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•  PREFACE TO THE SECOND REVISED EDITION

" In bhis edition some portions of a few chapters have been
rewritten, substantial alterations made here and there and
several new topics introduced and discussed. In effecting the
changes, suggestions received from learned teachers of Physics
were kept in mind. It is hoped that the book in the present
form will prove more useful to the students*

The author expresses his deep sense'of gratitude towards his
well-wjshers for the encouragement and support received from
them. •

Serampore College. K. Bhattacharyya.
6. 6. 67.

*  PREFACE TO THE REVISED EDITION

In this edition the chapter on coupled vibration has been
pfactically rewritten with a view to making more clear the
fundamental principles involved. In the appendix, a new topic
"on acoustifc impedance has been discussed. A few additions and
alterations have been made here and there with the hope that
they will prove to be of advantage.

The author is grateful to Prof. S. N. Barker, M. A. for the
h«lp he rendered by going through some proofs and to Prqf.
"gTB. Bhattacharyya. M. sc. for kindly taking the trouble of
checking a few mathematical calculations. He is specially
indebted to his colleagues of the department of Physics,
Serampore College, for the encouragement and support received

'[ from them. He also wishes to eispress his deep sense of gratitude
""^pf^those learned professors who made favourable comments on

the book, offe v , constructive suggestions and recomnaended it
to the students." '

Finally, Sri Joydeh Ganguly, B. A. (Hons.% Proprietor,
Hindustan Publishing Concern must he thanked for espedittng
publication of the revised edition.

Bhattacharyya.
t

Serampore College.
8. 11. 65.



PREFACE TO THE FIRST EDITION

The book is specially prepared keeping in mind the needs of'

the students preparing for an "Honours Degree in Physics of
Indian Universities. Attempts have been made to treat the

subject analytically and to clarify those "easy" things usually

taken for granted by the^tudents, but seldom clearly understood.

The author feels no hesitation to acknowledge that in writing of

the book most of the available standard text books and treatises

on sound have been freely consulted and made use of.

The author acknowledges with gratitude the kind help and

encouragement received from his colleagues without which the

conception could not have been possibly realised. He is indebted

in particular to Shri G. D. Bhattacharyya, M. Sc., Shri Sukbendn

Dey, M. fc. and Shri T. D. Mazumdar, M. A., all esteemed-
colleagues in the Department of Mathematics, Serampore College,

for going through most of the proofs and cheking mathematical'
calculations contained there in. He is specially beholden to-

Shri Pariihal Kanti Ghose, M. Sc., Department of. Applied
Mathematics, University of Calcutta, for looking through a

portion of the manuscript and offering a number of welcome and
valuable suggestions. Thanks are also undoubtedly due to Shri
Jcydeb Ganguly, Proprietor, Hindustan Publishing ConcerC,
Calcutta, for all he has done to have the book published in SQ.
short a time.

The author regrets several errors which could ̂ not be
rectified due to conditions beyond control. An errata list,.^
However, has been appended for trheir detection and rectificatior^

The author will be grateful for any constructive suggestions-
towards.the improvement of the book.

Serampore College.

*  lerg. 63.

K. Bhattacbaryya,.
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CHAPTER I

SIMPLE HARMONIC MOTION

1. General equations : In the phenomena studied under
'Sound we have to deal with pesiodic motions. The simplest
of all periodic motions is simple harmtmic motion. In this
type dt motion a system vibrates about the mean position of
rest and the displacement is a circular function of time.

Suppose a particle has mass m and its displacement at any
instant is x from the initial position of rest. If the force
tending to restore the particle to its initial position of rest is
proportional to the displacement and in a direction opposite to
it, we can write as equation of motion

d^x , .
where s is a constant called 'stiffness" constant

whiofc is the force required to produce unit displacement of
the particle from its initial position of rest.

Writing ~^'=n^
m

d^x , 2
(1)

W  ~

The above is an equation of second order. Let ai = be a
solution of the equation.

Then ~=<Ae<t,
dt dti

J2

Substituting the value of in (1)
Clt a

we have fo<.^+re®) = 0.
•  •

•Since cannot be zero for all values of t and A^s not z»ro

<\®+re* = 0 ,

OT <=±in * •

Hence solution may be a: = or, »==



2  SOUND

Also equation (l) will be satisfied when
x=Ae'"^+Be-"'^ ... (2)^

where A and B are two constants to be determined from initial
conditions.

Expression (2) can be written as x = A(co3 ntAri sin nt)
+jB(cos nt-i sin^?u) = (il + B) cos ni+i{A-B) sin nif

Now A and B ma:7 be real or complex quantities containing
real and imaginary parts. But since x is real we can write

a: = ai cos wi+bi sin .*•

where (ii and bi are the real parts of the coefficients of cos nt and
sin nt respectively.

"Writing ai = 3 cos «, 6i = a sin e

we have x^a cos ' cos nt+o sin e sin nt
= ocos(rai — (4) *

where a and e are constants given by

a''=a'' cos^e+n" sin®€ = ai® + bx®

and tan e
fli

Hence the maximum possible displacement in the positive
direction is Xm—'^ when nt-^ is 0, 25r, Ax etc. ; the magnitude
of the maximum in the negative direction is also equaPto a
when nt-^=^, 3;r, 5^ etc. Thus the particle oscillates betjveen
two points which are at a distance a apart from the mean position ;
the quantity a is known the amplitude of vibration. The
same displacement repeats after an interval of time T called-
.time period given by nT = 2n.

€r, the tiijie period of oscillation

n  Is ^ s ^

Thus T = 2^ Vmass of the particle ^ ■
^  ̂ -t » Bestdring force per unit displacemenf. I



SIMPLE HAEMONIC MOTION

Since T is the time required for one oscillation, the number

of oscillations per second N=-

= - /i-23eV m

The meaning of the expression (4) can be made clear when we
considerthe motion of apoint

P moving with a uniform
angular velocity n in a

circular path of radius a.
Suppose the particle des

cribing anticlokwise motion
is at Ai at time < = 0 ;
AOR is a fixed diameter and

angle AOAj,—^. Let P be
the position of the point
at any instant t. Angle
POAx = "i- Hence the

Fig. 1

projection Oilf of OP on AOB is OM=x = OA cos IP0M =
a COS —

The particle is behind the fixed diameter by angle e at the
starting position. The angle e gives the phase of the particle at
tho instant of start and is known as the epoch or the
initial phase.
J

Evalution of constants

(i) Let us return to (3) e., x=ax cos nt + ix sin nt and see

how ax and bx are determined.
Suppose the particle is brought to a distance aii and then

-eleased Thus Xx is the maximum displacement and if we count
timTfrom the instant the particle is released, we have x = at
time i = 0

Hence, a:i =«! cos 0+ii sin 0
= ax

A«ain the velocity at the instant of release must also be zero ;
• no-? velocityfj=

s'
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Hence Q = nbi_

Since uy^Q, ii = 0,

Thus x = Xx cos nt (5)

Again let; us suppose that; an impulse is given to the parf;icle
afc its position of rest so that the velocity of the particle is v at
time < = 0.

Then we have •'

a;=0 at t = 0

dxj=v at t=0

ftSince, x^a^^ cos sin nt

,  • • ttx = 0

Now
dx

sin nl-\-nb]_ cos nt

, Att=0.
dt

v=nbx

or, bx = ~
n

Hence, x = - sin nt
n

(6)
O

Thus we see that ax and bx in the general solution1[3) can be
determined from initial conditions.

ta) Let us consider the general case when Xx and u^'are the
displacement and velocity %f the body at any given instant tx-

Let the motion of the body be represented by
e  x = a cos uT -j-i sin ny

t

counting time T = 0 when time t =

oNow — =^=_

(7)

d (8)

1

T dt + cos 7iT ... .
>

.  AfeT = Q i.e., s.kt=^t„x = xx, ~=Vx.
dt

o.

SIMPLE HAEMONIO MOTION'

Putting T = 0, in expressions (7) and (8)

Xx^a, i>x—nb or h = —^
n

Hence, substituting in (?), we have,

x=Xx cos 7jT + —sin uT

But at an instant t, T — t~tx  ,' hence dispL.cement
ihstant t is

at an

a:=a:i cos 7i{t-tx]+— sin n(t - t,)
n  ' (9)

If in the expression (9), we apply the relevant conditions,
we sHall obtain expressions (5) and (6).

2. Energy at any instant: Let us suppose that the
particle has a displacement x at any instant. The opposing force
at this displacement is sx. If the displacement is increased by
dx the work done against this force is sx.dx and this is the
increase of'the potential energy for a displacement dx. Hence the
total potential energy for a displacement x is

>
/sx.dx =

sx'

(10)

Kinetic energy at this instant is

2  \dtl .

In an ideal system where there is no loss of energy due to
friction etc., sum of kinetic and potential energies is constant
and is equal to the total energy of the system.

From (10), ata! = 0, P. E.=0

and hence kinetic energy is maximum. Again at maximum
displacement which is equal to amplitude of vibration, potential
ener^ is maximum whereas kinetic energy is zero.

yw.i.
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T

Deduction o! Equation ot motion from Principles of
energy :

Since total energy is constant

d (sx^ ,1 ldx\^\ „

S o dx, l ri dx d^x f.
-.2a:. -r -t--TO.2. ̂  ni = 0
2  dt 2 dt dt

dx\ d X , \ ■ fs
in—-^-tsx\ = Q.

dt\ dt^ J

dx

=  sin® {nt-e).dt

T

m.',.n^a^ J1 - cos 2
2T

.dt

Since — cannot le zero for all values of t
dt

d^x

dt'

U, lO ,

m. -r-2+sx = 0

- sin 2e 4- sin 2^')
4  HTn \ I

*  ... (11)mn^a^

and we arrive at the same difl'erential equation of simple
harmonic,motion,

Thus the average kinetic energy of the particle is half the
maximum kinetic energy.

From x^a cos (jit — ̂)

(—) =n'a' sin® {nt~^).

Maximum kinetic energy

1  /dx\' 1 2 2
==o'«w a .

2  \dtfmax 2

sx

;r

Potential energy, when displacement is a-, is ^

Hence average potential energy over an oscillation is

T

- f'?- dttJ 2

Maximum potential energy

= — fa® co-3°(7i< —').
2TJ

dt

_s {x.ffin
2  ~ 2 '

T

_^f\ 1 + cos 2(nt-e)
- 2r j L 2 J"

The average kinetic and potential energies may also b®
calculat^ed in the following way

sa

=|fr- = 4 (12)

T

Avenge kinetic energy =
2 J\dll

dt lich is equal to half the maximum potential energy.

:■ J.;.-----
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^ 3. Superposition of simple harmonic motions :

(a) Motions along same straight line of same periods
but different phases and amplitudes :

Suppose the two vibrations are given by = cos ~ ̂i)
and cos

Hence the resultant vibration is

x=Xi.-\-X2 — ai-tCos{nt-ej)+as cob

=  cos nt cos ®i+ai sin nt sin^i

+^2 cos nt cos ̂ 2+^2 sin nt sin «2

= («! cos «i + a2 cos cos nt+(ai,sin ̂ 1 + 02 sin £3) sin nt
Let ai COS 'i+Oa cos ̂ 2=^ cos 8

and a-j_ sin ̂ 1+^2 sin ea = A sin 8

•where A and 8 are new constants such that

-  -

= ai®+02®+2aia3 cos (ei - fg)

fli sin ei + g2 sin
and tan 8=

fli COB Si+aa COS €2

(13)Hence x — A cos (nt —8)

Thus the resultant vibration has the same period as that of
component vibrations.

If instead of two vibrations there are several vibrations
of different amplitudes and phases but of same time period,
the resultant vibration can be likewise deduced*

Hence x = ai, cos (nt- cos (nt-e^)-\-aB cos (nt-^s)'^'

cos ei+(J2 COS —) cos nt

+  sin sin ea"*) sin nt

Putting ai cos Ci + aa cos 'a+as cos es"!— ^

and di sin ̂ i+da sin 'a + ds sin e^ + ... = A sin 8
we have x = A cos (nt — S)

O

Vv^here .4®=(di cos ci + ̂a cos ̂ zA-a& cos

and tan sin ̂ i +d, sin
di COS ei-pfi2 cos ̂ 2'

0

1"

+ (di sin 'i + da sin ̂ a + ds sm ̂8"r' ^ -q

SIMPLE HAEMONIO MOTION

^b) Two vibrations of slightly different frequencies
&loD^ same straight line : Beats :

Let xi = cii cos int — ̂±)

and Xz-ciz cos {(n+m) t-^z)
n  n i\T n4~m

We can write iVa—

,.hsre ffi and N, are the Ireatiencies of the two nibrations.

Putting --i+'a = ''. ">« !'•>»=«
vibratidh we have

a;i = ai cos (jit-'i)

and xz=a2 cos(nt-e'z)

0 Compounding the two vibrations as in art. 3(d)
a;=a;^+a;2 = ̂ cos(ni-8)

n.^ ci'n f 1 4-d2 sin e 3
oWhere tan 8-^^ cog

and i'=aa*+«.'-)-2«a«.

+„it=:(2s+l)^-t where s=0, 1, 2. 3 etc.,Thus when ei ^

J = di-fla

°  u „ " e, -6a+wi = 2.s:r
and when 1

^=dl+«2

the .mphtutl. of the ™a.lt.nt vibration ehangea
between the limits «» + »■•

then the limits would have been 0 and 2o. Thus
" "',",7 ofthe resultant vibration eh.ng.s periodmally wrththe amp ■ u ^

a frequency equal to
component frequenci

This phenomenon m ^ ^o^riy equal
,\wo
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frequencies are sounded together. The method of beats is a

very important one in the measurement of an unknown frequency.

—>Time

Fig. 2

The displacement curve of a particle on which two vibrations

of nearly equal frequencies act along the same straight line is

given above.

' (c) Superposition of two vibrations in a plane, at right
angles to each other, time periods being equal :

Let the vibrations be

a: = fli cos {nt - ̂i)

arid. y=a2 cos (nt-e^)

Displacement along y at any instant can be written as,

2/ = «2 cos (yzt-Ei + ei-ejs)

= £f2 cos (??i —^i) cos (^1 - ̂2)
-as sin {nt - «i)sin (,^1 - ̂2)

X  t »
= a2.—.cos

ax

-«2XW 1—^Xsin (^1-^2)
>  ax

=  cos ('x-«2)-—. Vax^-x^. sin («!-«>)
ax ax

axOr, slax^-x" sin («i-e2) = ® cos (cj-ea)-!/.
./5 ®2

SIMPLE HARMONIC MOTION 11

Squaring,

sin® (ei-«2) = a:^ cos® (ei
a

~^^xy cos (ex-^a)
as

Ee-arranging,

Thus the motion in general is elliptical and the position of
<^he particle at any instant depends on ^2. and 02

Case (1) Let ~ ̂2 ~ 0'

Then (ll) reduces to

o=--J-
ai ®a

This represents a straight line passing through the origin and
7. fl with the+ve direction of X-axis such thatmaking an angle 0 witli me-rv

tan 0
ax

^  "case (2)° If^i-^a-^.
iL + X- = 0
ai as

This also rairasenes > line PaeeinS through, lb.
origin.

Case(3) If 2

.i+vJ^==l
afli s

*  0 This represents an
X and Y axes

ellipse with two axes coinciding with the

Case W 2

wv-:
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(d) Two vibrations of slightly different frequencies at
right angles to each other :

Let the two vibrations be

x = ax aos.[nt —

V=a2 cos4{?i+m)f-e2}

Writing —vit + e^ = S

y = a2 cos (,nt - 8)

As deduced in the previous article we have

.2 f. _L ^vxsfa" (,J -8, =i-,+»1. - 008 (e, _ j)
ai ^2 a^az

sm
lyx

„ 2 ■ 2 ^ „ cos (ci-'2+'?iOOf 2 ^2' Cl 1^0/2

At any other later instant tx

sin®(ei -v-j +rnix) = -^ + 2vx

Clx^i
cos (ex -

The two curves will be identical,

if ~^2+mtx = 2^ + e^-e^+mt

whence 7)i(tj.-t) = 2ar Or, = —
m

then X +y^-a^ which represents a circular path with
radius a,

Shape of the resultant path will depend on the value of «i —<5.

If^i —(5 = s^ where s is an integer, the paths "will be straight

lines; if it is (2s + )^the resultant curve will be an ellipse
with axes along the directions of vibrations. In the general, case
the form of the curve will be elliptical. With time, d = e^—mt
will change and hence trace of the path described by the particle
will gradually change its pattern and the greater the difference

hetw'-.en the two time periods, the more quickly the nature of
the curve will change.

At any instant t

SIMPLE HAEMONIC MOTION
13

wlfich gives the interval between consecutive formations of
two identical curves.

(e) - Vibrations of commensurate frequencies :

(i) Let the two vibraiions of frequencies in the ratio of
1 : 2 differing in phase by 8 and acting in the same plane be
impressed on a particle. Then we can write the component
displacements as ,

a: = ai sin ?i(

o  ?/ = Z) sin (27jf+S)

Then 7/ = Z) sin 27i< cos S-f-J cos 27if sin d

= 217 sin 7it i'^l-sin'7it cos S + i(l -2sin®7!f) sin 8

cos8fZ,(l-^) siad

Ab-X^L X^\ 2 c— 2 rA2 /, . 2swhence — ——glcos 6 — 7j +o ^1-—j gm S

-22/l7|l-^j sin d ••• (14)

If the vibrations differ in phase by 8 = |, then we obtain
/2a:® , ?/ i\^ .

Equation (11) is one of 1th degree representing a curve
having generally two loops. If the vibrations differ by a

phase I the orbit is then two coincident parabolas as represent
ed by the equation (15). If the phase 8 changes with slight

• change in frequencies, the shape of the loop will also change
gradually-

(n) If the frequencies of the vibrations are in the ratio
of I? ■ 3» write, when the vibrations differ in
phase by 8

x = a Bin nt

y = b sin (37if + 8)

•,'M
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ij = b sin 3nt cos (5 + 6 cos Znl sin 6

= 6(3 sin Hi —4 sin®ni) cos 8 + 6(4 cos®»ii-3 cos nPj sin 3

Transposing and scjuaring

cos s>v (16)

(17)

If 5 =
ii'

(16)

If phase difference 5 = 0, we obtain
(v_3r + 4^|^0
\b a a '

The above represents two coincident cubic curves
13

we obtain , 22 a

which is an equation of the sktb degree giving an orbit of three
loops. In general if the ratio of the frequencies is N. the curve
will have N loops.

If 5 in the expression (16) gradually changes, then the shape
of the loop also will change.

In those cases where the ratio of frequencies exceed 1 : 3,
it is more convenient to find the curve by graphical methods
as analytical methods become very cumbersome.

(4) Lissajous' Figures :
The figures formed by two vibrations at right angLs to

e^ch other are known as Lisuajous' Figures. These figures are
of importance in sound. With their help, the equality of or a
Blight difference between the frequencies of two sounding bodies
can be tested.

Lissajous used an apparatus known as Vibroscope to study
thos? figures. It is a microscope whose objective 0 is detached
and fixed with the prong i of the tuning fork T, which vibrates
in a nlane perpendicular to axis of the microscope which is,
let us suppose, horizontal and in the plane of the paper. L^t

\

0

■II

SIMPLE HAEMONIC MOTION

Ta be another fork which can vibrate about an axis perpendicular
to the p'ane of the paper. Suppose both the forks are at rest
in the beginning, and a white dot P on Ta is focussed. When
Tx vibrates, tiie image of P will appear to be a .line
perpendicular to the plane of the paper. If now Ta begins to

P

0

T,

Fig. 3

vibrate, the image of P will have another perpendicular vibration
in the vertical line of a frequency equal to that of Ta- Hence,
due to superposition of two rectilinear vibrations, the image will
appear to be a pattern generally elliptical if Ni and iVg the
frequencies of Tx and Ta are equal. If Na is slightly greater
than Nx, the pattern will gradually change and will repeat after
an interval of time

_2Jr_ '2,^ _ 1
m 24W2-W1) Na-Nx

Lissajous' fi gures can also be clearly demonstrated on a screen
by reflecting a ray of light successively from two mirrors
attached to a prong each of two tuning forks vibrating in planes
perpendicular to each other.

Lissajous'figures may be obtained by Blackhims pendulum
when vibrations are of low frequencies. This pendulum consists of
a weight D suspended by a thread CD which is attached to ano'her
thread ACB fixed at points A and B. The pendulum can vibrate



-16 SOUND

in fchfi plane of the figure with a time period = 2^ where

Pig. 4

h-GD. It is also capable of vibrating perpendicular to-the
plane of the figure as a simple pendulum of length lz=ED, the

time period in this case being given by Ta — 2^ /l^. By
' n

,11

Fig. S

changing the positions oi-'A and B, this length la can be suitably
changed. A record of the resultant of the two vibrations may
be obtained by using a funnel at D from which fine sand drops
on to a piece of paper and gives Lissajous' figures.

d'

o

0

11

f

-i .

