

_betwee
independent of the
the stream, the ra

i increased. ;
will be 1ncr . string of diameter @ ander tension placed!

Let us consider i Vortices will be alternately detached

= the rear of the string and if the velocity is
: h

torces on the string as the
A3




=5'4q .
g, th:e::;ele d=thiockness of the
e &ue to cross-forces of

5.4q  Ifthef
a 'equency of the periodic

se of 0
a ol
e infinite ocean of

-——

» the y

) Iowerp:er ones revolving in

ug ﬂnes l.n the clockwise
e distance befween'

SSive One
$ in Lt
them.ia the gg he gj
[ g e Stan
Slven by TOW, then th:e Ibetween two
Telation betwe
en

for
: Med due to pressure
ls . " %
glven. by N='0552 ,°
a

\ 2
)
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where v= i
1e’: v=velocity of eflux of the fluid and @ the width of thesli
f ; he tones produced by a jet are weak and uncertain‘ T}S"S' 1F'
ue to the fact that there is no solid resonator here to. res 5 tls
| resonate- 4

to the tone Produced.
(¢) Edge tomes? Masson and Sondhauss first observed
eal

that when a Dblast of air is directed against a sharp edge, §
ge, tones

can be produced.

_ L?t u.s suppose a blade shaped stream of air issues from a sli
and impinges on a sharp edge as shown in the figure aTs i
e formed, the vortices in the two rows 1'e;»7olviV1:0
In the si.mplesh case, & vorbex revolvin:
just reaches the tip of the wedge-

vortex rows ar
in opposite directions:
in the anticlockwise direction

Fig. b4

when the nex§ in the same row is just near the slit. In this-
tex rotating in the clockwise direction

position “there is one VOr
at the middle position of the two vorbices in the upper row.

Experiments have shown thab fo
is a minimum distance Z=%o between the slit and the wedge
es can be formed. {

th which the yortices move towards the-

when such yortic
1f V is the velocity wi
tch of the edge tone is given by

edge, then the pi

o slit and the tip of the wedge ; @ the-
e-row is the wave-length
¢ efflux of the air stream:
Hence frequency of the:

14
—— when z is
w .

ween th
wo vortices in the sam

the, distance beb
_distance between &

urbance:
Utwhén Kis & constant.

<'of the dist If the .velocity, 0
is U, then V=K
®

-
¢

r asvelocity,of the efflux U there:




-and will be equal to No corre

“formation of two vortex stree

-edge toneg formed when
-0n an edge,

158 SOUND

-edge tone is N= T Thus if U is increased keeping the wedge

+slit distance constant, the frequency also increages till vortices
‘suddenly re-arrange with a jump in frequency. Leg us suppose
-U is kept constant and the wedge is gradually shifted away
‘from the initial position corresponding to =2z,
-distance for formation of an edge tone for the veloci
With the increase of wave-length z,
If b is the distance between the two

the minimum
ty of efflux U.
the frequency will decrease.
vortex rows, then according

to Karman’s formula ‘Zwill be always constant ; hence 7 will

increase with increase of z.

If 2 is further increased, then at a
"value of =22,,

v will suddenly jump to an octave
sponding to z,.

the frequenc

'by the fact that there will

The secondary

vortices ultimately line up N ian nd

with the Drimary
ts.

558

.}:W////}//////////////////////////

NS
////’/’///////////////////////////},),,,,//////////4
Fig. 55

2. Organ pipeg . i

(@) Flue organ pipe -

The vibrationg of air in 3 flye organ

: Plpe are maintained by
alr rusheg throy

gh a glit and impinges

ll‘cu_lar cross-sections’
d from 5 windchest
3

The wiﬁ

T ————

s

* by the distance which is eq

N :apprec

X 59
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: 1 inches
tant pressure of severa
i foot bellows at a cons
'SuPph:dr 1::?;rlisers the mouth piece through the narrow elllﬁ i an
'OPW.a i the narrow slit F (flue) striks the edges E w. ic fl g
13353138(1 ﬁie of the pipe. The speaking length of the pipe from
; e . . ¥
Ze:e I(2 canobe adjusted by the stop P in a closed pipe
7 o

i red that the vibrations
ho first discovered
t was Wachsmuth w

earlier
in the pipe are coupled to the edge tones. We have seen
1in the

tone is determined
G f uency of the edge .
in this chapter that the freq AT £ L
f the air stream. The organ pipe is
itv of efflux of t :
jang th‘e v;lobc;ai at a normal blowing pressure, the pitch of the
50 designe

a e 1 Hence
fundamental of the pipe.

; ls that of th

edge tone equ

in the bass of the scale OE is
i to produce a tone 1n
for a pipe meant
: raratively large. : W
mad(e)cm;flf ct of overblowing and underblowing the pipe :
) e

i ‘ i
pressure be gradual
that the blowing
Let us suppose

; 4 ing &
the normal blowing pressure 'PO corre:spondImgth:
i fr‘om of the fundamental vibration in the p}I;e:k) n' n
‘the produfczl;:npipe the frequency of the edge tone will be give
.absence oI the

. V__ constant, where z=O0F or submultipleof OE
iby the relation 5{;

ichi es with blowing pressure,

Ciigh eﬂiuxt:::h ;;ll::eﬁlings will be different
ant;hevibraﬁions in the pipe are coupled. The

when edge Sor°8 d and their period is nof alt.ernable to any
datter are less éamPeT Lus the period of the pipe will b'e forced- on
iabls extent. The distance between consecutive vortices

4hat of the edge tof;f'be altered to such an extent that the .nabur'a}:
jin the same roOW Wl_ o are maintagned, This acco.mmodatloz} wi ;
vibrations of the p1p is P’ when V' the velocity of efflux o
G t the piteh of the free edge tone equals
h ti.l:lonic of the pipe ; then the vibrations of

.and V thevelo :
and n frequency O

.continue till the
the airstream is suc i
o 4he piteh of the next

iteh.
e -to that pitc :
4he pipe will ]u{n:;i plowing pressure i reduced from the normal
f g e 1
Simllarly’ 1

: the edge tone natural to it in
he piteh of j .
lowing Dressure fho» tpipe will be lowered ; but herealso the
of the !
the absence

ipe will be forced on it. Very soon t‘l‘le blowing
2 f the P!
period ©
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pressure is reduced to such an extent that edge tone can hardly

be produced. Still the pipe tries to impose one of its overtonds
wpon the vortex production and the fundamental is sounded very
feebly. Thus if V be the velocity of efflux when edge €one is in
resonance with the tube producing its fundamental, it is still

possible to have the fundamental soundeq at velocity 14 when
N

the spacing between two consecutive vortices of the same type or

the wave-lengtheis % y
N

(i) Effect of the width of the pipe : The end correction
at the blown end ig very large, about twice or thrice the radius

of the pipe. This end correction is also dependent on frequency ;-

hence the vibrations in the pipe do not form a strictly harmonic
series. For a narrow tube where the end correction is small,
the natural vibrations depart less from a harmonie ratio.

(b) Reed pipe : The vibration of an air column can:
also be maintained by a reed. In this type of organ pipes a reed
of brass is at the vertex of the pipe proper which is conical. The
reed is attached in the side of the opening of a small tube
called a shallot covering a hole in it. The end of the conical
tube just fits into the shallot which is fed with air from a

. chamber called boot. The period of the fundamental vibration.

of the reed can be adjusted with the help of a wire spring.
Due to ruéh of air into the shallot, the reed is deﬂected, andi

again springs back due to tension. The overtones of the reed
are not harmonic ; hence the resultant note is the fundamental

of the reed which is also the fundamental of the pipe.

- 3. Singing flame* Higgihs in 1771 observed that a jet of
hydrogen burning in an open tube sometimes emits a musical
note. De la Rive tried to explain that the note was due to-
periodic condensation of water vapour formed by combustion of
hydrogen. But Faraday showed that a note could be pr?duced
burning carbon monoxide in air, in which case there is no
formation of water. His idea was that the no@e was due to succe*
sive expdosions of the combustible gas. Sondhaus's first show'ed
that the ncte was due fo ‘intermittenb heating of air near the. jet.