■'tf, ' .
•  CHAPTER .II

DAMPED MOTION

1. In the previous chapter we discussed free simple har
monic motion. This is an ideal thing and is not observed unless
some energy is supplied to the vibrating body at a constant rate.
In all vibrations observed in nature, e.g., those of a pendulum
or of a string etc., the amplitude gradually diminishes and
becomes imperceptible after some'lapse of time. We may then
conclude that there is a damping force on the vibrating particle
and this may be due to the viscosity of the medium, or other
frictional forces. For small velocity, we may take the damping
or frictional force as proportional to the instantaneous velocity
of the body.

2. Suppose a particle of mass ?;i'is capable of moving along a
particular axis OX and while in motion, is subject to a restoring
force proportional to the distance from a fixed point on ,the axis
and a frictional force proportional to the velocity. Then the
equation of motion of such a particle can be written as

d "x _ _ 7, dx

when s is the stiffness constant and h may he called the
resistance coefificient which denotes frictional force per unit
velocity, x being the displacement of the particle from the fixed
point at any instant t.

Ee-arranging

di^ m dt m
'f >

Waiting = - and 25 = - we have
m m

d^x , m. dx. ,
dt""

+ 2h . ^®+.w"a; = 0
d4 i '. '

(1).

.  f ■ ■■

-)(
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This is an equation of the" second order. Let' a:=e*^ he a
particular solution of the equation. Then

dt ' de * ®

After substitution in (l) we get

<® + 26<+w' = 0

:i <=-fe± Vb'-n"'

Thus the general solution of equation (l) can be written as

(-?>+ tJb'-n'')t , t {-b— %ib^—n'^)t
x = Axe -r^^e

- slb'^-nH-bt . slb^'-nH
) (2)

= e (Axe -rAaB

when Ax and A a are two constants whose values can he
determined from initial conditions.

Case (l) Damping force large so that b>n

In. the expression (2), let us put bx = ;

— bt, b^t ~'bxt-.
then x = e (Axe +Ase )

Differentiating

^ =—he +A28 ^)+8 . (hiAie ̂  —AiAafi
dt

If x = a and ̂  = Vo at f = 0, we have
at

— fc{Ai+A2)+f'xf-^i~-48) —fo " . •

or, — 6a-|-6i(Ai —i4a)=^'o

1  .1 _Vo + ba
whence A'^~As r

bx

, b+Vo/n\Thus we get = ^—J

-bxi. ~bt, bj - b^t

.1

.

^  A 'IK

"h.

A
. YU... --v. ir:

lu
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An^ the solution for x, substituting the value of b, is

x^.^e {(1 b+Vo/a\ <Jb-^-n^ < , / b+vola \ Jb^-n^'A
Vb^r 'W^^r J

... (3)

If the particle is displaced to a and then released so that

= Vo=o at t=o, the damped motion will be as represented in
dt

tig. 6,

A'

->• t
Fig. 6

Case (2) Let b he small so that b<n, then

>Jb*-n^='i'^n'' -b

Hence equation (2) reduces to

-i-Jn^-b^ t— bt, . i<J}i*—b't , ,
1x=e (AxB -rAae

=se-bt {(^i+.'la) cos iJn' -b^ t f - .4a) sin Vn*

Now Ax and A^ may both contain real as well as imaginary
parts. Let fli, ^2 be the real parts of the coefiScients of
cos Vn' -b^ t and sin Vn'-b't respectively.

Then,J- uxi'uy

a;=e-M (flx cos Vn^-h^ i+fflg ivaVn^-b^ i) (4)
(«i cos Jiit+fla sin njt) ... (5)

writing nx=^n*~b*

%
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The Velocity at any instant t is

^ = — be cos Tiii + fla sin n-^i)
dt

;• +fi ^\ — niai sin Ui t+n-La^ COS iixt)

■  Let the displacement and velocity of the particle at t = 0 be
O and-Vq respectively.,

c  • .

Hence £rom'(5) and (6), putting i—0, we have

a =ax

Vo= - hax-\-nxa2=—ba+iixo2
cy

•  „ '^0 + ba

Substituting the values of ctx and cts iu (4) we have

sin Vn^-^b" t )x=ae ^%os

^Be-U cos

where B cos 6= a

B sin 0=

so that B — ̂ I^LZllzh^o''' ■h2a6r„

and tan 0 = -^^2£k—
v'nt — b^

-af-the body is displaced to a and then released, we .mUBt
have ^='^o = Oati = Oandthenwe get

ane-ht *

o •- J

i.i'Vi^v

where tan 0'= —

.■■■' ■ I
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tI^us the motion expressed by (7) or (8) is a damped osoilla-
tdry motion, the amplitude decreasing exponentially with time.

•S-t:
The time period T= is slightly greater than the time

v71- - b-

period for free natural vibration which is —; hut since
71 m

and b"= ■,> b^ is a term of smallness of second order in eom-
4?71

parison with and can he in'most cases -neglected. Thus time
period of oscillation is very slightly affected'by damping of
ordinar/^ magnitude. The damped oscillatory motion as
represented by equation (7) is illustrated by fig. 7.

Let Zo, ®i> ^3 be the maximum displacements of the
system in both directions at times given by 7rif-0=O, 2nr,
37tOetc., respectively where iix = - b^. Then

t Acc.No. ••-■"r'

Pig. 7

°  ̂^+7r)

6f0+27r)

b(fl + 37r)
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Thiis, neglecting signs of displacements /

n,

«i ®» ®8

Hence i=|.I„g io=|,„g
Thus the damping coefficient b can he found out from an

experimental measurement of consecutive amplitudes.
^ ■

fK then this is a transitional case whene  amped dead beat motion changes to damped oscillatory
yibrutions.

We have from (3) '

\  >

when^the particle has a displacement x = a and velocity Vo •

We can rewrite it as
(Z bt( yj hi /m2 J •
2® I®

^  f>

s/6»-„a

ffi -6<f

+i±Vo/a/ W
+  i-l+ ji

»^P»na.ng and neglecting higher order terms since b^n.
Hence

^hus tlj6 fiODGral T
be written as ^ critically damped motion can

==2®
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,2. An application of the theory of damped osciIla>
tions :

The theory of damped oscilliation may be utilised in finding

'  0

Fig. 8

the true resting point of the pointer of an oscillating balance
(method of oscillations).

Let O^be the true resting point of the pointer of a balance.
Let the displacements be measured from the arbitrary mark 0'.
Let 00' = <- Starting from the right hand side let aii, x^, xa,
Xi, Xb be the consecutive maximum displacements from 0', .ail,
ais.^s being taken on the right hand side of 0' and aia, x^, on the
left hand side.

Since it is a case of damped oscillation the displacement from
the resting point is

a:=ae~^'cos(nit-0)
= 06"^' cos 71.it neglecting 0

Hence ail time being reckoned from the instant of

measuring aii

Then

r,nd

cat

a:„+<—ufi
-6.2"

-262"
rxB + <=ae

-62" , -262", _
;i+a:8+a;B=aU+e +«

= 0^1+1 - iT+1-26r}-3<, neglecting higher order terms.

3
.2"

Similarly, Xa-<-aB

and 2:4-<=<10

-6-

-86-
2

&

5a + »4=®\e 2+0
862"!j+2<

r  bT,. 3hr» ,0.=a[l--+l-yJ+2<

®l±£*=a{l-6T}+<
2

■  'S
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Hence ^3+^« _ ^
2  3

/

\

t '

Thus 00 and hence the true position of rest 0 can be found.

Differential equation of damped motion from
consideration of the energy of tlie system :

The differential equation of damped motion can be obtained
from the consjderation of the energy of the system: Let the
displacement at any instant be ic ; if the restoring force is
proportional to x, the potential energy of the particle at the
instant is

jsxdx = ̂̂

The hinetic energy at the same instant is Im. If the

-describes an element of displacement Sx. then the-
-los of hinetie and potential energy of the particle will be equalto the work done against the frictional force.

'>x

Or, dx, \

dxSince '^^0 for all values of t

i  7. dx-

ky

I, ■ ■ •

if.- '■

H ■
i.

1  "

vOi - ,

, V.I

■  i

i

0

\
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CHAPTER III

FORCED VIBRATION AND RESONANCE

1. Motion due to a periodic force ; In the previous
.chapters, we treated "free" vibrations of a system. Let us now
consider the case when a periodic force'bf constant frequency

".and amplitude acts on it. Initial transient vibrations will be
set up wEich will soon die down and the system will settle down
to a sustained "forced vibration" of the same frequency as that
of the periodic force. We can cite many common examples of
forced vibration, c ?•. that of a loudspeaker cone, a gramophone
souSd-box, a stretched wire under tension actuated by the vibra
tions of a tuning fork etc.

Let an external simple harmonic force F sin pt act on a mass
which when displaced is subjected to a restoring force propor

tional to displacement and a frictional force proportional to
velocity. If the system has one degree of freedom along a
given axf^ OX, then its motion will be given by

m
'df-

^-sx-h'^+F sin pt
dt

■where s is Hie aliffness conslant, I Hie resistonce eonslant, F
-iJ.,e amplriada mSt the angular Ireguenejof the simple harmonie

force. ,^ _
,  Ee-arranging the equation, we have

d^4.21)—-l-w®a:=/8in pt
dt'' dt

where
n^—slm and f-Flm

in

(1)

Let a value of be found out which satisfies the equation
d^+^b—^n^Xi^O
dt^ di.na also let another value Ot.-a, he.the parlielil.r solution o,

the equation, so that
/sin fit
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Then
1

1^(2:1+ira)+26.-^^(®i 4-a:a)+R"(a;i+a;2)=/sin pt
The solution Ki is, the. same as in the case of resisted

oscillation and is given by

a?! = sin ( -52^ +£J) ... (3)

"where A and 0 are constants.

To find Xa, let us take as solution x^—A sin {pt~<K)- This
supposition we can make on the ground that the system will
ultimately vibrate with the same frequency as that of the
impressed sustained harmonic force. •

Since Xz = A Binipit-'i)

— Ap cos {pt — <)

and sin {pt - k)

Substituting these values of and in (2)
(it

-^p'sm (p^-=<)^-2Mp cos {pt-'i)+n'^A sin {pt-<)'='/sin pt
Or, 4ra'-p®)sin(pt-<)+26^p cosCpi-x)

=/sin (pi-x+ci)
=/ sin {pt — <) cos <+/ cos (pt - «t) sin'X , ^

Since the above equation is true for all values of t, we can

equate the coefficients of sin (pt-<) and cos (pt-^) from both
sides.

Hence

/cos K=A(n^ ~p^)

/sin <^=2bAp

Squaring and adding
i

whence A=- f

Also from (4.)

tan" <=
2?)p

n'^-'P^

\

u

r.

'  FORCED VIBRATiON AND RESONANCE

Thulithe complete solution for x is
^  x = Xi+Xa=Aie'''^ sin ( Vn'-b' t + O)

2T

/

s/{n'-p'')'+4:b'p
= sin (pt — K) (6>

where tan < = 3
n'-p

The firs/ part of the solution for x, i. e., fci represents natural
vibrations set up in the damped system by the harmonic force

at the start. These vibrations, however, become negligible very

soon as the amplitude diminishes exponentially with time. If

damping is very small, the natural vibrations will persist for a
longer time. The resultant vibration x at any instant is the
sum jif the natural vibration represented by Xi and the forced
sustained ..vibration represented by Xa- After a lapse of time
when ail becomes negligible, "We can write x = A sin (pt —<)
which represents the sustained forced vibration.

If v'jja _ ̂2 and p are nearly equal, at the initial stage,
the natural vibration will interfere with the forced vibration
and prodAce beats. These beats are transient, as natural
vibrations become imperceptible after a short interval of time.

2. Response and resonance :

Writing x = A gin (pt-'t) for the steady forced vibration, we
dxh^e ̂ =-Ap COB {pt-<)
dt

Hence kinetie energy at any instant
iwf—= cos®(pt-<)

\dti

'' Since the motion is a steady harmonic motion, the maximum
kinetic energy of the system is its total energy at any instent.

Hence energy of the system
1... ,4 2^3

imf
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If p = fi) the energy of the system is maximum for a/jy given
value of h. Thus when the frequency of the driven coincides

with the natural frequency of the driver (without damping), the
energy of the driven system is maximum. This phenomenon
is known as velocity resonance or energy resonance or simply
resonance. Moreover, the decrease of energy upon the lack of
coincidence is the same for a given ratio of frequencies whether
"the frequency of the impressed force is too great or too small.
It means the energy of the system is the same whether

the angular frequency p of the impressed force .is s times

or - of n. Writing ^ = A,
s  p n

mistuning or the energy of response can be written as

the kinetic energy at any

E =

and energy at resonance =
46"

(7)

Thus for a particular value of the amplitude of the impressed
force, the kinetic energy is greater for a smaller value of 6.

...

Fig. 9

^ Again if we plot E with A we shall get response curves for
different values of b as given in the figure above.

A-'.®,

'  ■(
.  )

1

,  FOECED VIBEATION AND KESONANCE

We'i^ave from (7)

29

46'^ ̂
E„, 7i"A" + 46"

n'-'A" (8)
46'

E
For all* values of damping constant 6, — =1 at A =0, i.e., at

Am

E
n — p whiclPis the condition for resonance ; again — . will be .zero

at very large values of A i.e., when the frequency of the driver
is too large or too small compared to the natural frequency of

E
the ^driven. But if 6 is negligible 4nd n large will heAm

negligible even at moderate values of A, as the denominator in
the expression (8) then becomes very large. Thus for vibration?
wfth 6 small and n large, the response E at any mistuning A
will he very small in comparison with energy at resonance and
hence resonance will he sharp. For the hypothetical case 6->0,
the response for a slight mistuning is almost zero as the
denominator in (8) tends to infinity. Again if 6 is very large

— ii-emains virtually of the same value equal to unity for moderate
E in

^waMes of® A and the response is very fiat. The observations
are illustrated in fi g. 9-

The •sharpness of resonance
is sometimes quantitatively

"defined as the reciprocal of A
'at which energy of response is

half of that at resonance

. Since Em-^ ^
. pf A at. which energy of resprase

.  is half of that at resonance is given by

the value

• Kg. 10.

E = - = iEm=M "̂46^
V  , :m\ '

■  .... ..J..1II . . .
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n®A' + 46« = 8fe«

1  , n

The sharpness of resonance is then proportional directly to
•the natural frequency of the system and inversely to the
'damping constant h.

3. Phase of the driven system with respect to that of
the driving force :

We have

tan oc = -PP
—p*

and sin from (4)

Prom this value of sin <, we see that it is always positive
which shows that < lies between 0 and 3t.

Suppose the angular frequency of the impressed force is
increased gradually from 0 to oc.

(1) When p = 0, tan < = 0. Hence <=0
Thus there is no difference of phase between the driven and

the driver.

(2) When p <.n "
tan < is +ve ; it means that the difference of pfiase has'a"

-value intermediate between 0 and
2

(3) Whenp=w

tan < . Hence < Thus at resonance, the driyen '■
system lags behind the driver by an angle

2
(4) Whenp>re
In this case, tan «t is-w, hence < is an angle in the 2nd

quadrant or,^<.«,n.
A

Hence as p->ectan <-»0 i.e., < in this case
IS n.

''Ct ■ ' \

Mil't ii iii
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Thus for all values of p, < lies between 0 and Jr, being equal

to ali resonance.

Again since

<<. = tan~^ 2bp

d<.

(n^-p^)
Qbin^+p")

dp (n»-p='j" + 46''p--'

Hence, when n is equal to p, = 7.
ctp b

i
11

Pig. 11

Thus smaller the value of h, greater the rate of change of
phase angle near resonance frequency. Eelations of < with p

'ai.6 given in fig. 11.
4. Amplitude of forced vibration :
Let us find condition when amplitude of vibration of the

driven system is greatest. We haye
/

A =

dA ,r-M2(w'-p')x-2p+4fc'.2p}1
• • dp L Kn'-p'r-i-ib'p'lV^ J

2(?i^ —p^) — i.b^
■ =fP-

^^ = 0, when p=a^ and (7i'-p®)-26® = 0.
dp

pITi'. \
n i il
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The former condition gives amplitude zero. Hende the
condition for maximum amplitude is , ̂  \

P'

If b is very small

Or, =

1

2v7

P

T" W'
n

(9)

Thus the angular frequency for amylitiode resonancP\?> slightly
smaller than that at velocity or energy resonance.

'  o The relation between the frequency of the driver and the
amplitude of oscillation of the driven at different dami^ioo
constants is explained by the curves drawn in figure 12.

values of damping the amplitude is 4 = *4 at p = 0. Now if b is

C-';. Co
O

tr> tj >43>t4

•Fig. 12

m

very large, the increase in 2 ,6p as p increases towards is
,, , ^ ■^L-' as p increases towaras ii> ■

ofn'-p^ and thus the den"«:
in tl ^ increases with increase of !'• S»»"  ̂ C f = 0- If 6 ic conrpafc'"''^emajl, nraarnrunr ampUtnde occurs at pn = ,.c-26M..e.,
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angular frequency smaller than the resonance angular frequency
by ap amount determined by the value of b. For a very small

■value of b, p is almost equal to n. If damping is absent, amplitude
becomes infinite at p=n, the resonance frequency.

5. Power supplied by the driving force :
Since energy is dissipated in each cycle due to frictional force3

this loss must be made up by the energy of the driving force to
maintain the steady forced vibration.

Suppose, at any instant, the force F sin pt moves through a
distance S.t In time 8t. Then work done is F sin pt. dx.

Hence rate of work done

T
dx

dtsin pt.
dt

X

T

= ̂ ^F sin pt Xpff cos (pt—<). dt [".■ x=A sin {pt - ot)l
n

T

■=ifFpA (sin pt cos pt cos "C-f-sin® pt sin
1  T=—■ FpA. 2* sin <
T
9 fJJ^ J, T•*> \ J.

®J"sin pJ cos pJ dt = 0. J"sin® pt. dt = Tl2^
o  o

_FpA. sin <■
2

Also work done against frictional resistance for the displace

ment 8x is 8x. Hence rate of work done against frictional
dt

T T

force = i dt = ~ h .l^p® co8®(pt-=t). dt
,  tJ ' dt'dt TJ

O  "

=|. k. A^'P''. Tl2

f  1

• •f '-it :
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Now — 2/) Ap
2  '2 • /

FpA h . k ,a «
= -^.- ̂ P^J=2-

m

Thus the rate of supply of energy by the drivingforce is equal
to the rate of work done against the frictional resistance.

6. Advantages and disadvantages of resonance :

liesonance is both a useful as well as an obnoxious pheno
menon, It is very often utilised in finding an unknown frequency
(e. g., by a sonometer) or in detecting a particular frequency
present in a note consisting of a conglomeration ci" frequencies
(e* S*» Helmholtz Resonator), In these cases sharpness of
resonance is of much advantage. Resonance effect is also
utilised in Indian stringed instruments like Setar, Esraj, Sarode
etc., which have additional strings other than the main ones
tuned to the desired notes of the scale.

But sharp resonance in many cases is very undesirable. A
microphone, a loudspeaker or any other instrument meant for
recording or reproducing music must have a flat response to the
range of frequencies meant to reproduce. Resonance to any of
the frequencies within the range will mean an undue augmenta
tion of it and will result in distortion. A flat response curve
IS obtained by making the natural frequency of the system
either much lower or much higher than the frequencies to be
reproduced and by making damping very largL.

7. Experiment on forced vibration and resonance :
Let us take a thin thread fixed at A and B. Let two

pendulums GE and DF be attached to positions G and D
on the thread. Th. pendulum OE is a heavy compound
•pendulum, whereas DF is a simple pendulum whose bob is of a,
light material like cork. Now oscillations started in CE will
force the pendulum DF to oscillate also, and since DF ib light
there will be little feed-back of energy from DF to GE so that
in this case we can take GE as the driver and DF as the driven.

Let us start Mith the thread of the pendulum short in
comparison with the equivalent length of GE. The natural time
periods of the two are very different in this case. If oscillations
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are starred in GE, there are at first transient oscillations in DF
which ultimately die down and the pendulum DF settles down
to oscillate with the frequency of the driver. The amplitude is

Fig. 13

however very small because of the difference in the natural
periods of the p' jdulums. The oscillations are almost in phase.
This should be so, for the phase of the driven is given by

2bp
tan" which is nearly zero in this case as

Now let us stop the oscillations of the pendulums, increase
the length of DF and start oscillations in GE. We shall observe
that the forced vibration in this case is more vigorous and there
is some difference of phase between the oscillations of the two.
If the natural periods of the driver and the driven are made
same, resonance would occur as a result of which the vibrations
of DF ave most vigorous. The phase difference between the two

o'iciiiations in this case must be J and we shall observe that
when GE is in the middle of a vibration, DF is at the end

, of it and vice versa.

If we make observations with the length of DP very large
in comparison with that of GE, we shall still see that DF
ultimately oscillates with the period of the driver, but as
expected, with a greatly decreased amplitude. The phase anole <

2b
tan"

p
2  2

n —p
is nearly here as p is large in comparison with

n.

As expected we would see the two oscillations taking place
almost out of phase. The position of GE and GG will be at
the two opposite ends of their displacements simultaneously

* For further discussion on sharpness of resonance, see Appendix,

.x"

0 'A-:."
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CHAPTER IV

COUPLED vibrations

1. In the preceding chapter on forced vibration, it has been
assumed that driven system has no reaction on the driving force,
i. e., the frequency and the amplitude of the driving force are not
in the least ?,£fect§d by the motion of the driven. But when the
two systems are equal or are comparable in mass or inertia, the
roles of the driver and the driven may be interchan^d. Motion
of each system will react on that of the other and the two

• systems in this case are coupled with each other. This can be
illustrated by the following example.

A  B

D

Fig. 14

Suppose AE and BF are two pendulums'attache^'to a thread
at A and B. If the mass of AE is very large in comparisoD
that of BF, then the vibration perpendicular to the

pane of the paper Jnitiated in BF by that in AE"... ^inmated in BF by that in AE w" r
is known as forced vibration. Now suppose both the

pendulums are of nearly the same mass and l.ndth and mftidO_  nearly the same mass and length and mv"'
18 started by giving dE an initial displacement.

vihraf^'^ ^ rnotion. The amplitude °vibration nf rp .....dilyvihraf^'^ motion. The amplitude o
falls sT ° inejeases while that of |
the "ffa -M to rest. And now the position. sue ahairs wi v.^ ,the "ffa- now the position•  "bail's will be reversed ■ A F ™;ii . i energy
BF-ii-c.-L .. ^»ea , ilii will now take up energy

that in, BF will faU ^ increase m amphtud
ene-i'sv is P^^^^ss will be repeated unteneT|y IS dissipated due to friction.
<0 *
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Lei* mi and be the masses of the two pendulums
respectively. Suppose at any instant, ̂ i is the displacement of
the pendulum of mass mi ; then the force on it at that instant

d^xin the direction 8f displacement is mi —which gives rise to a
ClfC

n 2

reaction at the point of suspension proportional to — —~ parallel
,  dt

to Xf Due fo mass-accelerafcion coupling, force fcransmifcfced

to the pendulum of mass vis must be proportional to - ^nd
dt'

can be written as where /ig is a constant depending

on the extent of coupling. If we neglect damping forces for

the present, the equation of motion of can be written as

m„ -pr+iJ.^-^+82X2 = 0
dV (1)

where Sa is the stiffness constant of the system and Xs the
displacement of ma parallel to that of mi. Let the displacements

be counted as positive when they are along a particular direction,

say, from left to right.

Erom similar considerations, the force on mi due to motion
d^ro

of.jris must be prcportional to— ^nd its motion can be

expressed, as

m
d^aji

^ dt" dl^
-S]_xx~0 (2)

■> It can he proved in the following way that Let us

multiply equation (2) hy and equation (l) by ^ when we
au at

get from them

'^"'1

V. , "'rev-"
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Prom (3) & (4), after integration and addition we obtain

= C ... (5)
'  at at

where G is the constant of integration.

veIoc?ty"!o ItTro^.

system Ld^'griiJntej'is'L''''' '°'''' °''°'''°^any instant m »• ^ ^ energy equation. But energy at

Mil Irlv \2 other energies. Hence the term
— i mo , . .
/n^l ̂  V2 " energies, ilence the term

^  clt I independent of and Msj that is, Mi

we get the equations (2) A (1) ,(i =,.3 = t^we 1.1 the equal.ous „, ^

m,

' dL'' = 0 (6>

ma
d^Xs
dt'..

C.'-

«- ■ " „•. o

solution for (6) Periodic, we can write as a trial
a;i=s^e»f«

^Jiere A is a constant.

Substituting the values of f7^
JU (ij we get

ma ^^a "bSaaia —

"Ttine iL vioration.■••nus the Value of r"
another constant. w^ere

COUPLED 'VIBRATION 3&

Substituting the values of aii, ^ and aia in (6)
and (7), we have

-»fti.lp®-/aBp®+Si4 = 0 \
-m3Bp®-/iip^+SaB = 0 J

whence A(si - mip^)=fiBp
B{si~m2p^) = fiAp

(8)

(9)

or,
Si-m,p'_

o  up

or, P-^P* — SiSz Sj^m^p"—mts^p'-hmxmap*

Sz-map

: or. i  S1.S9 Si 2 Sfl O 1 A—p -—=p®+p*—^—p
miTOa m^ma ma

P^ _ -^7,2 where k is known as 'the coe£6eient of
mxTTla

^~nxj ^ =Wa^ where Ux and Wg are natural

Writing

O

coupling and
rrix 7112

angular frequencies of each when coupling is absent, we get
p*(l-A®)-p®(?ii®+«2®)+«i®ra2® = 0

Solving for p®, we get
(10>

„o (?t,®+?g^®)± ^(Wi'^ + na )®-4(l-fe^)wi^Wg^
P  n 2(1-/c®)

Thus there are two possible frequencies of each constituting,
the coupled system.

Let the natural frequencies of the two constituting the-
coupled system be equal, then

2  2re®± jAn*k^
^ = 2(l-k^) ■

_?t®(Id:A:)
l-/fc®

Thus the two angular frequencies are given by

Pi = ^l + /u
and Pa--

V  1-k

'T''."
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I

Thus the two angular frequencies are respectively higtjer and
lower than the natural angular frequency n of each ; the
difference in the two increases with the extent of couiiling.

Now we can write as solution of (6) & (7) '

-^1 sin + sin \a;a=Bi sin Pit+P:,)+B^ sin (pat+P^) j
where o(j, ^re constants.

From (9) we have

(11)

Vtoj. ^ /

* ='JhAL2_„2\

If

7l« V 7"^

^  ̂ _ !
/i, V ,

9711

ma

ASain when by ,„b,iitntio= can get .
vl —A: ' •

2=-j!!h.A.
^ rriz

aa sotallons

"  (1^1
*  -^2 aia (pat+7'a)}

a;

® 2

i-

started bv by initial velocity : Let the moti
be y

ae^

dt
" Ihr

dx2 _—
at

 0, Xx=x^=Q

COUPLED VIBEATIONS 41

y

^rom these initial conditions we obtain from (12)

0=Ax sin <1 + ̂2 sin <2

Uo —Pi.Ax cos <1+23 2-42 cos <2
0 — Ai sin /di-+2 sin ̂ 2

0 = Pi4i cos/3i —23 2-42 cos ̂ 2

The above conditions will be satisfied if we take

•  '<i = '<2=i8x = /32 = 0 when Pii3.=23a42.
<3

Also 9{o = 2Pi4i = 2pa.4a
O

.  . 9io '3^on/H~Aj
whence Ai — r

2pi 2?i

(13)

and A^ = ̂  =
_ Uo _

2

Uo J\ - Jc

^2 271

Substituting the values of Ai, As etc., we get from (12)
nt

)l+Zc sm sin
V 1 -|- /j V1 k=-kl

rris \/l + ̂

When h is very small,

n  I nic \ -, n

(14)

n/i "if A =(•'-?)-^vn=(»+f)

also +1 — 42- j-=«P
2n

Putting these values and simplifying, we obtain

Xx = — cos sin Tit
n  ̂

/9771Wi 'io siQ '1^ cos nt
2

(15)

(B) Motion started by initial displacement:
Let 97ii be given an initial displacement Xo at i = G. 4t that

instant

_o ^£1 = 0, ̂  = 0

•9
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Hence from (12), we have

^o — Aj_ sin *<1 + ̂42 sin "<a

0~Pt-4i cos "'i+pa-^a cos <2
0 = 4i sin Px-As sin l^a
0=pi^i cos ̂ i-pa^z cos/ia

We see that conditions are satisfied if

when %?e have -

'<2=^1 —

•• (16)

Pa=3r/2

iL IvSJ

.m* •. u • ■". •.I" ' «'«■

«• Xii«iu-«:*. ■• ''*•' ■' '* If#! f*j: 'SSfe

•K i - 'n -

'W'
»»!-■■ Vlf

%:4Ml'y»^Wy!8^143
1

Pig. 15

Hence from (12) we get

^I+I
and ^^=/v^x^l

If k is very small

)
nt

nt

-kl

^1 a^o cos ~~ cos «t

,  ̂l.,,
?«"'ti°°'(")"»illuslt;tedbsfig.i6.

Bin -Bin

» VV ^ ' . ' jyi-

:"?)"■< ta . „,... ,.

-K/Mi^W)'i'iff/- v.r, 7«reii^ -, i - , -' ■; •, .-'.■i*

mmmrngm^
w

"^1
(.'I*'!

Hrtf-i

(17)

43COUPLED VIBRATIONS
(2)* Vibrations : stiffness coupled :*
Lit -,.nd». b»two P°'°'

and Cot . stemg ®"'' T whioh remains
be devoid of ineartia ■ and under j ,. nf m^ and
unchanged at small transverse displacemen s tri an a
niain the plane of the diagram at any instant f. Let d4B
5(1 = 6 and CD = c, so that Z-a+^ + ''- ^
.  .rom the figure, the force on in thV^positive direction

Fig. 16

•- —T' nnq d,-T cos 0a ^•
of the displacement Xx ib

Xx

a

+T.^- .̂ , if tr. and x. are small and neglecting variations in
length.sLlarl, tore, at the same instant on ». is-T eos ».

rr,'^ n ^^rp^lZ£l-T^.- r COS 04, - -1 • f, c

Hence,

nix
d !£i= -T (-+t]®i+I-

1,2 'ct 6 "dt^ ^ ^ (18)

^  d^X2 y ll+}\a:3+j.iCiandwa-^p— ^ \b c' "
,y..t the motions of »r and «. are indnenced byWe thns see that the m ,„d can retrtit,

the displacements of a
equations (l8) as

d"-.nd.«.''^' + "d"-'"'
... ' (19)

B®®

v.»«V'. • ■

_..^ly« i t .V{ ^ ^ • ' - • , •• ' .'

fiJS!'.' ' ' 'Vv;- , .'" 'J* ••, t.\* ■ •'. ' » •
l))^ ■ . . Y-rV' '■■, i ' •

J 4'W/iXii
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Such vibrahon3 are stiffness coupled and can be written
BBglectiDg fi'icfcioDa.1 forces as above*

That the coupling constant ^ must be same in both the
expressions o£ the coupled vibrations, can b6^shown by writing
be energy equation which will be for two different values of

coupling constants vaiues or

= constant.

Hence ii^ must be equal to /i, or u, =« ==,.
-4;=.tlo. ol stiffness coupled vibr.tiou is ghen by

^  \dtl 2^1 ̂  \^l +2®®® =
-  — constant.

Let us put = where /H« «
be=Se»''« when B ig another constant ̂ ^Sub^fc-f
of the values

i

:}

n (19) we get

■B (s2-m2p2) = ̂  4
From which we get ®

where .

ououplicg.
o

From above we get

■
(21)

P

Thus p has two possible real positive ,
higher than the other. Hence solutions for^r'^7

91. = dl. s,'^2'i^-i_ .1 in.f. '®P ®icement3 wiwi
o  g . =»

ll be

Xa=Bi
6

t

COUPLED VIBRATIONS

Let ?ni and oiia have the same natural period, «. e.,
O

mx __ VI3

Si - 2

2  2
or nx =^2 •

We have from<2l) putting ni.='7ia-n
+h and pa^='>i^

• It k is small, Pi— " 2ra

From (20) we get
O A / 9 ^ ^ 1 2 -yl 2 ^

n  f*

=_4bl=-(,i/-p^)
kVmi,ma

=i M(wi=-p')/^
^ Wla

If ni_=na=7i, then for Pi'' + we get
£=-/»:. si.

^ m©

For pgi' = n^-k, we have similarly
jrrH, A

^ via

45

...(22)

Hence we can write for such a system
-' xlrax 8m%^t + <i)+aa sin (p^t + <a)

a:a= /^{-ay sin (pit+ /8i)+«« sin (Pat+Pa)]
* TTJa'-

Let us suppose the motion is started by an initial displace-
I

.ment of my at { = 0. when aia-O,
dXi_.dXa — Q
dt dt

From these initial conditions we get
a;o = ai sin cti + a2 sin <<2
0=Piii cos =<i+P2®2 cos <2
0= —Oy sin ^i + Us sin
0= -p-yCly cos Py+Pa<^t COS da

■  .I'.il

4; "
•rt
.Ai

>  ■;, 1
' .'11,''

;;
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The above will be satisfied if we take =ti = =(2=^i
2 ~ -"/

when we get a,=aa=£p
2'

Hence from (22), we get

~  Pif+ COS p^t)2

a
n

_a;o

®o COS t 003 nt
2?i

and
2i  I (" 2^) ^ ~ 4) ' } ^

B.pre.,i„.s for .. .oa .
and are nearly equal. UOJwhen 771^

3. Vibration of two equal
masses attastring under tension : ched to

a uniform

Let the string of negligible mo ,
parts, JB. EG & CD, Let equal ® into q

T of a; ;■ masses w be atto uf  Let and oJj be the disnlaoo attached to B & r
instant t where a; and c n ments of the maa 1 and .ca are small. masses at any

1' 1

I
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Then considering that the tension T remains unchanged

d^X-i _ _TXx , rp Xz-Xx
dr ll3

3Txx
1/3

I
-|_ g ^ 3

= -GT.^ + 3T.^
L  1/

m
d^x̂
dt

2 m ^3 Xx rn Xz
a  Ilo ^-Thi1/3 '1/3

'=-6T.^ + 3T.-^
o  I

Prom the above
om

dt

d^ ( X 9T, X
"^•378 («! -a;2)= - — (Xx-Xz)

at 4

Ee-arranging
d' 077(a:j + a:a)+'^(!ri+a;2) = 0

hndt'

jTilfCi -Xa) + ̂ -—{xx - 3:2) = 0
dt . ~ Im

•whence

+2:2 =4ti cos . + sin^ t
^ Im V Im

iCi-T2 =442 cos ./^ t+ha sin»/— t
^Im * Im

0:1=4(441 cos /xj~ t-'rbx sin /./— t+az cos t
'  ̂ hn ^ Im * hn.

•\-bz sin ./^t\
^ Im I

and 3:2 = 1(441 cos ./^.^< + hiSin a/^ <-4i2 cos ./— i
'  ̂ 1771 ' Ini, ' Im.Im Im

~bz sin t )V 7„, /

Thus both the masses may vibrate with angular frequencies

Im. ^ Im
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4. Forced vibration of a stiffness controlled ctupled
system i

I£ frictional forces are fcalren into accounb the equations of
motion of two systems of masses and can be written as

••• (23)
at

d^Xo , , dx
VT/2 7,3^^-+fe2 ' +̂820:2-fia:i = 0

df . dt
(24)

eaiSBektittBto

V 'i"' ': > ■■ *' w|

•  • i -■' •• ,

-.' '' . Atsi*..

•MiPN|;''wyyif»i»i

where fc i, ^2 are damping constants, Si, $2 the stiffness
constants and {>■ the coefficient of coupling and the psriodic force is
fe*®' acting on the 1st system coupled to second system. "We
must have solutions for the displacements in the steady state as

.•ci. = 4e"" andx2=Be'®'

Then substituting in (23) & (2l) we have
i.(si + /ciip - niiP^) -/iB = F
^(sa + icaip - W2p'^) = pA

From above we have

(25)
(26)

j5(-iy +^ip - p^) +^ip -p^ \ -
17712 Wa ' *»ll TC i I TO

f'B _ fiF
j.m2 "TTliTTla

or, b[w2® ~v^ + 2b-iiv\[n?-v^-\-2h^ip\-k^R=z ^ -p
^  ' ' VrTliTTTs

■i' viKSS)

.. . '

x5,j

u"*' ''

,  Sl_,, 2 £2-,, 2 —where 7ii, — —772

(27)

m% 7772

and coupling coefficient k=—j=^
Jiri

1,-^ = 262
777 1 777 2

= 2&,

xiriz
(>

From (27) after simplification we obtain
0  k

'JZ.
B =

-.F
7771TO2

(772'' - P"K'7i"'' -p^;-(46i62p'''+I^)
+ 2?p{6it77i® -p'') + b2(97a® -p")}

C
We can write B =

0

»»'.

z+ir

_c(z-7r)_ G - -
,x'+Y' Vr-'+r^'®

\...

i
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where tan 6 = -

Thus B=
Vm

, Fe
-id

-,ni.

+4p"{6i(771® -p') + 62(772" -p'^)}'']
„  2p{5i(77i^-p^)+62(772^~p')} ••• (29)

-p')in,''-p')-{ibib,p-' + k'')
From (28) & (29), we obtain the amplitude of vibration of 77I2

and we see that the vibration lags behind the periodic force by
an angle 6 given by (29).

Also from (26), we have

A=:?(S2+fc27p- 7772P®) (772^-P®+262^P)
ft I*

p-

=1 v/-'- V(V^W+46A; V

70'

- where tan 0' =
772 ~P

(30)

(31)

Expressions (30) & (81) give the value of A which can be
found out substituting the value of B. We see that the vibration

26
of 7?7i is ahead of that of 7772 by an angle 0 tan

aP
2  2

772 -P

In the special case when 771 =773 =»77, 6i = &2—0 and 0—0'-
=0, the amplitude of steady vibrations will be given by

'' k
r-F

^ in^-p-'r-k^'
The amplitude B becomes infinite at (77® -p^Y—k^

.  i.e, atp=77±|^ (for small values of ^^2)-
Since 4=^y!^^.(77^-f')

k ^ 777i

thU also becoma. inSnil. ab the above two values d p.Tuaelual eases K aud ». will never be aero and. therelore.
ol and B'Vill never be ln8mte. i S B e.n be plotted with p and
curve for each will show two peats at oertain values ol p deter
mined by Ui. Pa. 7i. da and _ ^ ^ ^

4

'v-l ■

jli.' ■ j -' pV;/!:, ir'V''*
V  J?«
i

ST '»)l SV7-l',f5

iime period given by ni—A

Or, the time perio

9jt
T=-- =-

77

Thus r = 25t./^£|^
Eesto:

IrTs!* ■ ..rir'-f •.--efciSiwui

I-U i- , •.■ L-ditieuaud^  J ' • my

•-V-v"-...

^  -

-  , " ' ' ■•• '1 •. . i, .,.• - y;

t'1 'li.V'ifAip,';';-,;''',, ' -■
•**1

. -u5»

'.' '■ • ' »tt •* . '

..ti;!' .

„.

■ SetlSA

-

jf^ '1 tiifrtVifiiiMffttiwii'iirtw iiffi'i I'l

a»^ -*

tf' -'ill'' '' Hv^

t  :S'T?.3

w.,y
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4. Forced vibration of a stiffness controlled Cfaupled
system :

I£ fricfcional forces are taken into account the equations of
motion of two systems of masses TOi and can be written as

••• (23)

(24)clxo.

dV

^L^4-h
dt' . dt

where kt, k^ are damping constants, Si, the stiffness
constants and the coefiBcient of coupling and the psriudic force is

acting on the Ist system coupled to second system. We
must have solutions for the displacements in the steady state as

.•Ci = 46'»' anda;2=Be*®'
(P

Then substituting in (23) & (2l) we have

A{sx + ki,ip - nB = F ... (25)
B{sz+kzip-7n^p'^) = lxA (26)

From above we have

Vmg I  mi ^ / .
miWia

Blni-p^A-25iipj^n ® -p® + 25aip)- ^ jj
'IW2

where — =711®. =ni, ^ = 2bi, ^ = 2bo
mi ma mi

and coupling coefficient &=——^ -
J

(27)

miMz
From (27) after simplification we obtain

k
B = .

■.F
mxm^

in," - P'hni'-p-^j-(ibib,p' + k^)
+ 2ip(6i^7ii=^ -p'') + 5a(7ia'' -p^)(

C _
O

We can write B= ^^-r-
o  Z+iF

_C{X-iY)_ G -id

COUPLED VIBRATION

where fe an 6 =

7/Z17/1 2

C'

Thus B =
^LW-p')(7H®-p')-(45i5ap'' + &')P

+ 4p"(5i(7li®-p®)d-62(7l2' -p )V\
and tan 0=,

(«i -P )(nz -p J-(45i52P +A: )
From (28) & (29), we obtain the amplitude of vibration of

and we see that the vibration lags behind the periodic force by
an angle 6 given by (29).