®
(]

a
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and the pitch was related to the length of the tube. A satisfactory
explanation of the singing flame was given by Lord Rayleigh.

The following arrangement may be made to obtain a singing
flame. )

An upright supply tube 10 ecm. high with a pinhole burner
at the top is fastened with a horizontal
gas pipe. The jeb is lighted into the _T[
wider glass tube of about 1°5 em. in [
diameter and 80 ecm. in length and
supported by a clamp. When the jet
is at about 7 em. or 8 em. from the 3 INEL ]
lower end of the tube, the flame may
begin to sing spontaneously. The flame

may be ®oaxed to sing by gradually ot
decreasing the size of the flame by ilh
lowering gas supply. The pitch of . IL die
the note is equal to -, where ¢ is the Fig. 56

21

velocity of sound and ! the length of the tube which shows.

that vibrations are stationary. When the jet burns steadily wif;h-
out producing any note, it appears like a band in a ro.tatmg
mirror ; when the flame sings, it has a tooth like structure in the-
rotating mirror as shown in the figure, which shows that the
flame burns intermitbtently with a period equal to thab of thenote.

[simpsaiabiat we. et il
[ v prpsp Eu s R

Fig. 5'; o e
wed that the most importantfactor was the-
at of the vibration

ged when heat is
r the:

Lord Rayleigh sho : S
phase of heat supply by the Jet Lelauivelte

#n the tube. The vibrations are most encoura ion and nea
supplied at the moment of greatest condensation

region of greatest condensation. i ) g
¥ B ibrations in the tube are stationary, the d1sg?lace
*Since the vibra tinode are magimum:

. : a node and an an ; -
PR Hence, heat is supplied ab the

i gation. :
at maximum condens This differs from §he case

poment of pgaximum displacement.
11
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of ordinary forced vibratio
impregged harmonig force
* Z€ro. The differenca is

harmonie nature of the he

: . ol
Let ug SUPDose stationayy Waves are fofmed in the pipe Wi
one of the antinodeg 4y a

b the top of the tube and a node at the
middle. A the instant of maximum condensation, as in 0
case of g]] stationary waves, the ajr barticles hgve the maximum
displacements I Zero positions towards the node. Leb
heat he Supplied gt that ingtant to air at and above N. Due to
heating there win be an

. b ! and
increase in fhe pressure amplitude,
hence Creation of an addj

. he
n which is mogt encouraged Whelg b(;
: o
I8 maximum at displacement equal

due to the intermibteng instead of
at supply.

from thej

) v 163
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; ressure
he case of heat supply being made a: i)i?:dppulse 3
pgriod il 4 is just beginning, a ‘sudden Pd AT
when rare'fachlon PR e belﬂz‘% Zero anneither o
LRy 5v11111 g:laisncreased ; but there will be
preiod Wl

i ati By a
braﬁlon.
e fd ﬁ O‘r any discoulagemenﬁ ﬁO
t emen n lle V1
.encourag

i when
i displacement
ing sudden heabing atb zer: Al i Ee
milar r i s, will decr he time p d. Th
7 1c'll nr leaso. .DSb SOt e maintenance of
i i rage
condensafion 18 Ju L A discourag
o ither encou
11 neithe
also Wi

°

i vibration.

illation of the flame
: ‘tant thing is that the nsellln:;onthe o nay
The most 1Impor ct phase relationship w‘x AT A
. e r
SR lcxfmiﬁs possible because the stationary
This
in the tube.

|
the jet and ‘*
ith a node above
: upply tube wi longer gas |
ir. Thus also formed 1n th}jerse pthe SpEly] tube co:hn ecilt;i’ tu;e :nd |
' ; A ) iRs : at w £ in the |
i 3 artfjulmallels;tounghfc;zc; Onthe Jireasiontes an anélnodjondensation the particles |
the Open eng away fpo Iifes f;g Ibe : <]i ebmf fetiod et o st
rom N, € losses due to fri
| COmpengateq by the ine
|

At ion the
rarefacti

the node.

h towards

W ly to the air
" from the node and thus heat supply
ressure amplitude at tho i s

q rus
she singing tube
: e ill be
énsation, anqg hence vibrations w

Instant of Raximum conqd
)

maintained. If the heat g
Tarefaction When the

-eatest
upply is made at the instant of grea
n.ode, to th

: -om
Motion of the particles is away flt;he
Sudden application of the pressurg 7
Taged. The ty, cagesare shown by fig.

—> bressure

L

b4
R

o,

> time \l/

2 Fig, pg

In the wo in
c ; s
the time Deriog aseg dlscussed above theye will be no chang
e 8 amplityq

X0 pime
e of Vibration"hag'no effect on #1725

t

; -tube.

i b1 ithdrawn. The
s imum as the flame is pm.t:,la,lly x:]:t;Wise iy
i SRR mmlt:m}ze must be above the ?elt; : ionto el
: SIRL ible gas particles
e i combuszdure N, A; correspond to nof;s
i bh: b: and N, Ag are the same of the
ply tu )

od :
Zlould be no motio

h a node.
be throug

.tl:ld antinodes of the sup
a

test
he moment of grea
ol be. ust be at b S
singing :; up, the heab Suigzdmbe near the node of the singing
Tos jet s
d the ]

i ; han
i a little more t
condensamzn a]:;th of the tube should be

’ The len

; integer.
A ere 7 18 an
{n+1)g Wh

1
4. Treve
ined by heat.

k 2 an example Of \% lation
'I'h 0 8
c nSlStS Of a prlsm Of bras
H ker cO or
er

; . The prism has one
i rminating in a knob. made as
.mainta ith a rod term VAT
wi d a gro
-copper moved an
dges re
» .of the e

i its surface
in the figure: ith a rounded top is taken and its
:ghowa f lead wi
k o
A Dbloc

i temperature
The rocker is heated to a temp
geraping.
aned by

ed on the lead
A T6 ! oint of lead and thent}l])ia:idge, Lo
A f the melting P of a smart bap near
beloWw applicabion )
DR e k.
zblock'beBﬁ{arted Lk
may

> =
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The ex
planati :
ke 1on of the vibration may be given in tl
n in the following

Let us
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CHAPTER XV o

2

MUSICAL SCALE.: CONSONANCE
AND DISSONANCE

1. Consonance and dissonance : Two musical nob
‘sounded together may produce a sensation which may be eii-,hes
pleasant or disagreeable to the ear. The notes produce consonanecz
or concord when the resultant sound is pleasant, and dissonance
when it is irritating. When the ratio of the two
the individual notes can be expressed in
the resultant effect will be generally

or discord
frequencies of
gmall whole numbers,

concordant.
According to Helmholtz, the discord is due to formation

of unpleasant beats by the component notes or some of their
overtones. This is similar to the unpleasant sensation in the
eye when 2 light flickers. The unpleasantness is negligible when
the flicker is either too slow or too rapid. In the same way
if the number of beats formed per second by the component
egs than foul, there is practically no discord. Buf
he number of beats per second when discord
vanishes depends on the pitches of the component notes. Thus 33
beats per gecond produce the maximum dissonance at a frequency
519, while shere is mo dissomance when the number of beats is
"above 78 Der gecond at this frequency. The discord between the
component notes depends in a compound manner on the ratio
of the frequencies of the two hotes as well as the difference
he frequencies. Since discord may be due to beats between
tals of the 6wWO notes or any of the harmonies, the
dependent on the qusality of the component

notes is 1
4he upper linait of ¢

in b
the fundamen
» dissonance is

nobes-

9. Mus
peies oftwo nob
The musica
frequegcies.
depends on &

ical interval : In music, the absolute values of
es are less important than the ratio between
1 interval between two notes i8 the ratio

The compatibility or agreeabilit§ of the
gimple ratio of the frequencies. The

freque
the tWO:
of their
WO notes
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inter
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€ musica] g,
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Pleasant in combination have
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ce g
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The

w each group is 12
e ale extends over 7 octaves
rally three octaves suffice,
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2 = f’r key note to its octave. The
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In India the note®

Helmholtz first
E’ Fr G’, A, B, C-
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The frequency relation, efc. of the notes comprising the

diatonic scale are given in the following table.