Also from (26), we have

A =-(s2 +A:27P - m^p^)

_m^B
P-

(na® -p^ + 'ibzip)

J{n2^ -p^)'^ + 45^p®eie^

K V

25 2P

(30)

(31). where tan 6^ „ »
712 -P

Expressions (30) & (81) give the value of A which can be
found out substituting the value of B. We see that the vibration

of mi is ahead of that of 7712 by an angle 0*^ = tan~^ w
Wa -p®

In the special case when Til 71, 5i=52=0 and 0—0'-
=0, the amplitude of steady vibrations will be given by

—^—w
__ Jm^m^

W-p'r-k'"'
The amplitude B becomes infinite at (ti® - p^Y =

h i k\i.e, at p=n± ^ |for small values of

SiD«e
k^ mi

this also becomes infinite at the above two values of p.
In actual cases bi and b^ will never be zero and, therefore,

A and ^''will never be infinite. A & B can be plotted with p and
curve for each will show two peaks at certain values of p deter
mined by 7ii, 712, 5i, 52 and k. ^

4 o
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CHAPTER V

FOURIER'S THEOREM

1. Fourier's Theorem: When several simple harmonic
vibrations of commensurate periods combine, they may produce
seme type of periodic vibration ; again any complex vibration
may be analysed?'into simple harmonic vibrations of com-.-
mensurate periods. Fourier's Theorem is of great importance"
in the synthesis as well as analysis of periodiS motions.
When applied to the ^l^blems in sound, it can be stated in the

Jpllowing way.

"Any finite periodic motion can t>a
sum of a series of simple harmonic motions of commen
surate periods."

Mathematically it can be stated that if y is any periodic
function of time t, then

y-ao+a^ cos nt+a^ cos 2nt+--a, cos snt+--
+ 6i sin nt+b, sin 2nt + - + bs sin snt+^

(1)The above senes known as the Fourier series can also be
written as a senes of only sine terms or only cosine t
Thusifu, = A, cos<3and6,= -^^giQ^ « terms.

C^:>

and tan <3=—.^
Ot 6

So we may write (l) as
(2)

y-ao + A^ cos ,,3 (.2nt+^,) +
+ A3 C03(swt + ̂ 3)+...

(3)The sth harmonic vibration is representp,^ K .
the fundamental one being 4i cos {wi+ +
hi, b2--etc., in series (l) are found nnf "a"'
the hejp of (2) the amplitudes, and ' calculate with
fundamental and the different ovp.Ip ^ angles* of the
series (3). • ^®Pi^esented by the

a-'"r ■ ' ' ' '7"^*V.;Sr*" '.T

dm-jiU

■

J ■ ■ V ^
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3. Evaluation of the coefficients : In order to find out

ao in (1) let both sides be integrated with respect to t from
0 to r, T being the periodic time. From (l) it is clear that
the displacement y will repeat a cycle when nt changes by 2^ ;

2jr
hence periodic time T = —

n

T T T s— 00

Then ^ ydt= J aodt+ jl as cos snt dt
o s = l

T s = co

+ fl bs sin snt dt,
o  S=1

T

But r cos snt fZf= —[sin snt 1^ =— sin 2sJr-sin ol = 0.
J  s«L Jo Sis'- -•

T

Also J" sin snt dt= "^J^os sjijj

= — - f cos 2s3r — cos 0) — 0
sn\ '

T

aoT= J ydt

or, ao ■'if (4)

To find..out as, let both sides of (1) be multiplied by
.cos snt and integrated with respect to t from f = 0 tof = T.-

''' '*

.  .. . ...

'  (=♦ J0»» fc -M '

I *■

»t . • ■■ • . .J. . '• .... jmrf!
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te2^«s^:s

^ ■ "• ,,,,

■T'/ij" ,.. '.

Sv'4^" '• *' y,-:'y y^t
■■»; ,i~ .I'X ■ , ■ ■ . ..

,-1' ' = v_-,-'

:;t-ki>t>'^;a<i'f« .»«'<•
^»i'««!i.> |i;ipi|w.^i;.|tM,<,^^

■;'" r 'l','

r-'m-y

■  • ..., ,j, . . ,
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Then

T

f y cos snt dt

T

= J'(ao+ai cos nt+a^ cos 2nt-\—ag cos sn{+'") cos snt dt
T  o

+/(' 1 sin wt+&2 sin 2nt+-- h
o

T

NowJ"

8 sin snt4—) cos s?it dt..'. (5)
»

cos lent cos snt dt, k being an integer

r  T

= ̂ j^J" cas-(fc+s) nt dt-\-^ cos(fc-s) nt dt^
o  o

T

(6)
o

The 1st integral is zero for all integral values of h. The
second integral is also zero for all integral values of k, except
A: = s-when it is equal to T. Again °

T T
C  -J sin knt cos snt dt = l\ [sin [k+s] nt dt+ f sin {k - s)'nt tZtl

°  0 0^ J
=■0 for all integral values of k including k = s.

TtT-

Thus ((ao + tt i
o

•1

T

+ /(6.

cos nt + a^ cos 2nt+ —

+^8 COS snt+"') cos snt dt

sin nt+bz sin 2nt+...5j sin snt) cos snt dt

T
= 0 ,

0-8 2? J" 1/ cos snt dt (7)

.V

■■' ' •■*J'."''?"''"'.*'. -V
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In the same way multiplying both sides of (I) by sin snt and
then integrating with respect to t from 0 to T, we shall .e

y

bg=-^fy sin S7it. dt "'
T

In simple eases, y=f{t)is known and hence the coefficien
can be calculated by performing the integrations (4), (7) and 18J.
But in most cases, the function is not known and then we may
suppose the complex periodic curve to consist of sma
portions of straight lines within known limits of time ; any of
the above integrals is then the sum of the integrals over the
.different component straight portions. The process is, however
very tedious and there are easier approximate methods.
Moreover, the integrations can be carried out by appliances
known as harmonic analysers.

8. Analysis by Fourier's theorem :
(a) Let the displacem^t curve of a vibrating particle be

T

given by y = 0 from t = 0 to t = Tl-2 and y=k from t = - to t = T.

\ X-e'Z

Pig. 18

T  Tl2 j- - ^
•Then ao = - J +1/ ^?(/- " S

•^O o TI2 ' r/2 0

T T

TI2

Htvafuiu #rV' -wt*, /• .- • . tet:iai|#iSrigA

i\\

■J>

J.-
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rt 1 r ^~2~T J' <^03 swi di
°  r/a

1

]t/2
~s^[ 2s:w-Ein s:tj = o.

T

sin sjti dt=^J siSin swi dt

r
r/a

~  srirf ~ cos s:tj
If s is even, 65 = 0
and if s is odd _

2  snT
._fe

S3t

Hence, 1
Z  :itL 5^^ sm 5ni+...

(^) Let displacement ]
time from 0 to T. ^"^"ease unifqrmly frojn 0 t?, k in,

, Here ^
•  t. t"

^ig. 19

'  1:

I

"■>Ak

iflli(iWBnBMMBMiiiw i"' i ■ ■ . ... ^n ,v> > j .

M
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T

Hence uq-if*"
0

^  T
-iri!!

r'L2J 2 ■

aj = ?-r y cos sni cff = |^J t cos snt dt
T J Q

T

= ^[±( sin swAl - f sin snt dt
^  O ^ o (Integrating by parts).

r

=^r—sin snt+^cos snt
T\sn ® o

= 0

T

53 = |Jy sin snt dt

cos 2irs+-^ sin 23rsl
sn ® "

.2^.
snT

=-i(--' »=r) . ■ ■ . ;
Thus y = |- -( sin sii^ 2wt-f ̂  sin 3n«

^—- sin srit4-"' )
s  I

Hence all the .harmonics are present.

'>• ' •

li-w'

_jv '

■ ■

\y.ff
Vl't- ■, .,'1 i);-js^

:'S' ■ >'>

came aispiaccuieuu icpcauss Ori

iimepenoi^ given by n!r=2jr. ^

Or, fcbe time period oi

_»!
7i

25r 2a:i
m — _ —

nV)k>A..:jyfe

mass of tfiThus T
Bestoringl^

W'?" -

K  . ..■ ■•vH*.'-*®'.

,  ■ r, V j- .•. fj -

l.>.. .-i.i-vVi • 'I^'W 'Si

-®!.. '.'v**!" ,'

' k.^; " ■ -■ •':, , kr
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(c) The displacement decreases uniformly from h to zero
in time from i = Oto i = Tl2 and then increases uniformly from
zero to h in time from Tl2 to T

Fig. 20

"When 0 < i < Tl2

y  ̂ k

T/2-t m

■when TI2 <t <:, T

—^—= ^ 2kf
t-m

T

Hence ao = |J ydt
0  »

r/2

Til '

TI2

.  r/ COS snt cfi+2 r/2ifc i
TI2

COS snt dt
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T/2 T

= —["(— sin swi) ~(~
TLVsji Io ^sn I
— I blU AllfUt I

TLVsji 10 'sra 'T/2

T
--Ji cos cos snt dt^
^ 0 T/2

The 1st two integrals are zero.

T/2 ^
h cos sntciJ + p/fcos sntdt

O..

But J"/ cos s?ii

= i sin snJ+ cos snt + constant.
s'n

sn

1  \T
-i- COS sni)

/T/2

8)1:

T'^s^n^
(cos S3t — 1)

Thus when s is even, a, is zero and when s is odd
Ifii

a 8

T/2 -|

N.« J.=|[/(i-|<)si. »'^' + /(f <"]
^  - T/2
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_ 2r/ k \T/2 I h
—  -COS snvr +(-'=|[(-  cos „,)

1° \sn I

T/2

-fijt sin snt dt-jt sin snt ̂ Z«)|
0  t/2

°l["l'=''«"-l>+£(l-coss,)
t/2 j

(/« Sin sn« Ji gjn snt dijl
0

t/2 IJI

Again J' i sin snt dt-jtsr

T

T

sm snt dt

/2

-(-

COS ~(~1
'  S7l

sn

^ cos s;;t)-(-5.-1- \2.W I \ sre^2sw

C03SK4 + a;-^8m swJ)r's'n T/2

T T
■  cos SK
sn ■ sn

sn
cos sJt+?^_^/r ji 0r l;;i~^coss;t)J

= 0.

Sn s?i ' ^os s3tj

Now as flj = =_ 4/;
T^s^n^ .,-2w  S®;i8'

2^;,2[p cos ni+1
ga

+1 .^ ~ ' Q C

 Cos

ji cos s?ii+ j

■4 ■

I  .

i
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[d) yssA sin nt from ' = 0 to t = Tl2 ; y = 0 from t = Tl2 to
O

t = T :

(Approximate curve of this nature is obtained in half-wave-
rectification of alternating current)

Fig. 21

T/2

ao=^J"sin nt dt^^Jaxn nt dt
0

= -4[cos«-l]

.0jT/2
0

,A
n

=  A sin nt cos snt dt

0

_= 4—r[ cos (s+1) a - ll
T l+s)wL J

cos (1 - s) n:- ijA
'T[l-s]n

—  ̂ -T cos (1 + s) 3t-ll2Jt(l + s)l- J
+ 2Jt (s -1)1

—I cos (o-l)5r-l]
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Putting s = l. the first term in the expression is

.  co3(s-l) :t-l_ ^
2;t(s-l) 2Jt(s-l) ^ .

V • =0 when s->l

Thus ai = 0

-4^.4] •
ffla = 0

[&T "
aB=0

where s is an even integer. »
T/2

".4 C
Now, 65= 7^ I sin nt sin s?i4 d{

J. ̂  o
0

" IM^)L J " sill (s + lU ]
Hence 6s =0 except 6i which is 4 ®

Thus 2/ = ~+|{(g-j) cos 2ui+(i-l\ cos int
t  \

+ (?-§) ®os 6n4 + ]+^Binnt
4. Graphical method of analysis :

i  _Suppose we have time-displacement curve fnv „ -i
1  i j J.I, . n. 1 8' vibration ofa complex type and the periodic time is known. W

displacement is given hy ®

, y —+ cos snJ-h
S= 00

63 Bin snt
^=1 ■
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Putting s —1, the first term in the expression is zero.

since
COS (5— 1) ;ir — t 2 ^

2Jt(s-l) 2:^(s-l)

= 0 when s->l

Thus ai = 0

flg = 0

a. = 4p-i1
Lfi" 33tJ

a6=0

LTji 5jcJ

& as = i I 1 -J__l
ks + D* (s-ljJ

where s is an even integer.
T/2
r

Now, bg — ~j sin nt sin snt dt

T/2

Tn(s-1)[
Hence &s=0,except which is

+ (^-|i cos 6nt + j+4
sin nt

f?

4. Graphical method of analysis :

'  Suppose we have time-displacement curve for
a complex type and the periodic time is known. of
displacement is given Ijy ® know that

S== CO
S=;CO . .

■ y = <^o + ̂  ds cos + sisi
■

n swt

s=l

Fourier's theorem

T  T

61

.  where ao^^jv dt, =|/l/ cos snt dt and

•  X

snt dt.

To know fflo. the area between the curve and a; axis from
■ t = 0, to t = T is found out by a planimeter ; then co is the area
calculated divided by the periodic time T.

To find «<,, y is multiplied by cos snt and the product is
plotted .ganist 1. The ere. bounded by the curve end ceni.

from'( = 0, 10 1-T will be Js cos Int. dt Itom which a, is lonnd

out In e similer w.y the product of sin snl'end the displ.cement
lor different values ol ( is plotted^ api™^ J and the ate.y lOr aiUtJiCUU -- - - - . m mi • L-U^

between the curve and d aai. from 1-0 to 1-T will give the
TT

value oijy sin snt dt and hence bs can be calculated. The method

is however very laborious*

5. Importance of Fourier's theorem in Sound : When a
source ol sound vibrates simple harmonically, the sound emitted
by it is said to be pore. But In most cases, periodio vibrations
sre complen. Two sound sources vibrating with the same period
will be no doubt coueordant. but the puality of each wiUbe
determined by the component simple h.rmon.e vibrations of
which the, may be supposed to be composed. If the^ displace-
™„t curve of a periodically yib-ating body, say, any point on h.
Trbg ol a musical instrument is known, we can find out the
a flerent overtones present and calculate their .mplitndes, phases
elf. In other words, the theorem enables us to study unautits-
tively the quality of a musical sound.



CHAPTER VI
0|

longitudinal waves in an

ELASTIC MEDIUM

1. Progressive waves : Let A be the outer surface of a
prong of a tuning fork in an elastic medium like air. Let us
■consider the state of particles of the medium in froni; of A when
the fork vibrates. Tirst, let us consider that the prong be Tiyen
a sudden velocity towards the right. The layer of air in front
of A undergoes a compression which will react on a contifiuol
layer producing there a compression, which in turn will act
the next layer and so on. Thus a pulse of compression will travel
towards the right. Again if we consider the fork to be sudd 1
moving towards the left with a large velocity, there will b ^
fall of pressure in the layer of .air in front of i. Particles ^ ^next layer to the right ^iU move towards the left^re
fall of pressure and this process will go on from lave, f i
and thus a pulse of rarefaction will move rightwards 'S
velocity of propagation of this compression and ra f r '

■depend on the elastic properties and density of the m d^
If, however, the vibrations of the fork are " i

a particle of the medium at any point in front^oT th
have simple harmonic motion about its ^
position when undisturbed) along the direction ^ f^
the wave. Since the vibration of the parf°i ofthat of the fork, any displacement of the partLle wiH
after every complete, vibration of the fork and '
i.e., the time period of-a complete vibration of ^'b
■disturbance will travel outwards throueh o® fork, the
■called wavelength. istance which is

.  The wave as described above is a longitudinal .
■wave, the vibrations of the particles of the • ^^^^vessive
the direction of propagation of the wave
particles of the medium everywhere on a plan ^ ®®oents of
the direction of propagation are identical at to
wave is a plane progressive wave. ^■oy instant, the
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2. tlharaeteristics of a plane . progressive wave of
simply harmonic type :

(1) Every particle describes simple harmonic motion along
the direction of propagation of wave, there being a change of
phase from point to point.

(2) The arrangement without changing its type advances
with a uniform velocity, its value depending on the elastic
constant and density of the medium.

'  (8) Any particular displacement at a particular instant is
repeated at regular distances called wave lengths ; the velocity
and the acceleration of the iiarticles of a wave length apart from
one another are the same.

(4) If N is the number of vibrations per second of a particle
at a pofnt along the wave then m = c, where c is the velocity
of the wave and A=wave length.

3. Equation of a plane progressive wave ; Consider a
wave to be moving along the positive direction of a; with a
velocity c. Let the displacement at any instant t at a: = 0 be

o  ii = a, sin nt

Fig. 22

To find the 'displacement at P at the same instant, we must
remember that the disturbance has travelled without change
of form from 0 to P with a velocity c. Hence displacement at
0 at time {t-xic) is the same as that at P at time t. Thus the
motion at P will be given by

^ = a sin n {t — xic] (1)

If the wave moves towards the negative direction of the
ic-axis, the displacement at P at t will be the same as that at 0
after xlo seconds. Hence the displacement at P in this case
will be

| = a sin 71 (<+a;/c) (2)
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2. Characteristics of a plane progressive wave of
simply harmonic type :

(1) Every particle describes simple harmonic motion along
the direction of propagation of wave, there being a change of
phase from point to point.

(2) The arrangement without changing its type advances
with a uniform velocity, its value depending on the elastic
constant and density of the medium.

'  (3) Any particular displacement at a particular instant is
repeated at regular distances called wave lengths ; the velocity
and the acceleration of the particles of a wave length apart from
one another are the same.

(4) If N is the number of vibrations per second of a particle
at a pofnt along the wave then iYA = c, where c is the velocity
of the wave and A=wave length.

3. Equation of a plane progressive wave : Consider a
wave to be moving along the positive direction of a; with a
velocity c. Let the displacement at any instant i at a: = 0 be

Fig. 22

yc

o

To find the displacement at P at the same instant, we must
remember that the disturbance has travelled without change
of form from 0 to P with a velocity c. Hence displacement at
0 at time (t — xlo) is the same as that at P at time t. Thus the
rhotion at P will be given by

g = a sin n (t — xic] ••• (l)

If the wave moves towards the negative direction of the
ic-axis. the displacement at P at t will be the same as that at 0
after xjc seconds. Hence the displacement at P in this case
will be

a sin n {t+x/c) ^ ••• (2)
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Since n:=2^N=

SOUND

2nc

equation (l) can also be written as

2^0^

5 1

 = asin ̂ -—{t-xh)

= a sin ̂  (ct — x]
and (2) as

e = a sin Y (ct+x)

(3)

U)

4. Longitudinal plane progressive wave in an elastic
medium :

Let ABGD be a section of the elastic medium of area 4
perpendicular to the direction of propagation of wave. Let
EFGH be a parallel section of equal area 6x apart, i.e., 0G = 5x
8x being an elementary thickness of the layer. '

Fig. 23

Displacements of all particles on a plane perpendicular to
^■direction of prop^ation are same at any instant ^
disturbance, let the particles on area ABGD be displaced
any instant, so that A'BG'D' is the new displaced
similarly particles on EFGH are displaced to the '
represented by E'F G'H'. ^ Plane

Let co-ordinates of G and G in the initial positioQg be
a:+Sa: respectively. Then those of C and G'willb

and
d§

x+^+Sx + rr^^ respectively.
'■ ax,

LONGITUDINAL WAVES IN AN ELASTIC MEDIUM 65

H^nce G'G' = ix-\-iA-Sx-\-^Sx\ — ixA-^)=Sx+^ 8x
\  ax / ax

O

Thus the increase in the thickness of the layer is — 8x and
dx

if there is no hiotion perpendicular to the direction of

propagation, the increase in volume is 4 ^ da: where A is the
ax

area of ABGD or EFGH.

A $dx
 dHence volume strain =_ x

A dx dx

and the excess pressure causing this strain will be given by

A -8r) k~
dx

where 8p is the excess pressure over normal undisturbed pressure
and k the modulus of elasticity.

, Consider now the equilibrium of a layer of thickness dx of a
section .djBCD of area .4 per-

pendicular to the wave : If —
dx

A'

is negative, i.e., there is a
compression at A, there will
be a force on area ABGD

perpendicular to it due to
the medium on its left-
hand side and this force on

ABGD towards the right is

-Ak 
d̂x

Similarly the force

on A'B'G'D' by the medium on
the right hand side is

d d^

\

0 d'

B B'

c'
X

-4Ji:
\dx dx'dx

= -Ak (^+CM-
\aa: dx I

H + S X.
Fig. 24

This force is in the direction right to left on A'B'G'D' due to-
medium on the right-hand side ol AB G D.