Frequency relation Musical interval
Noté : : between succe-
Rambko; s with Tonie ssive notes
1
g o } 9: 8
9:8
2 T g } 10: 9
5:4
2 i } 16 : 15
dbo B &
# ne } 9: 8
@ 3 8 2
G Sl } 10: 9
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A } 9: 8
; W58 6
B B } 16: 5
i do 9l
e s HSY
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n .
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e
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required when same intervals are to be used in hoth cases. Thus

‘With a diatonie scale, change of key note is not possible.
Equitempereq scale : In the equitempered scsle there are

twelve notes in the octave and the musical interval hetween

8 is the same. Thus if ¢ is the

between two successive notes, then
=9, whence £=1'05946,

The intervalg between the succegsiy

e notes of the diaton'c
and the equitempered scale are giyen be

low.
\ 1
' v B c

Scale ¢l p E F ) G 4
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| | ot o S
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required when same intervals are 4o be used in both cases. Thus
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‘ { Reverberation 5
sounding in g closed hal,
€nergy density wil soon b
walls absorp sound perfe

Walls have heep Témoved. Ip ghat case, intensity at a point will
Vary invergely ag dhe square of bhe distance of the point fr'om
the source, But in actual cages, there ig always some reflection
from the Walls and the energy density in the enclosure gradually
builds up ¢ a steady gtate value, when the energy produced
by the source Per second equalg the rate of 1ogg due to dissipation.

e of sounq ig suddenly eyt off, still the.sound pezsists.
Or multiple reflections from the
This phenomenon is known

o
Let us consider a source contfhuously

ag reverberation,

The reflection from the wallg increageg the loudness of the
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If fSS is an element of
coefficient of absorption
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Optimum reverberation time :
hall determines the suitability of
Optimum reverberation time in a hall is the mpst suitable

reverberation time for speech or for music for which the hall
is designed. The best times for pari » ha

on their sizes. For a hall of aboyt 50

Reverberation time ip a

it for speech or music.

£x)

onds while for a
» it s about 9°3 seconds. Thus it
10 to 25 seconds ; smaller rever-
speech than for music. It must he
beration time in a hall is affected
of an audience in the hall due to

hall of volume of 253,000 . 6.

‘appreciably by the Dresence
absorption by clothes ete,

3. Reverberatiou time in g dead room :

If the i‘nean absorption coefficient ¢ of the material of the
walls of a room is less thap 0'4., the room is said to he g live

When V is ip o. tt.,

isin feet Per seec. Th

=S logm
When ¥ ang § are in ¢
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ent,
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175
] ® THE ACOUSTICS OF BUILDINGS _

4. Measurement of absorption coefficients :
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g

e
E=04
ment is done with the second source

salie ) ri il
A second similar ‘ €xP® intensity decays to same limit

when we get, 88

of power Ps A %%T,
4Pg ¢
E=—é;1
CAdwp _mp
) _QVATQ _4_?, (Tl 2)
4 Eigtale B $ ’
Hence —Pﬁ —%Tx o
(4
Py
Od(p, - Ts)=108 B,
. V P
7 log F: (9)
whence Ao e

b i fficient and S the areg.
h I SR i wi ty rever-
‘W. BiiEits meant,a are o be carriedoub ith :he exg;fls Dl
\ i FImER S i rption from the wl v
poe “in whlch abso y
These € 3 ; h

her
peration €b&%

0
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small and then with the absorbent material whose coefficient of

absorption is to be calculated. Sabine in his experiment expressed
ansorption by the absorptive material in terms of the area of an

“open window.” Times Ty and 75 in (2) can be measured by
ear or by an oscillograph.

(b) Stationary wave method :

Absorption coefficient of a material ¢
use of stationary waves,
gives accurate results,
form of a slab is requi

The method is very convenient and

red for the experiment. But the great
defect is that the absorption coefficient can be

at normal incidence of the sound waves,
experimentally verified that absorption depe
on the angle of incidence. The arrangement used by Paris
consisted of an earthen ware pipe 9226 em, long and 30 cm,

diameter. One end of the Pipe terminated into a sound chamber
in which a loudspeaker wag actuat

by a valve oscillator at a consta
the pipe was closed by the spe
coefficient of absorption wag
waves were formed inside the pi
incident and partially reflected
microphone wag uged to find out the displacementg at different

points along the length of the tube. If the displacementg are
measured with a good reflector at the en

d of the pipe, then by
comparison of the displacements at the same points in the two.
cages, absorption coefficient of the slab could he calculated,

5. Design of a hal] 3
Requirementg of g good audi
(4) The reverberation ;

meagured only
whereas it hag been

nt frequency. The other end of
cimen of the material

whose
t0 be foung out.

Stationary
pe due to Superposition of the
waves. A calibrateq hot wire:

borium are -

. sound boards and air
Space 1n the hall should be ag small as possible., The last effect
i very noticeable in small hallg,
(445) Curved wallg and domed ceilings should he avoided zs.
they tend to focug sound, ’
() Interference givin
at different positions in th

8 rise to maximg and minima of sound
e hall should pe as small ag possible.

an be measured by the:

and a small amount of material in the-

nds to a large degree-

ed by a known current supplied:

L ey

L - —

A DS NS I Y

Ly 3

W wi itable sound
t the auditorium and lagging walls ith suita
(o}

absorbers.
6. Study of an auditorium 2

; thod :
a) Ripple tankame ; : thod to
Ek) el auditorium may be tested by rlpfle ta:kpfﬁ;zuced i
i : 1. Ripples ar

L designed hall. v gl 3
Lovaleobs defe(:;;fufsa attached to an ,elecbrlcallythrzarl:::;:lliy
i3 el:Clll'S; blz' -athe stylus may be WibhdraWnAf:f;];e] auditorium
tuning O.r b’le instant by an electromagne.ﬁ-. U e
ey sulﬁg the stylus is placed in the PC’E’I.{E AT WWaves reflected

is taken an ; tual auditorium. :
in the actu 3% N ] tudied
I ¢ the model audltorlut'n m&Y%@t i
back from the walls o tographs. In this experimentsthe
plho i?ngthe model are comparable to the

es

ctual auditorium.

by a sweccession of.
wave-lengths of the ripp

wave-length of gound in the &

. g '
(b) Spark pulse o o first used by Sabine. A model of
d wa

i be called
d a spark gap which may 3

T te g e
“light” spark gap adel ond the progress of t feﬁie Lt
PR e m; intervals with the helpkobya S
graphed af VAV pehind the sounq spar A e
The light Spal‘ka:: time may be suitably @
gecond, the eX

; d from
:» plate is protecte
otographic P
atic arrangement 7 pi There is a great resemblance
m ) ark.
gound B8P

; d and
by taken by the ripple tank g
tography 4

hod.

Spark pulse metho

auto
ihe light of the
between tbe pho t
the spark pulse me
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1. P :
frequenc;(;iuc:f) I;] of ultrasonic waves
wiale SouDd wa,
sound in the ear Ves cease to produce J
a
frequency abovg 10 l2)(;1)611(13 on the individual, For Sensatl?n e
though waves ;na 000 cps. is called ultraéon.convenlence'
frequency is 90 B’OSIOduce sensation of sounq o lc frequency,
PTOducin 7 c.p's' The gener H ven When the
g 8 sound by supplyi ally used method of
uency current fa-il 0
c S 1n the ult .
‘Or cone 18 inc g ragsonic ran e »
M pRgTT 11})1ab1e .of vibrating at such 5 hizh ‘:3 the diaphragm
e N r
be passed througzol'lbls so large that no aPPreciaEuency and the
1. The e current can

produce : most gener
ultrasonice waves are -( anyt used methods 4o
etostriction o

cillator

method i
: and (2) the Plezo-electric oscillator
: Magnetostriction oscillator : F L

magnetic b T T W
material like iron or niclke] i8vtn henever a rog of ferro
agnetised 1

: The upper limit of

1) the magn

b under_gOes

Fig. 61
gth- If the rod is- 7

atin s plaCEd in :
8§ current ig passed, then in ea(:;] c011I through .
cycle of the

D€ a loudspeaker with an audio *
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magnetic field of the coil along the length of the rod, there will

betwo cycles of change in length, since change in length is

independent of the direction of the field. But if the rod is
initially magnetised by a second coil carrying direct current, the
ffrequency‘ of altergtions in the length will be the same as that
of the alternating field. The change in length of a rod due to
magnetostriction ig very minute ; aboub one part in a million ;
but when the frequency of the magnetising field is the same
. as that of one of the natural modes of vibrafs’ion, specially the
fundamental one, the amplitude may be very large due fo
resonance, and the rod is then a powerful source of ultrasonice
yaves. FPure nickel and alloys of nickel like nichrome, monel
metal etic., are materials for powerful magnetostriction oscillators.

A :magnetostriction oscillator circuit for gene.ration of
s is given in the figure. A nickel or steel rod is

Two coils round the rod are in the grid
o are connected in such a way
grid circuit by mutual coupling
tained. C is a variable

altrasonic wave
d in the middle.

and plate circuits of a triode 'valv
that by & proper feed back 1n the (
of the tWO coils oscillations are main

condenser by means

the resonant frequency
of current

¢ direct curre
the bar magne
nt may be used-

e middle, the frequency of the

clampe

of the rod. The resonance is indicated
in the milliamperemeter 4. The
nt in the plate circuit through the
tically, or an additional coil

by @& change
component 0
e coil polarises
carrying direct curreé

For & rod clamped iD th

g .1 .ation is given by
dundamental yibrat! e |

N=2—Z e

B yibration of the oscillator can be selected
ks of the Jength of the rod. A magnetost;riction

ble ¢hO plo for producing ultrasonic waves up to

g suitd for frequency above this, piezo-electric

plab

Phus the frequency
by & guiba

, oscillator i .
aboub 60,000 ¢- P+ b8

-oscillators are used.
3 Piezo-electr

& certainl %Y“}
tenslo 0

ic oscillators ¢ J.and P. Curie found out
‘ T orystals like quartz, when subjected to
e A o their taces, develop electrie. charges.
pressure

°

of which the plate circuit can be tuned to .



S-S 80
i SOUND & ;

This is kno . 3

salt shows tzz zls'eZ;ezf-e%ech‘lc effect of the crystals. Rochelle

mechanieal Dz'oper(;fasu piezo-electric effect, butdue to its inferior

Por preduction of u;:s’ (]l].artz or tourmaline is generally useld_

preferable. Fig. 62 rasonic waves quartz crystals arg generally
represents a transverse section Sf a quartz

crystal cut > :
perpendicul : L)
Sip ar to the optic axis of the crystal

Z~3aX1s

Optic axis)

.

o

h!!ﬂl!iﬂ!!!!‘&!!?!!!!é ;

’
/
'
’

Fig, 62 -

Let a hexagonal slice perpendicular to the z-axis be cut. Any
straight line joining two opposite angles of the hexagon may be
ed z-axis and a gtraight line perpendicular to @z plane
The z-axes are known as electric axes of the crystal.
h two largest faces cubt perpendicular
known as x-cut crystals, while

call
is y-axis.
Slices of crystals wib

to the z-axes or electric axes are
o
those wigh largest faces containing the electric axes are known
° L

as y-cut crystals. _
@

and an alternating
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®
An electric field applied in the direction of the z-axis produces

no effect, while applied along & or y-axis causes the crystal to

® ; AR
contract or expand in the direction of the two axes; expansion

in one direction being associated with contraction in the

perpendicular direction.

If a piezo-electric crystal is mounted within two metal plates
field is applied across them, the crystal will
hat of the alternating electric

vibrate with a frequency equal to b
e vibrations are given by

field. The frequencies of the possibl

vo=giv/ ¢ 5

g’s modulus which is

II) where EHis the Youn
tric crystal. The

(See Chdpter V

different along different directions in an asymme
yibrations will be very vi f the frequency of the applied
feld equals one of the frequencies of the possible modes of
vibration of the crystal:

lectric crystal like quartz ¢
he help of & triode valve.

gorous i

an be maintained in

A piezo-e
. The following circuit

vibrations with 6

A

Fig. 63

ireuit may pe used with advantage. - The

1 to a tuned circuit consisting

o condenser 0. Proper feed ba&k for

oE8 coil L @ o afned bY connecting positive termipgl of the
gis m?® Dyio e in the coil- One end of the coil is
hattery U

pigh tensio” !
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connected t
gcondenser. (’.)Pht:ecolgiat‘e :nd the other to the grid bhrougi; a
18 tuned with th
cond e hel .3
ndenser to the resonant frequency of the b t’he ez
m?‘Y be placed in a liquid in whi h B TRy
will be produced, ¢

4. .
Velocity of sound at high frequency :

(a) Pierce’s . i
frequency was d::::::oi:e.d Syh;\.?elocity of sound in ajr at high
quartz gene lerce, using a valve maintained
Darallelio tlfztsc:;fa o e R a:;iz::i’j
g micrce of a reflector which could be moved arallel
LA O:L;eter screw. The waves reflected frI; lathe
in the plate circuit fe quartz oscillator and an ammetar HII (el
when the reflector of the valve showed maxima and mli)nz%ce
o cu:ias 8raduall'y moved towards the cryslfﬁn?
I e e1‘1t depending on the phase of the r fl a’
e crystal. For precision measuremeitzcz}ii

be :
measured. From a knowledge of the

f).equency e ultrabon]c wave ve y d Ould
oun (¢ 2

determined.

(5) Veloei
¢ AR
¥ ¥ of sound in liquids :

Oor more i
» DPractica]
quartz erystal of diamete IV plane wayes are produced b
e d by a

being” refle bout
5 cted f ut 10 cm, T
react on it ag desz:'rll: a reflector reach the tese) waves aftor
lamp coupled with 2°d Dreviously. 4 cire f”-’ysf,al surface and-
i the oscillator may be ex:,l-nt containing a neon
1nguishéd when the
’

—

‘l >
strong ultrasonic waves
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S
reflector is at a node of the stationary waves. Hence knowing
uid could be determined.

the wave-length velocity in the lig o
'y

(¢3) R. W. Boylse and Lehman measured the velocity of

ng two quarbz transmitters. The quartz

sound in waber usi
parallel to each other are run

crystals in water with their faces
from the same valve circuif, and hence vibrations of both are in
If coke® dust is placed in the path of the beam, it
odes and from the nod?xl distance the
ped. The velocity of sound in watber
cm./sec. approximately

phase.
ultimately collects at the n

wave-length can be determi
y them was 182X 10°

as found b
at 15°C.