L
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0
Hence the resultant force on the layer in the positive

direction of x is

-AV-liAh 8a,.
dx

If Po is the density of the layer, then the resultant force will

be equal to Pq A8x.—^.

Hence

dt'"

Or,

Or,

where

dt^ Podx^
.72£o(^

dt^ da:^ (5)

Solution of equation (5) is given by

^~d'ii''i~x)+f„{ct+x)
where/, mi/, ere twoarbit,.,, toetioM .„a , i, itf velocity
of the wove /.(e, .) T
positive directiop of «, while f.{ct+^) represenlA J
travelling in the negative direction.

The treatment is applicable to all cases nf r,u
waves of small amplitude. In a liquid or a ea
modulus is the adiabatic htilk modulus In fv, ^ ̂ PP'"°P^iate
bsrof S11..1I .rsosveree the ."sT
Young's modulus and for an unlimited solid d" °
lateral forces are brought into play the modulus'^
moduhis. The cases of solids arc i. o axial

ohspler. io this

5. Acoustic pressure : Consider
in a gas travelling in the positive directiL oT^^^
The displacement at x is given by ^ ^ velocity c.

2^§=a sin ~ ict-x)

■1'

• '''i'

J ii

•, ,t=
M'

LONGITUDINAL WAVES IN AN ELASTIC KEDIU.M 67

alid the excess pressure dp= — k—
dx

= —q— cos — (ct — x)
A  A

Hence the maximum excess pressure

9.!tak
opmax- (6)

This is known as acoustic pressure. Sometimes acoustic
pressure is expressed in its root mean s'quared value. The
E. M. B. acoustic pressure can be calculated as follows.

T

Mean squared pre3Sure=^J~ cos^^(ct — a:)d{
_ 1/23^V T_ll2^ak\-
tI A / ■ 2 2\ A /

E. M. S. acoustic pressure = V2.^^^
A

(7)

6. Relation between displacement and excess pressure :

Let t be such that, ^' ^=2n:s where s is an integer, then at
that instant, from (3) and (6)

Fig. 25

c  . 2^
S = - a sm —a;

A (8)

■  ./■><!
'■ . p.

,  . 2Ttakand 3p=^=-y-cos [?(-«)] \< '

2^ak 2^x
= —cos — (9)

Plotting S and with x, we get the above curves.

,i ■ I ■

r) ' '=1
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a
HencB the resultant force on the layer in the positive

direction of ic is

dx ^dx dx"

Sx.

If Pq is the density of the layer, then the resultant force will
be equal to Po ASx.-rr^,.

Jdt' •

Hence

df' ^ dx"'

Or,

Or,

where

ci3.
de Podx^

dt'
: = c

dx" (5)
/.2 = ,

Solution of equation (5) is given by
^~fx(.ct — x)-\-fz[ct-{-x)

where A and/, are two arbitrary functions and c is the^elocityof the wave; A(ci .) represents a wave travelling in he
positive direction of a:. whUe represents a V
travelling m the negative direction.

The treatment is applicable to all cases of^ nkne •
waves of small amplitude. In a liquid or a eas ih
modulus is the adiabatic hulk modulus Tr, fi, ^ ^-PP^opnate

Young's modulus and for an unlimited solid .q •
lateral forces are brought into play the modulus'^ ''fr®
modulus. The cases of solids are treated seuar«f i •
chapter. separately m this

5. Acoustic pressure : Consider a sim 1
in a gas travelling in the positive direction ^ "^^monic wave
The displacement at x is given by ° ^ ^ velocity

e— • 25r , ,S=a sin [ct-x)

c.

KWit,.
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alid the excess pressure 8p= —k-,d5
d
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x

^rcak^  cos ^ {ct — x)
Hence the mssximum excess pressure

l^akSpmax- (6)
This is known as acoustic pressure. Sometimes acoustic

pressure is expressed in its root mean s'quared value. The
E. M. S. acoustic pressure can be calculated as follows.

T

Mean squared pre3Sure=^J' —
_l/23raM2 T_ll2rcakY

T\ A ) • 2~2\ A /
E. M. S. acoustic pressure= V (7)

6. Relation between displacement and excess pressure

Let t be such that, where s is an integer, then at
^  A

that instant, from (3) and (6)

Fig. 25

§ = — a sin —X
A (8)

_  « ^/I LVfVand Sp=<^^^ cos
2rtak 2^x

= —cos — (9)

PloUing I and dp with x, we get the above curves.
Q'

^  nH , • ^ ^
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i
Erom the curves we see that the pressure is nfirmal

undisturbed pressure at maximum and minimum displacements ;
it is maximum at points such as A, B, 0 etc., and minimum at
Ai, Bx, Gi etc., where the displacements are zero.

7. Bulk modulus of a gas and velocity of propagation :

When a sound wave passes through a gaseous medium, there
are rapid pressure changes at any point in the path and the heat
generated or ahsoBbed has not sufficient time to fee exchanged
with the outside. The process is adiabatic and the gas law in
adiabatic conditions is

pv -constant, where y is the ratio of two specific heats.
Differentiating,

^0 y — 1 ®V op+pyv Sv=:0

whence yp=
dv

and hence velocity of the wave is given by

Po ® (10)

8. Energy of plane progressive waves ; Kinetic energy
of a layer of elementary thicknessarea perpendicular to the direction of r.^ cross-sectionalection of propagation of wave is

\dti V

£i«ce lor . wav.

S"0 Bin

K. E. of 8x at any instant

— \Po^JO j^~X 2jcc "Oot
-— cos-^[ct - a;)j

cob' ̂ {ct-xl
I

M

^ LONGITUDINAL WAVES IN AN ELASTIC MEDIUM

Average kinetic energy of the layer per vibration

T

A
= Po5x coB'''4ict-x)cU

X'T

69-

= Podx'^-^^^^.Tl2
X'T

= Po^x (11)

The average potential energy per cycle of vibration can he

calculated in the following way. If the excess pressure in the

disturbed condition is dp, then average pressure is

Vn+Po + ̂P
2  - • 2

where Po is the pressure when the medium is undisturbed.

Since work done on a gas is p8u where p is the pressure and

Si) is the change in volume, writing

and 511= —
dx

wor■kdone=(po-2^JX

Or, the average potential energy per cycle

•  = -Po^ f ̂̂ dt+~Sx f {pfdL
T A dx 2T J ^dxi

XL
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Rinno 27C/ , ,
dx ~nr

" J d.dx'dt = 0.

Average potential energy of the layer per eycle
ji

-4/i)-

T
^P^dx r iTc^a^

2T J ~^coa -Y(ct-x)dt
O  A

— PqC^ 4:i®a® T
2r

— PoiSa:
'/.2„2

(12)

.*. Average kinetic energy is pnn.i .
..a .h, ,„M e„„,, ^ o"::.!,!:?""''

a  ♦

™4e„,.he
= 23t®Po

x"" • (13)
Now, intensity of sound energy at a n ■ t •

uer unit area perpendicular to the d
unit time ; hence it is the energy cnnt'^^
cross-sectional area and of length c ̂  ^ volume of unit

.'. Intensity = ?^!£ocV
V i

"lag
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Energy flow per unit area of the wave front can also be-
calculated in the following way.

At a poigt a; along the wave

dp= —
ax

Eate of work done per unit area of the wave front

J,

^-k^l a
dx dt

Hence average work done,

TJ dx dt

If^ = asin^(c^ a:), then
d±.
dx

.2^cos^(ci-a:)
X  A

.na

W-
_4£!^ r cos"-(ci-a:)it

A®r J ^

9.-r-'a^ck

9 Relation between acoustic pressure an energy density r
• From (6), acoustic pressure

8ptnax ^
2,^ak _ 2^TaPoC

CS« .A" 47rVpo V __4^  \°Pmnx ._ = — ^ n-xip ^3„a
Intensity PoC a

= 2PoC

/. Intensity or energy flow per second per unit area of wave- _ j
ifCSPmnxl^] O ■" . 'front = i[ p J

o
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10, Plane progressive wave in a solid rod j ,

Let Tis take a bar whose length is large compared with the
lateral dimisension and consider transverse ^sections vibrate
along the length.

[uj.

b',; .--V iyr.'"*'
'W . ^ ^

•'O-

', ■ :

•>m

•h

Cs

I
1

1
1

1

1

t

B D  !

•3C D'

Fig. 26.
S:

Let AB ,Bd CD be two petpenaicnUr eeoliops of the b.r et
. ena»+^ r,B,eet„ely where 8r, is element of Ihickpess.
Snp,»3e an,tosloi,e.taainalw.,e.lo„gtheb.r,t sny instantthe drsplaeemenl of IB is?; then that of CD at the same
instance will he s+iea,. Hence the altered thictnes. B'I8'
is Sxd-~^5x,

ax

Or, the longitudinal strain is ^8xldx
dx

A  E

Now consider the forces nnHyan .a
.a, 0 a slice of the materialof thickness dx and area A. Strain material
everywhere on the section ABCD

« is ̂  hiagnitude of

force on area ABCD due to the
material of the bar lying on the left-

!B
1

I

(

F

hand side of ABCD is AE^^ where
dx

E is the Young's modulus of the
material, this force being along the
negative direction of x axis.

The force exerted on section

D iH

\

ij 12 27DFDE by portion of th, bar lying on tb. right band sid. of

i.w-v. ■•

iirltaV. ■ r-H

'1

r.Wd|'. '«5'*W.
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EFCjH will be towards the positive direction of x and is equal to

AEif+^f^A(, \dx dx dx I

= AE^+AE^Jx.
dx dx

Thus the.resultant force on the element in the positive direc
tion of a: axis.

= AE^^x.
dx

This must be equal to the product of the mass of the element
and its acceleration at the instant,

or, d4Egsx=.lP8x|^f
or,

dt P dx""

or. — C '
(16)

de ' dx'

where c= JE/P

As in the previous
the solution travelling ■ along the positive and

Wtiys'dTrections rcspeotiyely with a velocity c - V EIP-
'  ,1. Velocity of sound man unlimited solid medium:

d  rt -raty article, we have assumed that lateral dimen-In the comparison with its length. In
sions of the solid a assume transverse as well as
an extended solid, th ^jbrations are complex. .
longitudina c arac propagated throug'.r

Let us ^ ij, a direction OX.^ In this case no
an infinite solid place and the apnropriate
lateral contraction or ext

.,

v'v. ; :t;<1 * ■ ' ■

VV.7-
Si /-!

'•1 '.-3*

i.:.±uL' . ■Sh:-Vs viiiribniiii, ^I'l I' l ii'i I I

'  ■ 'ij
lAr'--' '■ ■ ■v';u

!&■■ • ■-M; ,

■' ■■..ll.V.it ,

■ . ■ . •pt,■,■'d'Vi\ VW'''''''

•  1. i' 'V/'^ w.

I4i

.V«

•  \

Tl t t^v ■ ' V Ir V ' '■
' h\,■i . I'm

' "%M
rtr.?



1

7i SOUND

modulus will be the axial mocMus Xin place of Young's modaluj
E and the wave equation will be

clr P dx^

so that velocity of propagation is given by

Let us calculate the value of the axial modulus in terms of
Youngs modulus E and Poisson's ratio <r. Let us sunnose

S^^spttrf; Tet^^roxTe^t
propagation of the waves. The strains along OX, 0^07

are
J.U -P P' Pthen :i — tr a~

E E E'

E ' E E E ~ E '^®®P®°*iively.

S111C6 du6 to tli6 prGSencp nf flirt i*1 esence^of the medium no strain takes
place along OF or ox, '^P' « ,

E E whence (tP = p'(i_ct)_
Thus the stresses applied by the medium ifcoif.

meuium itself to prevent strain

perpendicular to OX is P' = P
■ 1-0-'

But strain along OX is

P _2aP' p

E

•  This strain is different from what it i
constraints perpendicular to the lenefV, • ° ^ absence of
thin rod. ^^se of a

We obtain the value of axial modulus
as

X= P( 1 ~ O'l
(1 2crJ(H-(jj

The -elocity of propagation 0, of •
medium is then unlimited

Cx-y5=yi_p(i£2'

'■M '"ij
''r. .

".-. ,4

\
■  longitudinal waves in an elastic medium 75.

ff X is expressed in terms of bulk modulus k and rigidity
3&+4n

modulus n, X=
O 3

n _ /2k+inwhence Oi—^ ———

If 0 is the velocity of propagation of longitudinal waves in
a "thin bar.

/  (1-°'
V(i-20 V (l-2o](H-o)

j-or u='4, — = V2"63 approximately and we see that Oi>C.
c  0

If a —'5, Ci has an infinite value.

'.Vf-

■'i 4 ' X
'  ' •
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CHAPTER YII

STATIONARY WAVES

1. Formation of stationary waves: Two identical
progressive waves travelling in opposite directions produce what
are known as stationary waves. In this type of waves, the
amplitude of vibration at any point a; in the path of the component
waves is a pefiodic function of x. At certain positions called
Nodes there is no vibration at all, whereas at certain other
points called Antinodes, vibration takes place with maximum
amplitude.

A

-> 3C

Pig. 28

Let two simple harmonic progressive waves of identical
amplitude, period and magnitude of velocity travel in the saiiie
straight line, one in the positive direction and the other in the
negative direction of ». Let the displacement at any instant of
a particle of medium at a: = 0 due to the wave travelling alonu
negative direction be a sin nt and that due to the wave travelling
in the positive direction be a sin (ni4-SI mv,ar, (-u j- ,

■  i. T> <■ A- i. ^ ^ -^iien the displacementat a point P at a distance ic due to the fl .oi.
/  2.1 ^'^st wave isli = a Bin f+-| and that due to the second wave is

§2 = a sin

Hence the resultant displacement dno fr, i.u ,
? at lime i i, "•«« «'

2' (1)

frTT

the .mplitade ol aibration is a perMie tMClion of I.
Thsaaibralioo will be maaimum whe» the amplitude is 2« or - 2».

/VI n _ « • _

•  1 = 97?jJr,
The amplitjude will be 2a at aJi given by ^ 2

nxg 6.

m being

an integer. It will be -2a at ir^ where ?^^-|-(2m+l):r.
Thus positions of consecutive maximum vibrations are separated

y* /»Tr 1,  £E- = -by a distance Xa-oSi ^ ^tcN 2*

Again A will be zero at iSi' given by ^ - (2m+l)'t/2.
The next position of no vibration is given by i

o  «:52'_8/2 = (2m+3M2.
n

Hence positions of no vibrations are also separated by a
,  ,_ct_j^/o Thus we see that successive

distance Xa ^

antinodes or successive nodes are separated by a distance V2.
Also it'is apparent that the distance between an antinode and
next node is half this distance, i. e., /-Mu ilSJVXV/ iW

If AB is a rigid boundary and stationary waves are formed
.  .u I. the reflected waves, since the resultant

"whence <5 —3nce V — -""

Thus the iuoideut w.v. .»«•« « phase chaoge of » in its
displacement .Her redeetion. In this case we bare as the
expression for stationary waves m ironl ol

.' nx „„ .,1£=2a sin— cos nt
'  O r

(2)

putting 8=:ir in (l)-
or,

Qnx 2not= 2a sin —^ cos ^ (3)

111-

.jjiiMsiiZmA,

rjw' 1 ■ -

^kms
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' i'

f/:

%

'ii ■■

<j4p

fIn the ease discussed, we haye considered that refly^tion
takes place from a rigid boundary with a consequent phase
change Jc. If however, there is no change of phase at reflection,
the resultant wave will be given by

S~a siny(cJ+a;)+asin^(ct-a:)'

--2a cos sin
I  X a)

Here, Iher. will be node, when 5»/2, 5a/2 elo., .nd

-..Mnode. when 2|S.O, 2.. 3. ete. The nod.l ,he
antmodal distance will be the same, i.e., equal to X/2.

If we plot amplitudes 4a: = 2a sin a; and
2,

with ^ X, we shall get the curves for the two

£g. 29 & 30.

2a cos ̂  z
X

cases as given in'

Kg. 29

Ax= 2a sm 2£y
A ̂

in

Thus, if through one nodal distance the amplit •
the next one it becomes negdtive and " ^ Positive,

the vibration is in the reverse direction
Since S = d. =»r"»« = ̂e.in^o,,hepLtofT

X  pnase of vibrations

V

rem&jns same until changes sign. Thus from one node to
next node, the vibrations are in the same phase with changing

Aica .2a cos

Kg. 30

amplitude ; there is an abrupt change of phase by st in the
vibrations throughout the next nodal distance.

2. Stationary waves in open and closed pipes : Let us

consiier what happens when a half wave of compression
reaches the open end of a pipe. The front portion of the
compression pushes air particles outside the opening and spreads
out in the air outside in which maximum displacement without

restraint is possible. As the front part of the compression has
spread out with fall of pressure, the rear part of the compression
in which there is increased pressure pushes out the air in front

of it rapiSly, causing a fall of pressure behind it. The air particles
situated very near to the open end will move forward and this

state of affairs will be transmitted backwards from layer to

layer capsing rarefaction to travel inwards from the open end.
Hence a half-wave of compression is reflected back as a half-wave

of rarefaction and a forward displacement of compression is

reflected back as a forward displacement of rarefaction.

Thus the reflection at the open end is due to the openness of

the medium outside the end. The greater the expansion of the

compression, the more complete will be the reflection. The
pressure at the open end is normal due to the joint effect of the
incident and the reflected waves.

But in actual fact waves af'e propagated outside as spherical
waves : otherwise no sound could be audible outside. Hence
there must be some sort of density variation even at the month
of the tube though less than what it is inside. As a consequence
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there is a loss of energy and the reflected wave has a dimiiiilhed
amplitude, so that sound ultimately dies down unless maintained
by an external source. The antinode cannot he exactly a?the
open end ; then in that case plane waves would have to be
transformed into spherical waves suddenly at thie antinode- Bub
since such a sudden discontinuity is not possible, there will be
a gradual variation from one to the other type of waves and the
spherical waves have a centre slightly away from the open end.
Eayleigh from theoretical considerations found (in "the case of
a tube fitted yith an infinite flange at the open end ) that°a
correction term 0'821r must be added to the length of the tube
where r is the radius of the tube.

In the case of reflection at a closed end, things are much
simpler. Compression will be reflected back as comprfission
and rarefacHon as rarefaction. A forward displacement of air
particles will be reflected by the rigid boundary as a backward
displacement of equal magnitude. This is also evident from
the fact that the resultant displacement at the closed end i&
always zero.

Let up suppose a tuning fork to be vibrating at the open
end of a closed Pipe. Let a wave of compression be transmitted
towards the closed end by the vibration of the fork ; this
compression will be reflected back as compression from the closed
end and in travelling outwards will be reflected at th^ op^en

will travel inw'ards, and
Thus°I ' omnl . ^ rarefaction,
formed a ° f ^""^P'^ession and rarefaction will beorm d and If in the meantime the fork executes one completevibration, there will be resonance and consequent radiation from,
the open ena»

8. Slalionary waves ia Ripe,, tr,
equation is

P dx^ dx'^ (6)

IrtaiW'wiil'V

-v ,

5)»«aw» w<i|i c^^'"
•  v.;':*"

Jf-^'

•' rhV alwi*. r

When stationary waves are formed, the amplitude at a: is a
function of x only. Hence we can put

^=f(x) Cos (711+^) where ^ is a phase term.

Then •p=-nV(ir)cos(«{+^)
^ = C03 {7lt + ̂ )
dx

o

.  Substituting in (6) ®

-n^Ax) COS (nt+^) = c^ cos («t+e)

Or,
d

(7)'
x

Solution of equation (7) is
Xa:) = 4cos'-^+Ssin^^ A & B being arbitrary

(8)
ccQstants.

Hence ^=( A cos sin 1^^) cos («i + .).
which gives the general equation for stationary wave.

(1) Open pipes : H a pipe is open at both ends, there will
be maximum vibrations and no density variation at the two ends.
i ,/^= = 0. Wecfcing end errors) at a; = Oand x = l, where

' dx

I is the length of the pipe.
„  t55+— COS —Ic' ■= C cl

Whenai = 0, £ = 0
0=^ cos (nt+e).or

Since cos (-+<) i» "t seco foe aU valves ol B musl be sere
.  sin -cos(wi+0.

• • dx^ c
rV

i

f •r'?'; •  i,(i
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But at also x=l

"'"> 0— -— sin ̂  cos (nt+e)

nl
= sjt where s=l, 2 3, etc.

or,^ n =
site

I  •

B.t where N ie the frecueeey et ,ibr.li„;
the wave.

rThus 27cN=~
If

or, N=so

sV

vum,, .-l,2, 3,tc., thepoeeih,. „.a,. ,ihr.tione
ereghenby W.|, |, |

If a sound source emitting a note consisting of orT.
of the above frequencies is placed at an open .nd
waves will be produced and the open nine ™in '

nipe will resonate.