5. Diffraction of light by ultrasonic waves :
cted that light passing through a
ffracted if ultrasonic waves of very
um at the same fime.
there is a sinusoidal
he liguid in

Brilouin in 1921 predi
transparent liquid will be di
short wave-length travel through the medi
Due to the effects of the ultrasonic Waves,
. the path of the waves and b
which density yariation oceurs ab regular.disbances a.mcts as a
and the diffraction due to this is gimilar t0 onef in I%‘rays
g of atoms in a crystal. Thus ifd 1is the
waves and ) the wave-length of
0 is the angle of diffraction at the

density variation along

grating,
by the regular gpacin

grating space due to ulrasonic
9 when

light, then nA=2d sin .
ﬁh order., Putting d=2M\o where Ao is the wave-length of the
% )
sound,
C ginb

nh=2)o 8in 0="2%

y of sound and N the frequency: According
the grating COBELE only first
der 8 to be expected. Buat in D
g 1 ctrum ¢
: i a higher order spe
g of JA of the phenomens has been

stant is sinusoidal,
ractice with 2 strong

an be obtained. A

where C =velocit

to Brilouin, when
pectrum 18

t
comneiy S. Nagendra Nath.
; ollowing arrangement due

tense source
transparent

the f :
Rays from an 1

g through &

iffraction images,

nd Seaxs I
dered paralle

to Debye 2
of light ren
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liguid kept i
ept in a transparent vessel. By a second le the t :
ns the trans-
a screen or a Izhotogl-aphic
S quartz crystal maintained
e : : raction specora g
gether with the undeviateq central beam mayoljese:;rél ?ilders
obtained.
6. Depth sounding b
echo depth sounder :
of small erystals of q

% y Pl,trasonic waves : Langevin’s
j ar;gevm s oscillator consists of a mosaie
3 :
o ste;z I2 ;nm.Sthlck cemented together and
4 Sy _ Dlates 5, and S, of diameter
system vibrates ag 5 single plate 22 c¢ms th'e;«: 3 ;I}?
. thick. e

40,000 ¢. p. s. ang
- D. 8. the ;
AbontIS S corresponding wave-length in water is

box shielding the other side. Hig
With which the crystiin?*l ateg by a spark oscillatory X
sandwitch” ig eoy

] pled. A series of

damped tpa;
ralng of wavyeg g ;
a8semblage gt confrolled j re .transmltted by the

reflected from the bottom

circuit

s ’quarbz crystal
ese ultrasonic waves aze

1 _ of th
position jg to pe measured aju;ea Orhany o el hane
g , reaching the ey
ystals generate
im
e that elapges between transmission

small e.m.f,

) ° i
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othe slab. The smaller the wave-length and greater the diameter,
the less diverging will be the transmitted beam.

7. Some properties of ultrasonic waves :

(a) A rod dipped in a liquid through which ultrasonic waves
are passing becomes hot very soon due to the heat generated by
the vibration of the rod with the finger.
ic waves transform immiscible liquid

stable emulsions. Smoke becomes
s thus formed cannob remai‘n in

(b) Intehse ultrason
like water and oil into
co-agulated, and large particle
suspension.

(c) Many micro-
feld.. Small animals like fish, frogs,

n an ultrasonic

organisms are destroyed 1
mdy be killed

tadpoles efc.

or maimed.

=
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CHAPTER XVIII 2

TECHNICAL APPLICATIONS

1. Microphone -
a periodically varying c
takes place in air due to a sound.

The essential characteristicg
of a good microphone are the follo

wing.
(1) The response should he

uniform bhroughout the whole
range of audio-frequencieg,

(2) The output must be free from any backgroung noise,
£

(8) The sensitivity must he high.

(4) The instrument must be robust in construetion.

(a) Carbon microphone : T
containing granyleg of
Or meta] diaphragm
Pressure change in air
front of the microphon
to vibrate exerting g
the granuleg, The electrical
the contactg varies accordj

consists of a Ijttle box
carbon between 5 carbon
Dand , carbon plate .
due to soung waves in

tonnected to ghe dia
plate. The electrica]
pPrimary aojl of ad
be obtaineq from

The diaphrag

Fig. 65 Or cotton woo]
Darticulay frequencieg,

a background hisg

circuip may contain the

ransformer and output may
the secondary,

m i3 usually damped by flannel
Washers to ayoiq resonance at
phone ig Very sensitive but has

The micrg

A microphone is a device which produces
urrent when periodie changga of pressure

v
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i of the:
istance in equal displacements
f resis

ifnequal ohange © backward directions. e

d
japhragm in forward an
diaphragn hrough a carbon microphone cal: be ex
rou i 8 )
" Uy (1_ " sin Z)t+1—§§ sin”pt...
i=F T sin ot 5

as
pressed

“ .
Current 2 6

R the steady component and.

ircuit.
here o.=e.m.f of the batters;»n SjotthelelEs
W HOLOHE s ing compon
; fluctuating
7 sin pt the

ithin the bra
The third term within the

ing it
___distorbion. Neglecting I T
.____(1._——S1DP
U= R R

re anc
t Of bhe SlSﬁ
CLet ShOWS a SeCODd hatmonlc

t o of
! displacement
: ‘tional tO i
i in resistance 18 prf)p01 1 44 of the current is
If change 10 then the fluctuating pa
e
diaphragm :
the ___e% sin pt
R

i1
i gtant.
ok @, where % is a con
= = — oWy )
: ‘tional %0 gound pressures
t is propor
hus if the displacen.l:zless. 0 I
/ ill be distortl L et s
oty amic micropho o A plﬁ i
LEb S t of a col R
i S .m.f. bel s
: (Jeratea due to0 molv ) it eECibY gt conducfjhe
is ge to a magnetic fie ol i v"as proportional t(; .
5 : | O
cula; iy e ls'pmpound pressuis lle g, The m_lcl‘oilont.—s.
of c '?t,he fuctuabing su s distomog V;Iocmy" i e
l .
anf lity the outputl: Zmay . g ol e
Ly this clas : A
| Y AT ritten as
belise the fluctd i
It F sin 0 bef i ot
i art O ol
moving P i d;f ! B—t+
Fein DL gt
i then |
ST
4 s are neghglbl Q
; 5 an .
(i) Ith e |
75 ol sonal 0 {requency: -
% 1 proporbmna-
y A Y
inverse

at 18 1
thus ouspub !

0
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m
and % are negligible, thep

dz_pF
LT S 1

Hen
ce 0utpub .
1ncreaseg with °

(63) 1¢
; damping
18 Very El‘eat, <}

freQUEDCy,

(whebhe
r els \
elvctromagnetic or mechanical)

1

Fig. 66

diaph
move fra5 ragm i
BOrth polo puy e freely ,ip o With which ig attach i
In the f§ South pole of "annular clegy byl
Sure. The fielg i 400t magnet wh o ance between the
~vhose section ig gh
own

Causgeg §
8eneration of ans'radlal and the

Indu(_.ed °Vement of th G

e coil

Y a valye

. amplif e
Microphoye ; Dplifiey, ‘m.f. whie

2. ( He 18 almogy lineare Te8ponse of t: Calll) e

e 5 e above ty
e Ribbop microphg type of
§ fomsisty of A G
ver

aluminigm o,

\
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\

from front and back and hence pressure on if is the difference of
duced e.m.f. generated by

rd

pressures acting from both sides. The in

T

Fig. 67

y be stepped up by a matched
tic damping is very great.

of microphones is less than
but the frequency response
hone is directional.

the vibihtion of the ribbon ma

transformer 7. The electromagne

The sensitivity of the above type
that of the moving coil microphones,
is flat. The response of a ribbon microp
If alternating pressures are
lectric crystal, alternating
g developed between the faces. This is mosb
d best effects are produced when

twists the crystal aboub ifs

Crystal microphone :
ces of a piezo-e

2. (¢)
applied b0 the fa
fference i
Rochelle galt an
pressure

potenbial di
marked in
alternabing gound
[ principal axis.

-

ame crystal and ceraented

9%\ ol bhinlelices 4 on the surfaces of the

together- Between ©
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two crystals, there are thin metal foils which form the electrodes
ag shown in the figure. The slices are cub in such a mannaer
that equal and similar potential differences are developed in each.
Hence when they are bent due o vibration of the diaphragm
D, there is a potential difference across the two electr’odes which

‘can be suitably amplified by a valve ampliﬁer..

The response of the microphone is uniform from 100 c. p- 8-

f.;o about 5000 c. p. 5. and then it rises gradually. The sensitivity
18 poor. ° .

i 2: (@) Condenser microphone : A condenser microphone
consists of a thin steel diaphragm about ‘002 inch thick clamped
by a metal ring af its edges. P is another metal plate facing D,
and the,air space between the two is only about ‘001 inch.

The two are insulated from ea
ch other and :
‘the leads Ly and I ,. output is taken from

Fig. 69

A steady potential difference of about 300 volts is applied
‘across D and P through a high resistance. Any periodic displace-
fnent of the diaphragm due to a sound causes a periodic ch
in the capacity of the condenser formed by the diaph v
the .plate, and hence gives rise to ga ﬁuctuabing cup~ 'ragm e
varying potential différence atross g resistance ig “en_b- e
a valve amplifier. The output is very low. e

The response of a -condenser m

» i ; .
50 c.p.s. to 8000 e. p. s, ¢rophone is uniform from

The linear response

intensity of g complex sound

Aciion of g condenger
the following, - - -

B} Nx ¥ \ o

* , study of the figure:
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)

Let 'Go be the capacity of a condenser microphone when
wadisturbed by sounds, B the em.f. of cells, a very high
resistance, all in series. 2

Supposg & sound of frequency p/2% is made in front of the
microphone and Ieg us suppose that the simple harmonic pressure
changes in air cause corresponding changes in the capacity of the .
condensger microphone which may, at any instant, be written as

0=0o+060=Co+0Cy sinpt

The small: inerease of charge due to the change in the
capacity is E6C. Hence the simple harmonic potential differez:ce

ESC
developed is on
The instantaneous current may be written as »

© Ho

Ml OSes
: 0\/7'9+0ip2
_ B, sin (pits)

Co\/rz-l-ao—la;z

L L I quantity]
[where tan <= and C—C is a small quantity

Hence p. d. across ” is
+B0, sin (pt+%)

1
Oonf 7"+ 5537

ts of a complex vibration will

L nen
> _— all compo
It > 7 4 :
— ified.
be equally ampli : : :
Loudspeaker - moving coil type

: of a Jloudspeaker can
L To the apeX of the €0

be understood from
ne of a stiff piece of

: g a coil of geveral turns
arrying
former € y

ia e freely
; lin js former can mOVE
paper: 8 ¢ ig attached: TP les of a pot magnet

rally gzpported

The principle

n petween the PO
within the 8T
when the
at its pel‘iph

(g
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When amplified fluctuating current is passed into the coil,
there is a force on the coil due to the radial magnetic field?
) This force is 2 H where ! is the
total length of the wire~ constitu-

ting the coil, ¢ tbe current through

it and H the magnetic field. Hence

S the coil will vibrate along its axis
due to the fluctuating force. The
)m N paper cone, being attached fo it, will

also vibrate in a similar manner and
generate sound waves.

The construction of a moving coil
loudspeaker is similar to that of a
moving coil microphone. The “ormer
transforms fuctuating current into
mechanical vibrations, while the
latter generates current when mechanical vibrations are

¢ produced in air. Thus a loudspeaker is a microphone working
backwards.

Fig. 70

The magnet used may be either an electromagnet or a
permanent magnet. When the cone vibrates, if compressions are
produced in the front, there will be rarefactions behind ; thus

there is a difference of phase between  sounds coming
simultaneously from the two sides.

to sereen vibrations coming from behind.

.

3. Recording of film :
wide and the width,of the space for recordin
is nearly 2'6 mm. Gerterally two methods of recording sound

are inuse : (a) variable density method, (b)
method.

(@) Variable density method :

modulating the brightness of a gas discharge

: lamp by amplifieq
microphone currents.

an image of varying brightness. Thus the sound track in this

mebhod will consist of parallel transverse lineg
according {o the brightness of the image of the

o

glit on the film,

?

Hence a large baffle is uged.

variable area,

A slit illuminated by this light will have

of varyingopacity

A standard size film is 35 mm."
g sound at the edge-

One method consistg in ©

@

% axis passing b

,TECHNICAL APPLICATIONS

In the modern variable density method a light ‘‘valve”
is Gsed.

The light valve consists of a shutter of a duralumin loop in
front of a slit. Light from a bright source is allowed to fall on a
slit whose image is fbrmed on the film. A strong magnetic field

Fig. 71

by an elecﬁromagnét is applied transverse to the loop which
'Y lified speech current flows through the loop.
vibrates when amp in opposite directions through the upper

: ortiZ:; of :the loop, they will either approach
o, Celiel recede from each other, thus permitting less or
each of,.her or « through the slit. The negative of the sound
mor; hghtthﬁ: fli)fm therefore, will consist of lines of different
track on !

Since current fl

opacities.
(b) Variable width method :

gource after passing throug.h a lens ar.e
ce of an oscillograph mirror to a slit
s moved in the dirgction of the arrow.
rents Pass through the leads 1/, z.md
magnetic field on the loop Carry{ug
rr the mirror will vi;;ate il;:;;: :ov:::;zl
the fluctuating co i i
hroug

: laminated will depend on the
sRYotf i again determined by the
he mirror W

. he loop. Thus ‘on the
enERl £ the slit will be
bhe curleﬂ gf;h 0 A
gtrength of Iy & parb ©
f only

film the i;;agz: .+ of the sound t7ac
formed.. 1B =@

Rays of light from a
;'eﬁected from the surfa.
behind which the film ulr
Amplified microphc?ne ithe
M.. Due to the action 0
i ent,
h its middle
will beil
hich 18
g through b
f the len

the leng :
orientation of

& will, therefore, consist
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the image of the slit an(z a

of a dark portion which ig due to

[Lerapiayya]

U

®

g

My M2

Fig, 79
transparent unaffected portion,

The appearances of the gound
track in the two methods are given in the figure.

= o o
ul 0 O
| O (|
o (] ]
a (m] O
Q O ) ¥
) . ) O !
O Bt m}
O 0 0
O | 0
(] | (|
Lt ‘\
Fig, 78
4. Reproduction of sound : °
For hoth types of records,

the method applied for reproducing

sound is the same. Light from an exciter lamp. paggeg through

1 5

Al

. photo-electrie
l k and is focussed on the cathode' of ari)plorbional i
s S -electric current generated is p W
cell The pho:O sity. Thus as the film moves acr ;
e 4 inten )
¢he inciden

i cireui t, we shall
hich recording was made in the
-afie a® Wi
at the ra

To Amplifier

Film

due to fluctuating brightness of the
i rying potential difference acros.s
e v‘aly't of the photo-electric cell .1s
b c‘rcu;d then the amplified current is
a

t a fuctuating ¢
ge

Heam on the cathode.
e

i in
i -egistance 4
- hl'gfli1 dlby a valve amplifie
et to & Joudspeaker:

passed 12
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(A) Doppler Effect

Q

$
Whenever there is a relati

ve motion between 3 source of
sound and an observer,

there appears to be a change in the
piteh of the sound ag received by the observer, .

This is known
as Doppler effect, The effect; may be commonly o

bserved when

blowing its whistle. o

In the following detailed discussion on Doppler effect, we

assume the velocity of the source or the observer o be smaller
than that of soung in the medium.

Case (i). Source in motion towards a stationary observer :

Let the source be moving with g velocity towards g statio-
nary observer at 0, Ip the time the source has moved from Sy
to Sq, let us Suppose it has executed one complete vibration ang,

—_——u
S, S, A .
Fig. 75 2
the disturbance in the Medium (4y)

tod. If T be the Periodj

IVer per Second wil] pe }
N'=C
A
2 T

! | APPENDIX 197

"Bub }-'=SQA=S]_:_{ _SLSZ =cT —uT o

°—% Shere N=frequenecy of the source

== w
s 4
c—U
o /0
. —-——=C
a0 N—;" N

: W

* Wi r to be
he observer will appear
i f the sound to t Dpe .
Thesis Plleh :ctual pitch of the source when i is mov;t;i
Ao R ;frver Tf the source is moving away from
rds the obs 0

e ng—u for % in (1), we shall get

ituti
-ver, subsbitt
ébsech_’

(2)

C

c+u

ent pitch will be lower in this case.
r

N'=N.