(ii) Closed pipe.: lUhe pipe i. ei„.,a „
zero for all values of t at that point. - ^ IS

From (8)

0 = A cos (wf+e)

4=^0.

Hence, ̂ =B sin — cos (nf + e),
0

d^Now ̂ -0 el »-! .e deo.ltp

•R„i. d^_nB nx / . ,

n  vB nl ,or, 0 cos — cos (wf + e)
C  C \ I 7.
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Hence, cos — = 0
c

nl
or, ^/2, 3^/2, 5^/2 etc.,

0

since n=2^N

c  3c 5cN=^, y.,-
il 4:1 '41

etc.,

which gives all the possible modes of stationary vibrations in

a pipe closed at one end. Here, harmonics whose frequencies

are even multiples of the fundamental {i.e , are not possible.
Also the frequency of the fundamental in the case of a closed

pipe is half that of the fundamental in an open pipe.

4. Energy of stationary waves : Suppose stationary waves

are formed in a pipe closed at one end and the fundamental

mode of vibration alone is excited. Then if the closed end is at

ic = 0, the displacement at a point x is

>1 _ . 27ta: 2ft ,
fe = 2a sin —— cos — ct.

A  • A
from (2)

Now the energy of an element of volume Adx of the waves

at any instant is

[where 4 = area of cross section of the pipe]

The first term gives the instantaneous kinetic energy and the

second term the instantaneous potential energy.

Hence

TP A , ll&rt^a^c^ . %2ftx . ̂ 2ncfH=2P(5a>(-^^8m — sin —
16^ 22ftx 2 2»c<\

A" cos ^ cos (9)

To find the average energy the expression is to be integrated

with respect to t from 0 to T and then divided by T.
T T

If . 22Jtcf,, = IfNow yl Tj
2 2netj. ]

cos -—dt=i.
A

/



K. '•I ■

f' .S,
•Vi

84 SOUND

. . Average energy of the wave per element of length S^c is

^  X I

= APSxx^^^^^ ®

Hence the energy per unit volume of the wave
^4£^Vp

(10)
At the nodss the Hnelit eaerey i, aero .ad the en„gy i,

uiiB energy is

wholly potential, whereas at the antinodes is
da always zero andthe'energy is wholly kinetic

To calculate energy of the stationary wave for thS f
mental in a closed pipe, expression (9) is to be inf V . ̂
respect to x from a = 0 to a = A/4 ^Q^^egrated with

m

Now J sin" ̂ dx
O

X/4

= vj (l-cosi^^W
0  >'• /

.—.cos

^  A /o
=A/8

and also

\li

cos' ~~dx ■23ta,

m

/(l+cos^)da
n  A /

bo

.  . . 'fi

J'- '. ■J- . .. \
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Hence the total energy of the stationary wave in the pipe

Xl . 2 , 2 Sirctl

(11)

It can also be obtained from the expression (lO) which gives

■energy per unit volume of the wave as ——P- Thus the energy

of volume AA/4 is

f

= Ap-

5. Energy How across unit area perpendicular to the
•direction of component waves : As in the case of progressive
waves, the rate of work done

T

w
T j dx dt

dt

Let take § = -4 cos — cos (iif+e)
• '' c

T

Then w= ^ ^ sin — cos — [ cos (.nt+^) sin («< + ')
c  c c J

dt

= 0.

Thus there is no transmission of energy through any area in
the case of a stationary wave.

6. Longitudinal stationary waves in a solid rod; The
wave equation for longitudinal vibration in a bar is as we have
seen

d^:^HdJJ^ adll
■...'."i® pdx^ dx^
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Since for a stationary wave we can write
^=f{x) cos (nt+e)

so that the displacement at any position cr at any time < w'ill be
given by the expression (8)

i. e., §=( A cos "f+B sin cos (nt+e)
Gaseil). Bar clamped at x=0 and free at x^l •
Here § = 0 at a; = 0 for all values ot t,
■whence A =

•  • ^ = 5 sin ^ cos (jit + e)

»•?»»(«+,)
strain there is jsero. *

.*• COS—=sO
c

Or, J-r-Z-i. 3n/2,

PuUin8...2,J,, where Is the frejnenoy
N=-^ ~ 5c ,

il' iL'

on,",:zire are. at
""ir,WfAll the odd harmonics may be present.

Case (2). Bar free at both ends ;
Here ^ = 0 at a: = 0 an,q -w-i
. • being zero at those

regions.

Proceeding in a similar manner as in fb.
2^=-£ 2c 4c an open pipe,

2^' 21'
i. e., all the harmonics may be present, the fr.„
fundamental being N=~=X /E . , nency of the

that for a bar fixedat one epd. ^

.■/

»  1
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Case (3). Bar free at both ends but clamped at the middle :
If" we take the clamped point as the origin, then § = 0 at !C = 0-

which gives A = 0
9

Now ^ = 0 i. -I£tti £C 2'

which gives cos

nl_
2c

= 3r/2, 35t/2, 53r/2 etc.

^  „ c 3c 5cHence N=-^. ^ etc.

Thds the odd harmonics may he present, the frequency of
1  /e

the fundamental mode of vibration being

7. Correction due to radius of a rod of circular section ;
Let us take a rod free at both ends. The longitudinal dis

placement at any point x at an instant t can be written for the
sth mode of vibration as

B =a cos sin s 7it
I

Thb Kinetic energy of the rod at any instant t is, for the
sth mode of longitudinal vibration is

I  ̂ 2I \pA • dxr=lPA I ( sna cos cos snt j . dx
0  o

= ̂ pA. s®re®a® I cos® s nt,
A being the cross section of the rod.

Now we know that a lateral strain is always accompanied with
a longitudinal strain. Hence the transverse velocity at a point
ja dri^d_ I d^\ .jyiigre a is the Poisson's ratio and where ~ is

7t dt\ dx)
lateral stra'r;.\



Thus the kinetic energy of the rod due to transverse

motion is

X coB®s nt, dx

SOUND

s.T'Ar,

• dx. ̂p. ̂ ^rd^

.Pnr

at ̂ dx .

■VJ

<,»'■ •■- • • ■■ ,, I

4  ' l" ® • Q2  s . s COS s nt

Potential energy of the rod at any instant

IfR:. ■.-. • ■■• •. J.V a s n®=iP?4. sin silt

Vtt-S.-' i-. .'1^31 1

^'vmI

pnr^G^ n^a^n

(•Cl-'W. ' ^.iV. ,

f»».r

T

•IWW
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iLl-=o^hence Pn ■ r

«.# =

(^+i)
2^

Writing

,  23t_
we get -u — 2„2-2

1 where — —
T

_2jc/i rVs^\
"Wy /

/I
1 VP the time period without correction.

3ir2c®n®\
 2Z '

or. r'=r (l+'-^yr-)
Thus if the rod is vibrating in its fundamental mode, the time

period' is increased by a factor

Since sum of kinetic and potential energies is conataflt^
yAs'n^a^ co8== sjit+|.-®i|!£!^!. |

c4 • t® "® 2
e

Bemembering nr®=^, we have after simplification

Pn^ cos" snt+:^ sin"
2P c

1+
j'®n"a®

4i"

os® snt = const.

<"■1 Pn^ cos" snt—■ 2- cos^ sizt

+^%Pr®<T®it®s®n® , .
i® 2J® ^ Cos snt = conBp -,

Tor .»/ other mode o! vibretjoo the lime period ol the
~  fundamental will be changed to

I  , r®'r®s®u"\ro=p(i+-^p—)•
Hence the change will be greater for a higher value of s. For

. em.Il value ol ^ the eh.nge Is. however, not .ppreeiaUe.

m
>s.

v':■' ^ ■■ '■

•r'* / . - "•
I ^ W-iV-r VI gl

■'. .-.■■"fl.,, - : ••■

I**' ' ' ' *

Vi 'v

c.C'.'A-

f

.''i'-".

"' ■ • •< hkk.i^.'i'. ;'. 1''• *'■■ '■"'''

il'u* ■ , . - . ti" '■ ■ ;■. . , *

m.f,;-'' " ■. ' ■Ml..

h  ' . . , :! ,'r,; 1,-.^ /f '•, rA'i-fl - • ■^ ;;

^'TT^.'yTyi.V 'T' '■^-' f
"" " r

/t .v'Vv:

'.r.ii: ■It , >



CHAPTBE VIII

TRANSVERSE VIBRATION OF STRINGS
1. Velocity of transverse waves in a string :

An ideal string is a perfectly flexible thin filament of wire of
uniform diamet°-- and mass uniformly spread over the length.

Let AB represent an element 8^ of a string without stiffness
under a tension T lying along X-axis when undisturbed. Let
AiBx represent the element when the string is displaced in the

plan. Zr. L.S oo-ordln.l.a of B. be , and ,+8x „+8„
resp.cli„ly. Lei „s anppose Ih.t n, dlapI.oe„,„„
and tens,on r.„..na nn.flered „k.„ ,ho firing ribral.e in Ty
plEn6«

Lei and B.D be two l.ngenl. al A, and B. reapectively
n..k..g angle, 6. and 6. w.lh X.ni,. N„„ ,be fo™ on Ihl
element at and is T along A.G a-nfi nn ,
Hence, the resultant fprce on the element along'rTrsTne"
-T sin 01 5 J. IB .i sin Oa

= r(tan 02-tan Qi) f • «"i and 02 are small.]

ydx\ dx I dxl <

dx

But the force on bx = m. Sx
dt^

TEANSVEESE VIBEATION OP 5TEING

where 7W = mass per unit length of the string.

91

dx

Or,
dt' m'dx^

d^V

' dx''
(2)

where

The solution of equation (2) is

»  V=fxict-x)+U{ct-^x) ••• (3)
which represents two transverse waves travelling along the positive

and negative directions of X axis with a velocity =

2. Stationary waves in a string :

Let tb"- string be fixed very rigidly at a: = 0 and x = l ] then

the two waves will be reflected back from the supports and will

interfere with each other.

Now.y=0 at a: = 0 for all values of L Hence

0=fx{ct)+Mct)

Thus fx{ct)=-fz[ct).
Hence we can rewrite (3)

as y=/i(ct-a:)-/i(cp-|-a;).

Hence both the waves are of the same type and after

reflection from the two ends will produce transverse stationary
wayes.

Again 2/= 0 at a: = Z for all values of L
0=/i(ci-Z)-/i(cf-bZ)

Or, /i(c{-Z)=A(cZ + Z)

Hence, iLe function is periodic whose value repeats after 2Z.

•  II
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Let us suppose that due to formation of transverse stationary
waves, any point of the string is vibrating simple harmonically, "
the amplitude of vibration being a function of a: alone as in the
case of all stationary waves- ®

Thus putting y^fix) sin (wt+e), we get

2/ = ( A cos ~ + B sin—) sin {nt+^)

(See article 3, Page 80)

Now y = 0ata:=0 for all values of t

.0 = 4 sin (ni+c).

Hence 4 = 0.

Again y — 0 at x = l for all values of t

•  • 0 = B sin — sin (mt+e)

(4)

which gives ~ =s^,
c

where s = l, 2, 3 etc..

or, n —
sJtc

ThM all modes of vibr.lioos ,ith ,og„l„
O  I

=  sin ̂  sin
S=1

multiples of it are possible. Hence we can write

sin I

We can rewrite (5) as

s= cc

~^+^s sin ^
5=1 ^ / I

(5)

(6)

where and are new constants, such

and &s=58 cos eg.
that tig

s sin 6,

ry

I' ^
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Equation (6) gives all possible modes of vibrations for a uni
form string under tension fixed at a;=0 and x = l, the frequency of
the fundamental or the gravest mode of vibration being given by

itc
<2,nU=-

I

AT- C 1 /T
^ 21 2iy m

t  ̂

. the frequency of the sth mode is

' 21 21"^ m

3. Energy of a vibrating string: If ?»=mass per unit
length of a uniform string and if y the displacement of an element
6x at X at any instant, then the kinetic energy of the element at

that instant is hn^x (^] • Hence the kinetic energy of the
whole string at an instant t is.

id')'dx
To calculate potential energy of the element Sa; we can proceed

in the following manner.

Let <5s be the element in the displaced position. The work
done against tension when the element is stretched from ^x
toSsis T{8i-bx) -, or the potential energy of the element is
T(8s-8z).

Erom the figure (8s)® =(52/)®+(®a;)®

•whence «55 = 4l + (i) Y

= da:|l+i (I)'}- neglecting higher
order terms. ~

Hence T[Ss-Bx) = nx[l+i ]-TSx

Fig. 82

^Ti^W
2^dxl

Sx

t>

O.

A

•S-' ̂  W (

ij ■■■■

p  \'
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Thus the potential energy of the whole string is

-m
mc^ [ (dti\^ ,

. ax (7)

•••
^ m

The total energy of the string at any instant is W-\- V

0

Now the displacement at any instant at x, when the string
is fixed at a:=0 and x = l, is

<51

y-

S= CO

cos sin sin
s=l ' ' I

which can be re-written as

5 = 00

=  COS

where As= J as' + bs"

and <^>s=tan" Rsh
0/s

Now

S=CO

dy _ otc . . snx . Isjtrf \
jT" " t2, »» T \¥r*-)

«=i L

TEANSVBESE VIBBATION OF STEINGS

.  ldvf_{^^o^ . 2 .^s • ahct , A
•• U "li^- T It"'')

95

I  J 2 ̂  ̂  02 * 2 2^X > 2 (2^ct I \ ,+A2^ -jr. 2^ Bin-' — sin^ '^s)+"-

,  > 2 a • 2 n^xA-Aa" —j^s . sm Jtx . 2 /s^ct , \ , 1

+ terms containing sin ̂ i^xsin ^s factors where Ic^
u  (/

and hi are integers, but h^T^hi.

I

Now j" sin
o

Ic ]_ . ]cq j
—;—. sm ^ ax

6

I

= i COS (Ai-Aa). ̂  - COS (fci4-^:2). dx
0

= !.'[ ^ > sin (ii - hi),
l^{ki-hi) ^ Z Jo

TF=
21'

0

+ Ai\ 2«.sin^ +

I  I

\  -NT f • 2 f/i 2Jrsx\, I\ Now j sm -y-ax = 2 J ^ 1 —cos —j-^dx = -^
. 0 0

\

Ll'/Im A,X<1:X
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^  t-4s®s^|sin®(^'-<#>8) + ---}
S=co

(8)

S=1

In a similar manner, we can work out the value of the
potential energy at any instant.

Potential energy 7=^

J) =• UJ

dv A soix (s^ct , \

s=l

S = 1

i:,:a:a: U^'^x , . , , ,having cos —cos—p as factors where hx and fcj+terms navius j

are integers but kxT^hz

But
i hx^x h^nXjcos cos-^^dx
0

=§ jlcosylfei-^sHcos'^ (/ci+^da:
O

= ̂[" j, ) 8i° 7 Ui-^a) /

+iUTTU) "f ('.+,t.)]'=o

TRANSVEESE VIBRATION OE STRINGS
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s= CO

.*. Potential energy 7=^^' cos^(®-^^-<^^| (g)
5 = 1

/. The total energy of the vibrating string at any-
instant, T7+7

S=m

.iriTc^c^

4Z

S— CO

il -IS2^ 2M
(10)

Remembering that the frequency of the sth mode N =~
®  21'.  134and substituting the value of c in (lO), we get total energy W+V

5= 00

= 'm,n^l

S=1

S= CO

=  y A,
S = 1

(11)

where Hf—w;J, the mass of the string.

Thus the energy of vibration of a particular mode is propor
tional to the square of the frequency and the squars of the
amplitude of that mode of vibration.

4. Plucked string

Let a string fixed at the ends be raised at some point of the
string through some small distance perpendicular to the length,
so that the two portions of the string form two sides of a
triangle and then released. The string is said to be phcked and
vibrations resulting thereof are due to plucking.

7
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Now for a string fixed at a; = 0 and a; = Z, the most general
ad®?/ .

= C ^ 1
cZt® dx

solution of -772 =c -j-^ is as we have seen

y= 21'^ = s^et

I
„^r, - --'-LJ, • S^Ct\ . SJtXCOS —;—TOs sm ——j sin

I

Let the string be plucked at x = h. Let k be the displacement
at h at the instant of plucking.

Now •^ = 0 at t = 0
d(

frlh-f-sinBut
M  '

s = l

Hence at t=0

s= 00

sTtct . 7 sate
 -—1-6

I s—r cos
sJtci\ .

~rl
SJCx

dt I ̂
sbs sin

snx

I
S=1

7  arc . 'Ta: I 7 Sate . '2xx ,= b,~Bin j + b,~Bm ~^+.

1 7 S^C . SJtX I
-1-63-sm —+

Since this is true for all values of a: at t = 0,

61 = 62=63-• ■ = 6s = --- = 0

Thus for a plucked string, we get

S = CO2 , STtX STTCt
as Bin — COS —

5=1

-ax Bin — cos —-raa sin ■— cosI — z I I
SJtx __ sirci-h—l-a , sin S^^cos^®-!-..

Z  I
At t = 0,y=f {x) for any value of x is

.  XX 1 . 2xx .y-ttx sm ~+a2 sin -~+.
L  I

STCx+ ...as sin ^~ +
h
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To-evaluate Ug, multiply both sides by sin and integrate
0  f

"""WiTri respect to x from a: = 0 to x = l.

Then as we have seen earlier

I  "{ . s'xx
as. sin ~

_  . sxx, „
XOs Bin —as=0

L

when s' is-an integer but t^s,
I  I

Hence 1  sin ^-^dx^tts | .  2 SXXj
sm -r-dx = a.

I

Or
.  snxjy sm -rj-dx

h

(A.K)

Pig. 33

But at i = 0, y —-wi (0<a:-</i)

Hence

n

f  . sxxj Zc f ^ • sxxI y Bin -j-dx=.^ I a: sm — dx

I  I

hi f . sxxn k f . axxjAL-l Qiii—dx--—- I a: sm -—da;.
! - 7i J Z I-h] I

Hut
{ sxxX sm -^1 7  Ix snxdx^ COS -r- . , ^

sJr Z j s^r

sitx 1 f Z sara; 7 .—"hi -77 COS -7—da:-1-const.

Ix s^x
cos -7- ,

s;t Z St
•  S7CX , ,„  „ sm ——hconst.

I

I  / '■'l : ' ,

'H.
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f ,, oi-n . s;t!sV'■ • I 2/ sm 7 ~ " cos -r- -\—^ sin —J  I hi sn I s^Jt^ I } f _
"  o <r^--

-  .—rcos'—1 —r f.r,B • STCxl{l-h) s:rL'°® I Bm-pJ
h  o

= ̂r_^cos?^+iLBm 5f^l- r s^hl

—^f-i!
Z —/iL St

^|''-Z:Z_^ W
co

St {l-h)

Ihs st+_ COS — —sin — ■
Z  s^t ; JSJt

s^h Z® . st/i

kill
sjt: s^[l-h)

"l
—: : sin 1

h  1 sih
-hU

cos

+ r kl' -I . sjs^h
T

ki'

s^^^hil-h) Bin

st/i

CV-

.-. a,=2~j ysin ?p'

_ m'

s^t^W.Z-Zi)

Hence we can write

-  sin

dx

sTth

I (12)

_  '2ikl^ r 1 . nil . nx
t'';i(Z- sin - cos

Z Z

4--l_ air, 2t/j . 2:it!z:-r;:^^. Sin —r- sin ~
I

cos
2nct

Z

Z

H-i-smli''Stats cog
z z (13)

Thus from the above relation

vibration will disappear if
'1/

we see that the sfch harmonic

I.e., when ^ —nn where n i
IS any integer.

or when s = -.
h

.... ...Jw

M
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»-t:i»::2-=^./i = Z/2, s =271. Putting ?i = l, 2, 3 etc., we see that the 2nd
4th, 6th and all the even harmonics will be absent. Similarly,

, Z
3rd, 6th, 9th etc., harmonics will disappear if ^^—3.

, Z
Thus if - =p

h

where p is an integer, pth, 2pth, 3pth etc., harmonics will not
be present in the vibrations. In other words, we can say that
if the string Jie plucked at a point where nodes of certain
'harmonics fall, then those harmonics will be absent. This is

known as Young's Law.

The sth mode of vibration at point a: from (13) is

_A
Vs

.  SJC/i . S^x Sj^ct
sin — sin -r- cos ——

l b if

where A =
m

2

nVilJ-h)'

At antinodes for this particular mode, I

Hence

■mode is

the maximum amplitude of vibration of the sth

-2- sin
sth

I  ■

4. (a) Dependence of quality on the manner of
plncking :

In the theory of the plucked string, it has been assumed that
the string is plucked at a single point, so that y=f[x) at Z = 0 is
a two step zigzag. It is actually so when the string is plucked
by a sharp object like a steel wire or a plectrum. An infinite
number of partials will be required to make up the initial wave
and the note emitted will be very brilliant. If on the other
hand, the string is plucked over a certain length by a round
objept or finger, the partials will be more rapidly convergent and
the sound will be softer. In the extreme case, if the string be
in the form of a sine wave, so that y = A sin— at t 0, then only
the fundamental will be present in the subsequent vibrations.