Thus the appa

57 g ion awa
Source stationary, observer in motio v
ou

CBSB (ii)' J
grom the source :

the positi
Let S he that a

initial position of the
ce, 0, the initia
on of so:l:e(:on;}' In this time the observer
fter on

rver and Os

obseé Y

0, 02

5 o Fig. 76

i h
ves contained in a length ¢ exc.epbdt oge
ive all the ;; the number of waves received per
will recet’ y us
Wll din O1 g . will e
0

locity of the ohserver, we can write
eloC
is the v

fie 4
Whele 2 7 —'U)_____N(C ’U)
Nfs/‘; T tual pisch in this
e . Jower than the actual pi’
itch 18

(3)

e appar Gl

e {[‘hué bl
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case. If the obhserver were

in motion towards the sources
substituting — v for ¢,

the apparent pitch would he

N Nlcto) Sl G
C

and the observed pitch would be higher,

In this case the wave-length of the disturbance has not
changed at all, whereas in case (i) there has been an actual
change in the WZve-length ; the successive positions of identical
displacements af any instant in ghe medium are different from
what they are when the source is stationary.

Case (iii).

Source and observer in motion along the same
straight’line :

air due to the motion of the
source. Then A'=j_ %

N Vhere 1 is the wave-length when

source ig stationary, T1f N

] 1 18 the apparent frequency due to the
velocity of the receiver,

then from the pPrevi
N, =C=v '
1 7 D

e/l G

_Nc—yp)

Ni—u v p (5)

ous discussions,

2 -
[

4 4 iN’C'—’U) 2V 3
c—=1
If the wind blows with a veloeit

Y w in the same direction,
we must put ¢+w for ¢ and thep get f

or the apparent pitch

7 28

N,=1\(c+w v) (6)
ctw—qg

Case (IV).

Source moving in any
stationary :

At any instant?, let the sour

ce beat 4 movin
a velocity % in the direction o

fbhe arrow, w

g along AB With
hile the observer

(4) _

direction, observer

: 199
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2 ¢ t. A
18 Sﬁaﬁlonar? a/t O Leb ﬁhe source be at B afber tlme 8

i b:e).' er
a Sb(lrban created by the source at A lll l'ea,ch the (0] v
i ce W ~

0

. Lrird
~ Fig. T7

‘ —velocity of sound. The disturbance
‘ 04 pere c=velo p
ime t+ N

OB
+-6¢ will reach 0 at time t+0dt+ =

§ B af bime ¢
. e thab elap

' at O of
created 2 jes hetween receplions

ource at Aand B at times #

and #4090 12 0B_ (H—Q—4
Ry :
—-0B)e

——St’(OA icular on OA.
My =1 i . pendlcu ar
w & AD gZD being a Der
| B :
?

tod of the sc;urce and 7" the time
o

ime pe].'l
p ' (e e B
Henoe if Zmplete vibzatio
¢

ol &
tor receiving ® 8t

n by the ObSeETeT

it

2
\
\

(=%

59
\
[}

(7}
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6 being the angle made ; :
positions of the source and t}Ey f‘ll)le sbralg'ht line joining the (stationary, he would have received the waves contained in AD,
® observer with the direction of : but as he has moved in the mean time to B, the waves contained

2aotion of the source.
in BF will also pass across him. Thus if N'is the apparent
i)

’ 9

Since N=7> We have from (7) 2 frequency +
y | N _4D/BE_AD
Do lic ¥y | /A BE
N c—ucoso (® 1
Th Pl ! i i i Y AR 4D .
us when 7} 75/2, there 18 no change in the Observed piﬁch. } . —A_D-}-_BF AD+AB cos 0 (9)
L NI NV ‘ 5 i
" S lv=c—iu where 6=angle made by the straight line joining source and
; oL G i f the observer.
and if 6=m, W, & observer with the direction of motion o
N ct+u ‘ N'_c.0t+8¢t. v cos 8 L
as found earlier. 2 ‘ From (9) W e
Case (V). Source stationary, observer moving in any _c+vcos 6 SN 10)
, c

direction :
n the apparent

Let the source be stationar 2/9, N'=N and there is 1o change i

vy at S and obge i
al 4 ] rver be movin 1t 6
atOZfYAiB :’lﬁh a velocity v. Let 4 be the position of the Observe% itch
nstant and B that after 5 very short interval of time ¢t FA AL
. ‘ I s TG
s It 9=0, N ¢
N _o=" '3

n D = T e
i or in case (11)-
set results obtained earlier
and we §
d observer moving in any direction :
D - -

urce a p f :
So e moving in any direction,

gource makes an angle 6
and the observer at any
f the observer makes an

Case (V).
ource and the
ection of mo
ht line joinin

observer ar
tion of the
g the source
of motion O

If the S°
s that the i
with the gtralg

, . jon o
instant snd e dlrecﬁ: ine at the same instant, then the | A
ith the ga
ngle 03 WO . by
T i .ent pitch 18 Lo )
ig. 78 ~ appal (c—v €08 63
In this tiye the N’=N-‘c,u cos 01
) bl .t. wave that was at 4 and Il f 'u-in'{-s).

positions D and J, g that S Anitially hog moved Sl sl and 2 cos 61 10T
. g ) cos : 2 \

Tt ; A o
/the observer wore W " py substituti®

a
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(B) Melde’s Experiments

< F- i e p I e 1 Iy a the tra[]svelse
; uel(le 1n 1859 Showed Xpe im n al
) { th
V'lbrat‘lons Of. a Sﬁrlng undeI f‘;enSlOD can be [nal'[lf:a:ned b:s“ a
ra lng tunlng fOrk. T}le St] I.IID”, one end Of ;V hicl i b
\% l) b 1 1S a,t ached

to the tip of a tuni
: ng fork, passes over
weight W at the other end. over a pully and carries a

1. Transverss arrangement of the fork :

In this arran
gement as shown i
s i n the figur
Z.lbrate transverse to the direction of th gu.1e,
ing the length of the string or by chanZ'Strmi
A Ing the

the prongs
By adjus-
weight W,

e~

~.es

Fig. 79

s:,r‘ong resonant stationary vibrati

stri i i

5 anlfi which may vibrate in one or seve

Vei : op between two nodes, then 'v=1./ral ey
ocity and N the frequency of ¢ S

string which i
s also the frequency of vivbrations of the f
e fork, then

If z=length

N=L /Jr. s g7
L=3 /T
2z m 21NV

The lawg of length, tensgion 5

o)
0S may be generated in the ¢«

o { "
Sverse vibrationg of the

) L]
\7 APPENDIX i 203:

v 9. Longitudinal arrangement of the fork :
the tip of the fork vibrates along the

In this arrangement,
the string may be-

string. By adjusting length and tension,

Fig. 80
amplitude. It is then seen that

ibrate with a large ‘
y of the string is half that of the fork. Thus it is an.

ic 1.esonance'

/

mads to V

the frequenc

example of gubharmon

Flg_ 81
¢ in more than:

istance between

ade to vibrat
nt, the di

. pem

r n, however:
The string §e ’en ion is kept FomBtE
! ys the sa‘me.

y of »this class of
"the fork creabed!
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periodic change of tension in the string.
of the vibration can, however,

When the prong of the for
towards the right, let ug
maximum and the particles

A simple explanation®
be given in the following way.

k has the maximum displacement
Suppose the sag .in the string is
of the string at all points are then

to inertia contingeg 0 movye upward anq again hag the
maximum displacements at all points when the prong hag the
maximum displacement towards the right.
vibration of the fork the st
vibration.,

Thus in one complete

ring hag undergone only half a

s
N=g/ L
where N=no. of vibrations of the string per secong.
) Phase and group veloeity :
In cases of pPropagation
elastic media, we know th
disturbance in the Wa\"e-fron

velocity of the wave,

The velocity of Propagation of waye in some dispersing
media depends on the Wave-length ag in the ¢

ases of rippleg on g,
elecbro-magnetic waves)

liquid surface and light Waves (
transparent mediym, In such 4
components  which the waye

|
‘l
4

g APPENDIX 905.
i : f plitude
M i y me am :
rogressive waves of sa
Le{ us have two prog
sroceeding along  given by

&, =asin 2_;! (ct-=) and

4 D¥4 ot
fa2a sin o7 {otdeli—af

W relocity and larger
i i r larger phase velocity an

i s having slightly

one train of wave

wave-length than the other.

The resultant displacement is then
2—”[(1—4}1){(0+d0) t—w}]
A A

(8]

o ct——0)
=/ sin 7 (
20y ) -

: sin =717
___:E = ¢ A el —_
where tan i 1+00S£‘{%(ot 2 tdc}
[
° 4294 [ A
and 4

g, ;_gz)‘t ~af]

=2f021 LA _775_

(o514

_4a® cos \ A4 are small, we see
i of o since ani(: gdi"en by
) o e
For small Val::sulbant disturbanc :
n 6-0 and the ' Q’E(ct—x)
ta g:A sin A d
C
4e t‘“’}
: ﬁ}{(v"dz)

=9a €08 A
A’:Q:

here
i)
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i, e, is at A =0, given by
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L] / Y

7

It is clear from the expression that the resultant amplitude

‘has a velocity v given by. V=c— )xdﬁ :

i’ also  the amplitude

-cha%ges simple harmoniecally with z and ¢,

Thus the group veloeit
‘velocity and the wave-len
' As regards energy,
the individual waves c

o
¥ v is obtained in terngs of the phase
gth of the phase waves.

it will belong to the group rather than
onstituting the group.

\\4) Sharpness of resonance

In page 29, we have

°

E 4b*

E=732A2+4b2

The slope of 3 curve in fig, 10 is

(;( E)
4 2 9
di.n_z = _ﬁszy when 7 is constant,
d“’(i )
Em__,_ 8622 320634 AE
Hence AN T

—(7LZA2+4bZ)2+(n2A2+4bZ)B

2 ;@55 when A =0 gt resonance.

Now radius of curvature R is given hy
a’y
1_

dz?
& {1+(d_’J 1 :
dx) }

o 42
When A =0, we have Z\Z= dETm__?_O
Hence curvature

1 R
R of a curve in fig. 10 win be, at resonance

7‘1«2

dal
R
Smalle: the value of B, sharper

‘ is the e8onance. Thyg
:sharpness will ha very great if 1 ig very large ang very gmall,
D .\ ‘

DO

APPENDIX
(E) Acoustic Impedance

we have a vibrating column of air in a conduit ; IZC
ose : ;
SUPP - instantaneous displacement over a sectlon.of area .
7 CODSIde.kf m and also the length of the conduif sm:.ill in
r ; g
ik 'um Owibh bl’ae wave-length of sound, so that there is n
comparison

ble difference of phase over the length. If m be the mass
i i instant ¢, we can
appreci? : t of a particle at any in
Jlacemeéen
ir and & disp

ir ? iodic force as
S motion of the air under a period

write the equa'tion of

: ' 1
i VAT (1)
at

. o yolume displacement X= 4, we have
ritlno

w

n® A°X

sy Fint _pyint (2)
+—X’A
Anitasaiias

; 3)
1 @’BLX_*_g:Pe”’t (
at® ¢
‘ g @fY:Xoe“’t and simplifying
E f Puﬁf:lng dt
' ave (ot — ”/2)
‘?“ we h Pe”’t =P€z(p (4)
[ ¥ a ( Ip— 7 cp .
j‘ ig similar t0 that for an xnstar.x:ane:ui
I bioD : d capacitane
" o 24 em.lihrough i mducta_nce i acne in the circuit
’ 1 ourrenﬁj odic electromotive for
‘o ,Jectric? Jied peri
n aPP
der & e
[}
aTERA e
? i ( Ip- s
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Fiom (4), we get acoustic impedance ag 2=[p— L i

cp ’ Aﬂ“

ATl A A ;
IS wnown as snertance and c= aq compliance, these being
S

'
equivalent to inductance and capacitance in electrical circuits.
m :
The mass reactance VEL due to inertance and reacf;a,ncei2 due to

compliance act in opposition to each other. We can write the

combined impedance 2=z;+z, where 21=m——€ gid Mg R S
A4 7 A*p’
1
lp=zl;, the rate of volume dis-

placement is maximum. The frequency

When 2z=0, i.e,, 21=2z, or

in that

Tesonance
010 . DI 1
condition is N=="=_~__ i,
2w n V[G

(E) Acoustic Filters

By proper adjustment of acoustic circuits,

an acoustic filter
can be made to transmit desired ranges of freque

ncies.

Let us consider several conduits in series each of impedance
Z1 separated by branches in parallel each
each conduit be so small in dimension that
difference occurs in it,

of impedance Zo. Let
0O appreciable phage

Z, V4 —
‘C b

—— 2z,

Let X.:’ AX:B) Xs

be rates of volume displacement in 4B, BC
CD respectively. '

=Y 9

N

4
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Then applying Kirchhoff’s Law in the closed—coustic cireuit
BEFCB

O (XI—XQ) 32—(.X2-ks) Zz‘is z2,=0

Xad X 2
whence =2 4+=2=94%4
2 2 G2
. fe2!
We may suppose that rate of volume displacement decreises

aniformly over each® series circuit due to similar impedance in
shunt after each conduit.

e
Writing = =2 = c‘ - >
Ag 8

We have e*+e-(=2+§—l v

2

G —
or a2t e el

= h
355 2 cos h«

If « is imaginary, there will be no attenuation during trans-
mission through the line. Let «=iB, where 8 is real. Then
€08 hX=cos #f=cos B. Since ¢os B can have a value between
-+1, and -1,  will be imaginary between those limits. Thus

there will be no attenuation if 1+—2‘% lies between -1 and—1
2

i.., when -t lies between 0 and —4.
4 Zg

High Pass Filter

Let zi=——1 ang 23 =plg
bey

Whenz—1=0, aF s OTID Selesk
‘Zeo P cils
When 2=—4, 1 —40r p=— L1 |
3 23 " pPeylq 2Jesls
§ 1
Henge this filter will pass frequencies from w VU;ZQ )

t0 infinity,
14
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i v, Low Pass Filter
¥ 1
Let z1=11D, 22=_E
For 22=0, l1¢9p%=0 or p=0
Za
For Z2=—4, —licop®=—14

22

O D= vll.—c;

Thus the above filter will transmit unattenuated frequencies

1
between O andgz i

Band Pass Filter

1
Let z;=llp——}— and zo=lgp——

pea Pea
llp— L
For =0, —D%5 20
Zz 3 1
ng_ —_—
Deg
whence p= vli ' (lgp#—l—)
101 pCgo
For Z2=—14
29
1
et ==
—DPC1=—4 whence
lap —2;2
p= 4cq1+cq
01(’2(11'*'412)

Thus ths filter will pass frequencies between

1
on ‘/E and

l 401 +02
o 0102(Z1+4l‘3)

without attenuation.

“ ° %9 A
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Stewart made several mechanical fiilters of the above &hree
types. The agreement with the theory is fairly good. Liow pass
filters® were made from two concentric cylinders with space
hetween them and having walls at right angles to the axis of the
cylinders. There is a row of apertures in the inner cylin.der
communicating with the space between the two eylinders. High
pass filters were made with a straight tube and short side tubes.
Band pass filters are generally the combination of the #wo
types.

The filters may be used with advantage for elimimation of
needle scratch in a gramophone, microphone and valyve noises.

They are useful when undesirable frequengies are to be
eliftinated.
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