4. (b) Effect of yielding of the bridge : The string is
supposed to be fixed at ie = 0 and x = l, so that there is no
vibration beyond the supports. In practice, the bridge yields to

m

I  ' :
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some extent, so that the vibration extends beyond it making
effective length greater than I. As a result the frequencies of all
t e parfcials are lowered in fche same ratio and the note, therefore?
still remains harmonic. *

4. (c) Effect of stiffness of the wire :
The theoretical string is without stiffness. This is approxi-

rna e y true in the case of a very thin string. In an ideal string, ,
s oring foibe on an element is the component of tension

c ing^ opposite to the displacement. But if the string is thick,

nt Asa conse-
all rais' ^ longer form a harmonic series. They areall raised in pitch, the higher partials by a greater propor^on.

5. Struck String

^ plucked string could be described asotht; Ton^id Helmholtz and
sudden imiur^ ' ^ ^ hammer, a
imfcially velocffy ofTrrtr
struck is zero. The °
struck point a 1 opposite directions from the° 7°'°' »l the fixed ends.

i^et the String extend from a: = 0 to x~l mi v i ent
of such a string is given by The displacement

-  h.
Ss= CD

'=2(«
S=1

COS''^ + 6 sin sin
I

tt-f A*

I

Consider the string stvnet *. • n

irom x = htox = h+Ax T f I short regionto the region at time t = 0 be l '^^'^^^'^aneous velocity imparted

Th„, at ,-0,8-0 .nd|-.0(„
Btort xegloa A« „he„ it is 1.

bmco 2/ = o at t = o

all values of x except a

6=0:

"2U

«=i

s sin
0

snx

I  '''0 ; hence a, = 0

TRANSVEBSE VIBRATION OF STRINtxS

s=co

•• ?/=2 aJ.  s^Ct , ■Bin -j- . bs sin ——

lOJ-

(14)'

5 = 1

O 5=0)

dll TTC , . STO; STtCt
from which I

5=1

At i = 0 we c&n writeite 2/o=(f|
t-0

= ̂̂(5, sin + sin^- + 3fc; sin5^ + ...)
Applying Fourier's theorem

I

*  s^cbs _ 2 r . . s'rr
~T~i

0

h+Ax

Vo sin

n-f

= ̂  I sin ('.' 2/o = 0 except in the
n

^  region from h to h+ Ax)

= _ ̂[cos ̂  (/i + A a:) - cos ®-^}
_-S( cos ̂  =o» f e^-oosf) .

SJtl I h '■

snh,

sn

_2^tA®
I

sin ■
I

= ̂  sin writing — A
I

Hence bi
2A . s^h

-— sin -j-
sic '

s=co

S=1

s^ct

I

(15)

(16)

Thus the amplitude of the sth mode of vibration is inversely
onoportional to s. The series (16) is infinite and convergant, but
ess slowly convergent than in the case of a plucked string, l^ere

also if the point struck falls at one of the nodes of ann possible
mode of vibration, then that node cannot he generated by the

■A
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1^' tt; • i.^' ''■"^ [; -'"ii

COS sni+Bj sin s?iJ j
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blow. Thus the truth of Young's Law is established^by^_,
the theory.

In the above theory the time of contact of the hammer with
the region struck has been supposed to be-, negligibly small
compared with the periodic time of vibration. Kaufmann rejected
the above theory, as experiments showed beyond doubt that time
of contact is considerable in comparison with the periodic time.

Effect of touching the plucked oi- the struck point :
If after plucking or striking, the point is touched, 'all

vibrations will cease ; for those components which have not a
node at the point are stopped by damping, whereas by Young 8
Law those components having a node at the point are absent
from the very beginning.

6. Bowed string
Helmholtz, with the help of a vibration microscope, observed

the motion of a violin string when bowed, and came to the
following experimental laws. ' "

(1) The vibration of all points on the string at any instant
always takes place in a plane. The motion of any point on the
string consists of an ascent with uniform velocity followed
by a descent at another uniform backward velocity. For the
middle point, the two velocities are equal. The displacement of a
point on the string can be represented as a two step straight
zigzag.

(2) At the place of bowing, the speed in the direction of
bowing is equal to that of the bow.

Basing on these experimental laws Helmholtz gave a theo
retical explanation of the vibration of a bowed string.

We know that the general solution for the displacement of a
string fixed at a; = 0, and a: = Z, is

s= CO .-,)V
sin

s5ra! (17^

,  231 3tc
where n=- — = -v-

T  I

sn A g sin snt-\-sn Ba cos snt) . S3tX'cin ^ (18)

TEANSVERSE VIBEAaiOE OP STEINGS

tot = 2'. By applying Fourier's theorem,
9> q}

I __ 2 f sin snt dt
'"TiUtl

.  s^x,
-swAs. sin

'  - f sin snt dJ-h sin snt dtj
T\ J

r

sA

S7l

(19)

T

STO.
Similarly, sn Bs sm ^

^ (ni-i-i'g) sin sn Ti

2 [ idy\
y \\dtl

cos snt dt

$7t

_2(i)i±^!a') sin cos (20)

sn

Jrom (17). (19) and (20)
.  sn. Ti gin f (2l)— Binsn^ ^ II

S=1

How (17) can be written as.
S^® oin SJl(t — °^)Cj sin j sin sn

!<?--
■!/= 2'

where ot is a constant.
Comparing (2l) and (22

s^x^Tin+Jll) sin

(22)

Ca sm

Tivj+Jp Bin ^ (23)

tr t-'i ■ P-- l' ..te

■i - 'i /, ( <

:  ,r.\
'•V')

'U'"' ■

.  , . -.V 'VVI...-: ,

• ifi

',\t iV'.
'  . vm •

'V (
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7
Consider at 0! = -, the contribution to the displaceme-?^.-}^-'"

s

the sth harmonic vibration. It must be zero for all values of t.
6',

Since ■Ui + 'Ug is not zero, sin -^^ = 0. The possible solution

is = ? which is corroborated by the experimental fact
T  s I

m i . '

that — =iat the middle point and Ti decreases with the
y  2

decrease of x.

Now let us consider a transverse stationary wave for the
fundamental vibration. If A is the amplitude at the middle point,

o

then the amplitude at a point a: is .d sin —.

From (23) the amplitude at x is sin

Thus we come to the conclusion that is constant
JC

I  V ^or fi+'Usi the sum of the forward and backward velocities is

a constant and is independent of -x. At !C = \:, these two
A

velocities are equal

Ti a; 1
since -A =

T  I 2

Let a be the amplitude of vibration at a: = i ; then
A

'yi+u2=—+ —= ~,
r/2 r/2 T

Hence the equation (21) becomes
-.11

'"T - (24)
S = 1

The above theory of Helmholtz is based on the observation
that the motion of a point on the bowed string is a two step
zigzag. Ifi^ is actually so when a violinist plays on'his instrument
bowing at the normal position at about i^jth to Tsth of the
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cirsjiA^gength. But when bowed at other positions, the displace

ment c'^e sometimes deviates from the two step zigzag and
the theory fails there. Moreover, there is another weakness
of the theory. You?ig's Law is also true in the case of a bowed
string. If the bowed point is at the node of one of the over
tones then that tone cannot be generated by bowing.^ Helmholtz s
theory contain|j no factor depending on the position of the
bowed point.

6.'(a) Raman's analysis of the bowed string :
Sir 0. V. Baman explained that the experimental displacement

curve could be obtained by the superpositmn of two "velocity
waves" of wave length 21, moving in opposite directions. Vc-ocity
wave is*obtained by taking velocity as ordinate and length othe string as abscissa. Such a velocity wave will be given by
parallel straight lines with intervening discontmuties. If the
two velocity waves in opposite directions move with a velocity

then from ' the resultant velocity diagram it is possible
to explain allothe experimental observations of Helmholtz, Krigar
Menzel and others.

6. (1)) Action of the bow :
The bow maintains the vibration of the string ; the vibrationsof the string can be supposed to be "free" as the p^iod is not

affected in tff^ least by the bow. During part of the period,
' the resined hairs of the bow pull along with them the bowed

part of the string and during this time the relative velocity
between the bowed part and the bow is zero.' Initially the string
is straight ; but as the bowed point is being dragged along, there
I n increasing component of force due to tension in a direction

.-.-i:L"e to the frictional force exerted by the bow At somedispkcement, these two forces become equal and the string flies
back and is caught again at some other position by the bow.
According to Rayleigh, the bow can maintain the vibrationdue to the fact that solid friction is greater at smaller relative

When the 'bowed point moves with the bow, energy^ is
supplied by it. and when it moves in the opposite direction,
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the frictional force between the bow and the'string
motion of the bow. Let 7, be the forward and blSward
velocities of the bowed point for interval T, respectively.

IS e foice applied due to bowing, then supply of energy per
cycl6 is

when are the coefficients of static and dynamic frictions
respectively. If a is the amplitude at the bowed point

jr-Fi and — =Fa. Thus the supply of energy per
cycle is F'a(/x8-/a^).

6. (c) Wolf note : In instruments of violin family (bowed
s rings) and also in plucked instruments, it is sometimes seen
that a particular note cannot be smoothly elicited. At this
pitch the whole body of the instrument begins to vibrate and

•w produced. Such a note is known asWolf Note . G W. White came to the conclusion that the wolf
note in a cello (violin family) coincided with the pitch of the
best resonance of the belly of the cello.

0. V. Eaman explains wolf note in the following way
AcMrdmg to h.s theory a higher bowiog pre.aure i> needed
or the tundamental than lor the oet.ye when the elring
. bowed at on. end. At woit pilch the bod, of the inslrnmen!
vibrates with resonance and these vihrations take up 50 much
energy „o„ the how that the fundamental can no longer be
maintained and the vibration passes over into one in which the
octave predominates, wmcn cue

7. Qualitalive study of the stringed instruments :
The Stringed instruments can be arounerl in fu

(1) Piucted, (g, Struck and (3) Bowed. B.nio, Irdohne" „ ■
harp etc., are the plucked western instruments whereas Sif. '"'
Tanpura, Sarode, Vina etc., are tbtn t u- '
type. ® ones of this

Sarenr C'eiratTrT''
. strpck inst;ument anf

instrument. f Similar Indian
a

r;
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B. C.& D.-TANPURA^ PLUCKED^STRING,
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TRANSVERSE VIBRATION OP A BAR

The frequency of vibration N is given by

.A
25r

■ For the fundamental

iV= y®. /8'
V n

iia

r _ /Byd'SS)"
^~2«VP~
=A-

P  I .

If Ni., Ns, Nb, Ni etc., are the frequencies of the dififerenfc
modes of vibrations,

: Nb : Nb : etc., : : (1'83)® : (4'69)' : (T'Sd)" etc.
Thus the partials do not form a harmonic series as in the case-

of longitudinal vibration of bars or transverse vibration of strings.
(6); Bar supported at both ends : In this case

e (') y = 0 at a; = 0
32

(m) ̂ b = 0 at a:=0
ax

•

y=0

d'y.

at a; = Z

{iv) T-^ = 0 at x = l . .
(vCC

From(i) and (ii) ^ "

4+0 = 0

— 4+0 = 0 whence 4 = 0 and 0=0 ■ ' • ,

Equation (5) reduces to

y={B sin I3x-\'D sin h^x) sin {nt - d)
Erom (tit) and (7)

B sin Pl-{-D sin ft ̂ 1 = 0 f

Prom (ttt) c>
— £ sin ̂ i+U sin ft̂ i = 0. , ^ ,

sin 01 = 0.

'  Or, Pl = s^ where s = l, 2, 3 etc.

since ̂  "Bp

(7)

E
X/3'

v/f S^tr i

■- i
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TRANSVERSE VIBRATION OF A BAR

The frequency of vibration N is given by

iia

(6)

N=^JE. i8»
25rV p

For the fundamental

M Ijl /Ey(r8B)'
^  23tV p i" .

If Ni, N2,Na, Nt etc., are the frequencies of the different
modes of vibratfions,

: Na-.Ns: etc., : : (I'SS)' : (4-69)' : (.T85)' etc.
Thus the partials do not form a harmonic series as in the case-

of longitudinal vibration of bars or transverse vibration of strings..
(6): Bai' supported at both ends : In this case

(t) y = 0 at x = 0

in) g = 0 ata;=0 ' ̂
iiii) y=0 a,bx = l

(iv) y-f = 0 at a: = Z .
dx

From(i) and (m) -

A+C = 0

— A-\-G = 0 whence 4 = 0 and C=0< • '

Equation (5) reduces to ■

2/=(B sin iSx+D sin hiSa:) sin (rai - 5) ••• (7)
From (til) and (7)

B sin Pl-^D sinh Pl = 0 Li u

From («v) o ,,, , ^
— B sin sin fê f = 0. ,

A  sin 01 = 0.

Or, Pl = s^ where s = 1, 2, 3 etc. . , , «
n*-n'P .since ̂  , • • -

■  , ■ I i

i^sf p ^
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Thus the frequencies are proportional to 1, 4, 9, 16 etc., and

the partials are harmonic. This method is utilised in^^^he

construction of musical instruments consisting of hars of"graded

lengths, supported at ends. The hars when struck by hammers

emit musical notes consisting of harmonic partials.

(c) Bar free at both ends :

both equal to zer^ at ® = 0 and
'  e

®  Thus the constants A, B, G, D can be found out.
Now from (5)

/3a;-B sin Px+C cos hPx+D sin hPx)x

P" Bin (nt — d) °
(/73

sin Px — B cos Px-\-C sin JiPx-irD cos hPx)x

P^ sin (nt - d)

Since

0.nd-£» = O.li=O
we have il = OandB=D.

From the conditions that ̂  and^-^ = 0 &tx = l

"viehBve AitiOBhPl-coaPl) = B{sml3l-smhPl) "*'•
and A {BiBPl+BinhPl)= - B (cos h/Bl-cob PI)

Multiplying crossVi^e and simplifying, we have ' '
cc3hpl = Bec Pl

Plotting y = coBhPl and 1/= sec the points of intersection
-wiU give the required values of /3l. , - -

The values of Pl are given below
1 4.73 1 7.85 I 10.996 | 14.137 | etc.

•■Now the frequency of thp fundamental
/E (4.73? .

:  2atV ~p' ""yi—• - * V

H'l

TRANSVERSE VIBRATION OP A BAR

and those of partials of different modes are

115

(10.996?
r

Thus Nil N^' Na: Nt, etc. ; : 1 : 2.75 ; 6.40 : 8.93 etc. . .
Hence the partials do not form a harmonic series.
(2) Tuning'Tork ; A tuning fork may be regarded (Chladni)

as a free-free bar bent in the form of a. U. If a free-free bar is
gradually bent at the middle, it is seen that the nodes marked

n approach each other as shown
in the fi gure and the amplitude
of vibration at the antinode at
centre is small compared to that
at either free end. The addition
of a stem at the middle point
causes the nodes to approach
further. Due to the vibration

Pig. 35 of the prongs towards or away

from each other their centres of gravity describe small arcs
and consequently the stem has a small motion parallel to the
prongs. When the stem is pressed on a sounding board, the
energy of vibration of the fork is rapidly transmitted to it
through the stem. , . i.

According ^o the second view (Eayleigh) each prong of a fork
IS regarded as a straight bar fixed at one end and free at the
other. The pitch of the fundamental as deduced earlier on this
approximation is

/E (1-88?
^"2«V7' ?

.a rectangular bar, the radius of gyration k about the neutral
surface =■

= 5,24X10® cm/sec approximately.
Hence the pitch of the fundamental is

8.46XlO*a

where a=thickness of the prong. For steel
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2. (a) Temperature variation of frequency : If -Bo, Po
lo and E, p and I represent Young's modulus, dei^jJ^ and
length at 0°c and t°c respectively, then E = .Bo(l —i/i),

Z=io(l+'<i) and P=/'o(l — 3=<i) where j/=temperature coef&cienfc
of Young's modulus and <= coefficient of linear expansion.

Hence substituting in (5) we have

N=~ /-Bn w (1.88)^ y ('-f
(l-^-^)(i + 2=ci)

=2,41-!^^..) (9)

Konig found that temperature coefficient of a fork T/as about
-11.2x10"® per°c. Substituting the value of < for steel in
(9), it can be shown that the change in frequency is more
dependent on change of E than on I. A valve maintained fork
made of a steel alloy like elinvar (invariable elasticity) can
maintain its frequency constant to within a few parts in a million
when the temperature is kept constant by a thermostat.

.  2. (b) Electrically maintained fork : The vibration of a
tuning fork may be maintained by an electromagnet.
M is an electromagnet, B a battery and G and D are electrical

contact points. When the circuit is closed by a key, the current

ad

B

Fig. 36

pwe. mto ft, ,oU ft,„„gh ft, poftt, „a th,
hp ft, eI,,kom.gp.t br,.Mog ft, c-rouit. I-»

1  :i
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more places and bowed with a violin bow at a point on one
edge '^hich is likely to be one theoretical position of an antinode.
The vibration of the plate throws off the sand which ultimately
collects along nodal lines. The plate used may be of glass, copper
steel etc., but not of wood which has different elastic properties
along different directions. Chladni preferred glass for his
experiments. The plate may be held between the thumb and
a finger or a hole may be drilled through it and then fixed by a
s.cr.ew and a nut. The. plate must be touched at a position other
than where it is fixed. For a good figure it may be necessary
to shift tft point of totich. Generally simple figures correspond
to grave modes of vibration.

The following are a few of the simple figures which can be
obtained easily on a square plate of size SO cm. and thickness
2 cm. In these cases the plate is fixed at the centre, touched at

• A and bowed at B-

Fig. 41

. Ghladhi'l original work gives about fifty figures with square;
plates'. It is also possible to have nodal figures with circular.
elliptical or hexagonal plates. ^

'  i
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CHAPTER XI

ASYMMETRIC VIBRATION :

COMBINATOINAL TONES

o

1. Large vibrations : In the case of simple hairmonic
motions, the restoring force is proportional simply to displace

ment. But generally the restoring force may involve square^

cube and other higher power terms of the displacement and we

■can write as equation of motion, neglecting damping as ^

~+n''x+<x^+^x' + - = 0 (1).

^here a: is the displacement at any instant t and n, oi,/8 efe,i., are
•constants. The constants P etc., are themselves very small
and in the vibration where amplitude is small, xa:', etc.,

•can be neglected. But if vibrations are large, they can no longer
ibe ignored ; these terms will affect the natural frequency (at
•small vibrations) of the system and in many cases will give
rise to a series of harmonic terms.

2. Asymmetric system : Let us suppose the equation of
motion of the system is

'^+?i''a:-l-xa:' = 0
at

(2)

-Equation (2) represents an asymmetric vibratian. The asym
metry is due to the term ^a:" in the restoring force. If the"
-equation is solved Eayleigh's method of successive approxi
mation, we will have by an appropriate choice of initial conditions

«=a COS pt+b cos 2pt+c COS dpt+d COB ipt+e ... (3)
where a, b, c, d, e are constant and p, the angular frequency of
■fundamental mode, is slightly smaller than n, the natural
angular frequency of the system when < is zero. The amplitude
a, b, c and d are progressively smaller. The presence of the
ierm e represents asymmetry ; it shows that the vibrations are
•displaced to one direction. A series of harmonic partials are
present in the vibration.
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3^ Symmetric vibrations: In this case the equation of
motion

~+n^x+Px^ = 0

If we solve this equation by Eayleigh's method, we will see
that the solution will be given by

cos pi-t-6 cos 3p< ,

Expression (4)' shows that the vibration is symmetric about
the position of rest. In addition to the fundamental vibration,
there is the 3rd harmonic vibration. In this case also, p is
slightly lower than n.

4. Asymmetric system under double forcing: Let us
suppose an asymmetric system is subject to two separate simple
harmonic forces. Neglecting damping, the equation of motion of
such a system can be written as

d'^xm-^+sx+hx^=Fx cos pt + F^ cos {qt-\-6)

where Fx and F^ are the amplitudes of the two simple harmonic
forces of angular frequencies p and q respectively and 0 represents
the phase of the second harmonic force with respect to the first.
Re. arranging.

^^+h'x+<x'=A COB pt+B cos {qt-\-6)
dt (5)

where
m

2 _ ® ^ A F, :] 71 Jn =—, < , A = ~ and B = -
m  m m ■ \

Let us try to solve equation (5) by Eayleigh's successive
approximation method. At fi rst, let us neglect ; then we get

d^
di'

+ n^x=^A cos pt+B COB (qt+O) (6)

The solution of (6) is very simple and can be written as
^  ■ a:=a-cos cos (gt-1-0) (7)

ft * The;displacempnt may be supposed to be equal to Xj+Xz
where Xi is- the displacement due to the fi rst forbe and iig due
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to the second. The two displacements will be in phase witb jthe
C'*. ^ *

two harmonic forces as frictional term is absent. Substituting-

the value of x as given in (7) in (5), we have

d^x

dt'
+w®a:+«t[a cos pt+b cos iqt+*6)y

(8)— A COB pt+B C03 iqt + d).
But {a cos pf+6 cos (gi+e)}'

«  •

=a® cos® pt+o^ cos' (ql-]rd)+2ab cos pt cos (gt+S)

=~ (1+cos 2p0+^ U+cob 2 (gt+0)}

+ah.cosKp+g){+0}+cos {(p - - 0}]'

Hence ~+n'x = A cos pt+B cos (g{+0)-^ co8 2pj '
2

<b'
cos 2 (g(+0)

{iP'^q)t-{-6} — <ab cos {{p~q)t~'^}

. 2 ■
(9)

Thus we can regard the system to be under-the influence
of several .simple barmonic forces acting, simultaneously. The
angular frequencies of the forces are p, g, p+g. p-g, 2p and

The solution of (9) will be obviously
®=a cos pt + 6 cos(gt+0j+c cos 2pt+d cos £(gf + 0)

+ e cos {(p + g) t + 0{+/cos {{p-q)t-9\+g- (lO)

.Substituting the values of and in (9). we have

'  2(9i+0)+ei„a-(p + g)aj;^^ {(p+g)f + fl}
+/{«^ - (p - g)®}eo6{(p - q)t - el + n^'g

;T, ^■'^^°^Pt+BcoB{qt+6)-''-^^OB 2pt-'^ COB 2{qt + e) " .j
2  . «
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Equating from two sides
A

a = -%
TO ®-p'

b=
B

'  2Mp^-nV'
'f.ab

(p+g)®-to' f=l

\4g'' - TO *

<ah
(p-g)®-w®

and g
+

2to®

Thus we see the vibrations will consist of primary tones-
B

whose amplitudes are given by
n -p

and
71® — g® respectively.

If the natural frequency is equal to the frequency of one of"
the impressed forces, then amplitude corresponding to that-
frequency will be very large. The amplitudes of the octaves-
will depend on the amplitudes a and h of the primary tones.
Hence if a and b are small, these vibrations are negligible.
Again we see that the amplitudes of vibration corresponding,
to (p +g) and (p -g) respectively are proportional to the product
of those of the primaries. Hence these tones will be scarcely
perceptible if the vibrations are small. There is another important
point to note. The amplitude e of the summation tone of angular-
frequency v+l '» comparison with that of the
aiffeteuce tone ol angular frequency p-S, as the denominator

.in the .mptit'ude ol the irsl tone is greater ,a comparison with,
that in the second tone.

To sum UP we see that an asymmetric,system under the. 1, viarmonic forces of angular frequencies paction of two B-ple hamo^^
and g respective y frequencies 2p, 2g, p + g and" p-g

^components correspon 6 ^ The additional
in addition to the prim negligible if
vibrations other than
amplitudes of the primaries are sm

5. Combination tones
When two tones are simul-

entirely new tone may be produced. The-taneously sounded, an entir ^ German organist Sorge..
phenomenon wa^firs^ observed by a t.e

-h'-t-ra'jd
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•resultant sumZilTl fi"h apart, and theIn producing the differenw^ 0^^
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fi rst the note
«otes are played loudiv fnf> fu ^ c ' (i024). If the
can be heard distinctly. hL t^' ^one/(nO'fi)treble of the scale To n ^ generating tones are in the
instrument, first the note by the same
's Bounded along withe'. Th.. then/'(341)■will be heard. - ®rit summation tone a' (853)

6* Objective realitv nt
k;;v w tones:f^onig. Boaanquet and-that the combination tone7^^'"^' Physicists believed

^observed that the combination tn'^ entirely subjective. Theyresonators. *°ries could not be reinforced byresonators.^ Helmholta. on the^^^^^ ^^^^^°rced by
two very intense notes are £.»r, showed that whentwo very intense notes are 7
same wind chest of his double Ti7n77 from the

'a very loud combination tone w!° ®®ries of holes.
produced^whose objective

i'syMMETEIO VIBRATION : COMBINATIONAL TONES 131

reality was unmistakably proved by a tuned resonator. He was
■of opinion that combination tones have sometimes objective
reality. ''^According to him the condition for objective reality was
that the two primary tones must he very intense and'produced
by the same mass of air agitated very violently.

E. Edser and A. W. Eueker proved beyond doubt the objective
existence of combination tones by a very delicate method. A
piirror of Mielielson's interferometer was attached to one prong
of a tuning fork. Interferenee bands were produced when the
prong was without movement', hut at a slight vibration of the
prong the hands disappeared from the field of view.

The generating tones were produced by a double siren through
two serias of holes and the pitches of the primaries were such
that the difference or the summation tone if prcduced corres
ponded to the frequency of the tuning fork which was 64.
The objective reality of the tone was proved beyond doubt by
•disappearances of fringes due to the vibration of the tuning fork
in resonance with the pitch of the combination tone.

7. Theories of combination tones *

(a) Beat tone theory :

When two tones of nearly same the pitch are sounded, beats
■are produced recognised by periodic waxing and waning of
•sound with.a frequency equal to the difference in the pitches
of the component tones. (See Chapter I). If the difference in
the frequencies be more than about 1.5 per second, the beats
■will be recognised as a separate tone. Such is the beat tone
theory sometimes called Konig's theory. According tc this
view, the difference tone which is a beat tone cannot have

"any objective existence and. therefore, cannot be detected
by a tuned resonator. Actually Konig's and Bosanquet's
experiments confirmed this view. But beat tone theory
is incapable of explaining summation tone discovered by
Helmholtz, nor the theory can hold good when conclusive
experiments prove objective reality of the combination tones.

. ■.
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reality was unmistakably proved by a tuned resonator. He was
of opinion that combination tones have sometimes objective
reality. '''According to him the condition for objective reality was
that the two primary tones must be very intense and'produced
by the same mass of air agitated very violently.

E. Edser and A. W. Eueker proved beyond doubt the objective
existence of combination tones by a very delicate method. A
^irror of Miclielson's interferometer was attached to one prong
of a tuning fork. Interferenee bands were produced when the
prong was without movement, but at a slight vibration of the
prong the bands disappeared from the field of view.

The generating tones were produced by a double siren through
■two serias of holes and the pitches of the primaries were such
that the difference or the summation tone if prcduced corres
ponded to the frequency of the tuning fork which was 64.
The objective reality of the tone was proved beyond doubt by
•disappearances of fringes due to the vibration of the tuning fork
dn resonance with the pitch of the combination tone.

7. Theories of combination tones •

(a) Beat tone theory :

When two tones of nearly same the pitch are sounded, beats
■are produced recognised by periodic waxing and waning of
■sound \Nith.a frequency equal to the difference in the pitches

" of the component tones. (See Chapter I). If the difference in
the frequencies be more than about 15 per second, the beats
will be recognised as a separate tone. Sucn is the beat tone
theory sometimes called Konig's theory. According to this
view, the diderence tone which is a beat tone cannot have

^'any objective existence and, therefore, cannot be detected
hy a tuned resonator. Actually Konig's and Bosanquet's
experiments confirmed this view. But beat tone theory
is incapable of explaining summation tone discovered by
Helmholtz, nor the theory can hold good when conclusive
experiments prove objective reality of the combination tones.
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HelmhoUz's intensity theory :

Helmholfcz's intensity theory is the theory of asymmetrie
vibrations of the system under the simultaneous influence of twa
large periodic forces. In this case the equaljion of motion is

+ n x+c^x^ = F2_ cos cos [qt + o)

We have seen earlier that the solution of the above equation is

a: = a co8J)«+6 cos (q< + 0)+c cos 2p«+d cos 2(3t+0)+e cos {(p + g) <+d}-f/cos {ip-q]t-6] + g
Thus the above solution indicates the presence of difi-erenco

ZJuTfT "•
fcorl ■" to-,, „p„„„,ed bya cos pt and b cos + TNno n, ^
tthe- the h.rmonie 1 '
represented by is resnn "M J asymmetry
combination f j ii.- lor the production of thecomoination tones and this tpvm mJii u • .«
very large. significance when a; is

(c) Waet-mann's general asymmelry theory •

tones can he ho .q • I'oaes seen that combination'.ot he ::,.t:r.rTy hi: irr
theory. According to W f theory or the intensity
the ear drum itself which iT are produced in.
is, the vibration is displaced f asymmetric, that
meobr.-,U..bieet,7o two :,.i°h:7 ''T"-- «appearance of displacement curve will
tion of beats with the diflerence that the I ^line of zero displacement. By pour^^
showed that in addition to the primarie? thdifference tones are produced by the memh
theory thus combines and reconciles th h ^^^l^^mann's
the intensity theory. theory and

' : 'I

ClIAPTBE. XII ,

DETERMINATION OF VELOCITY OF SOUND

1. Determination of velocity of sound in open air by
signal method ;

The earliest experiment on the velocity of "sound in open,
air was made by Mersenne and Gassendi. The method consisted
of a measurement of the time interval between noticing a flash of
a gun-fire and receiving by the ear the report of the gun from a
distance. The velocity is determined by dividing the distance
between t?he gun and the receiving station by the time interval.
■This method is subject to two errors : (i) error due to wind
velocity and (ii) error due to human element in the experiment
or "personal equation". In the method recommended by the
Trench Academy of sciences in 1738, the wind effect was elimina-
-ted by reciprocal fi ring and observations from two stations. The
•mean value of the velocity of sound reduced to 0°G was 332-2
metres per second.

Regnault tried to get rid of the human element or personal
equation by registering the time interval between the instant of
fi ring the gun and the reception of the report by electrical
method At the sendiug station a 'wire in the circuit of an

o electrical chronograph is broken by the shot. The circuit is
,re-established momentarily by a thin membrane when sound
rea-hes the receiving station. The time interval is found out by ^
-two" marks made hy a style actuated by an electromagnet on a
Arum revolved at a constant speed by a clockwork. Regnault,'
uowever. came to the conclusion that lag in the recordiog

t ument was of the same order as the personal equation of a
drained observer.

Eegnault came to the conclusion that velocity of sound
increased with the intensity of the pulse.

2  Laboratory methods : (a) Hebb's method :
Accuracy of the measurements of sound velocity in the openir Ithods is subject to several factors, such as ^vind velocity.
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personal equation, intensity of the wave and temperature of ai" in
between two stations. Hence the results obtained by .different

experimenters vary. At the suggestion of A. Micbelson, 11 ebb

devised an objective laboratory method' in measuring the

velocity of sound in open air.

Tx and are two carbon microphones placed at the foci of
two co-axial paraboloid mirrors Mx and Ma made of plaster

of Paris. A biglr pitched whistle of known frequency is placed

Pig. 42

at the focus of, say, Mx, Tx and Ta are connected through
batteries to two separate windings Pi and Pa of aogpecial typetransformer T having three windings. The telephone receiver "
is connecfced to the third winding.

Sound emitted by the whistle at the focus of Mx after
reflection from the two mirrors will be collected at the focus
of Ma. The resulting sound in the telephone will be the vector
sum of sounds received by Tx and T,. The receiving portion"
of the apparatus consisting of M, and T, is gradually shifted
along the axis. At certain points sound will be reinforced and
at other intermediate points it will be annulled depending on the'
phase "difference of the two sounds collected at the two foci.
The distance between two successive maxima oj: minima will be
equal to the wave-length of the sound emitted by the source
^hose frequency is known. Thus velocity is determined.

"determination op vBDociny op sound 13&

method.

\ \i?^Kundt's tube method :
u u o„, ol the eimpUBt meMe of me.eunog veloe.t,

soma in . g.. ot solid in the l.bor.to.y.

__o_ n

Fig. 43

A glass tube
has an of a glass or metal rod clamped
projects a disc thoroughly dried and fine
at the middle pom • g^all quantities. The
lycopodium^ hv a rosined cloth, so that longitudinal
metal rod is rub e ^ clamped at the middle are
stationary ^f^amental tone which has the maximum
produced in it. ^ ̂ave-length Xs = 2ls where.Z,=the
amount of energy velocity of the longitudinal wave
length of the rod. o® of vibration of the fundamentab
in the solid and AZ stopper A is gradually shifted
then Cs -2Zs X Af- ivcopodium powder in the tube collects
till at some position equidistant positions. In this
in little heapi? at vibrations are set up in the air

'condition, resonan s uodes and antinodes, and
within the tube wit ^ ^^des which arc the positions of
lycopodium powder co jigtance between two consecutive

owaves in air must be equa o b
co_k

or, Cg=Os X/p  Is

^  A P ^re the Young's modulus and density of thewhere A? and . velocity m air cansolid rod.*. Thus knowings and P,
determined.

iH
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4. Applications o! Kundt's tube method :

The following are the applications of the Kundt's tuhe method.
(«) Measurement of velocity of sound in any gas :

We know that velocity of sound is given'by

V o

Thus knowing pressure p and densifv P v <.• 11
heal.

lempeLLe.trrsre^lVLSy
W Eapld coeaparisop „, .„„pa fa t„„ ,

..h-froaXp:' ■■ ^-e
Stationary vibrations a f ̂ ^ Piojeets into two separate tubes.

.<tee : r'•'ocitie. of soopd in ,hrtw„ , u " """

'i«o L''a«r»rp°!"r
The velocity of sound in a gas ,1p.f •

"method must be corrected for the r'a^
suppose and o, are the velocities det
radii and r, resnQ f etermined with tubes of

we can write ^ velocity in open
correction is nero with a tube 01^60^ ~
expressions of the velocities we get ' '

* See Chapter VT

'■ -■

,..f
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• 5. Striations in Kundt's tube : Antinodal discs :

Whejiji the vibrations are vigorous, in addition to the collection
of dust particles in heaps at the nodes, there is a formation of
striations consistiflg of particles across the bottom of the
horizontal tube. The ridge like formations are more pronounced
at the antinodes, disappearing altogether at the nodes. The
phenomenon is more marked when the vibrations are intense-

Fig. ii

Konig explained the formation of ridges from the hydro-
dynamical consideration of forces between two very small
particles in a stream of air. He found that two small spheres
of cork with the line joining their centres along a stream of air
experience a repulsion ; if the line is perpendicular to the stream,
there will be a force of attraction. Konig showed that the
force of repulsion between two particles end on to a stream o
air is -»

3 «Fi=6Jt/' ri® ra' a*.

and the foilie of attraction between them when broadside on to
the stream is

i?'2 = 3.1/0 ri' r 8 V

,  ». fLp radii of the spherical
where /0= density of air, ri, 2 _
PTliol,., « aiB..n»e between the ee.lve. »d . the mean

* squared velocity of the stream.
Thus two particles en on happens torepelled from each jXlg their centres being

bo near another partide, attracted to each otl^er.
transverse to the axis, antinode as i;' of
This effect he absent at a node where
the air stre.am is maximum and will
it is zero.
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More recently, investigators have used instead ot a solid rod"a
loud speaker unit or a telephone diaphragm fed by the >aurrent
of pure wave form from a variable frequency oscillator. The
power supplied to the loud speaker unit ma'y he as much as-
consistent with the construction of the speaker unit. The other
end may be^ permanently closed. The frequency of the current

the coil of the loudspeaker is adjusted until resonant
stationary vihratioas are produced in the tube. Using such a unit,

• N. da C. Andrade and others noticed greatly enhanced forma
tion of striations. ^ In addition to the striations, they observed

at when the vibration is very vigorous, there are disc like
ormations of dust particles across the tube of great sharpness
an e istance between two such consecutive An'tinodal discs
can he measured with great precision to give the wave-length of
the vibrations very accurately.

Knn,if' t- 1, investigated motion of air inside aundt s tube m great details. By introducing very small particles
a'r Par^^^^^^^^ f °^-"ed that there is motion of
raek agair:!
Eayleiah he axis. Such motion was predicted by Lord
addition to fh experimentally verified by Andrade. In
round each d circulation of air, there is a vortex motion
s t tLrac Andrade explained that the particles
TouX: r . of the vortices
of the vortex ToV^ into one single vortex. ̂ 'The vigour
hence, the formation oT^'T^^ velocity of air stream and
when the sound intensify L'v are facilitatedKonig as regards formation of t'^!"
the basis of the experiments of Andr'ade '

laboratory met^hod " ^his is a very simpl®
A tuning fork vibrating velocity of sound in air.
end of a tube whose ofl. ^ held near the open
variable'height Th 1 ^ column of water of
some length of water column is adjusted till at
vibrations-are set n„ water,, surface, resonant
end and an anMnode^^ /u ^t the closed

e open end. Taking into account the-
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fact that antinode occurs slightly away from the open end, we can

write 1=^1-fkr where k = '& is the correction for the open end.
If Za is the next resonant length obtained by adjusting the

height of the water column, then together with an antinode at
open end and a node at the closed end there will be another

zxmode and an antinode within the tube. Inthis^case ^ ?2"hlr.

From the two expressions, we get after eliminating end correc

tions -=h-h and velocity of sound 0 as G^m^^N^h-h).
7. ̂ The velocity of sound in a gas and the molecular

velocity^: The velocity of sound in a gas is given by
;! 1 c = From kinetic theory of gases we know that p = sPV

where is the mean squared velocity of the molecules.

Hence

If F, is the mean velocity of the molecules, we know from-
kinetic theory

3lt rr a

t

o-|xt'V .

or,

Thus the velocity ol eounh in » «« ««< "" moleeulai velocity
are of the same order. _ ^ ij.

8. Velocity of sound in a liquid ; The relation c
\ .30 applicable in the ca. Of a li.ia.H^^^^^

elasticity. gmall amount. The velocity
cities of liquids differ by

0= /« where-i i.lhe isothermal volume el.sticity.udy = r.t,o.
■V P .

of sp. hts.
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2. Experimental determination of velocity of souncT'in
iQuids . Colladon and Sturm made a determination velocity
of sound in water in 1826 on lake Geneva. A hammer strucka  e in water which also flashed a quantity ef gun powder above
e water surface. An observer on the other side of the lake

y means of a quarfcer second stopwatch the interval
etween the observation of the flash and.the reception of the
un signal. TJie^ velocity of sound was found to be 1435
e res/second at 8 10 and agrees excellently with the calculated

value of 1436-4 metres/second.

velnf-; ^^ter determination ofy 0 soun at a depth of 13 metres. Four hj'drophones

pani, ^ straight line at a distance of 900 mefres from
line ° t the same straight
fho ^ L ^^'^^Ptiones and at a distance of 1200 metres from
on ^'^^°Pbone was exploded first on one side and then
was rep ^sseption of the sound in each hydrophone
Tf ve op-f / ^ chronograph. The mean value
1504-15 meL27eLt ^ atmosphere was

liquids h determining velocity of sound in
later chal? laHrasonic waves will be dealt with in a

V

»  CHAPTER XIII

MEASUREMENT AND ANALYSIS

1. Measuremefit of frequency ; (i) Absolute methods .

(a) We'have seen in chapter XI how the frequency of a.
tuning fork may be measured with a great accuracy by phonier
motor method, or stroboscopic method. Several tuning forks-
'measured by the above methods may be takSn as laboratory
substandards of frequency. If the frequency of a tone to be
measured lies near that of one of the forks, then it can be found
out by the method of beats.

(b) Siren: It consists of a disc with a ring of holes-
equidistant from the centre and rotating above another co-axial
disc with similar holes. The lower fixed disc forms the top plate-
of a wind chest. In course of rotation of the upper disc, the two-
systems of holes coincide and a blast of air passes outside through
the holes. The pitch of the sound emitted by the siren is then
nm, where n=no. of equidistant holes and m = no. of revolutions
of the disc per second.

The air blast is obtained from a reservoir, where pressure is-
maintained constantly by a compressor. If the two systems of
holes .re set .t opposile obliquiBss .loog the oircpmfer.nce the
upper disc will rot.te by re.etiOE ol the pulse ol ,.r eseapm. out
ol lh. holes. Or the disc m.y be rotated b, .. eleetne motor
. whose speed be regulated. In any case, the reyolut.ons per

second are registered by a revolution counter.
By increasing the pressure of air or by r.gul. .eg the speed,

of the motor, the upper disc of the siren f
till beats are formed between the note ol the s.ren and ,be lone
„ be measured. By slightly increasing the speed of the s.ren it
• s very easy to understand which note has the higher freguenoy.

The aclracy In the .hove methods ultm.ately depends onlheciockhywhichmeasnrementsarem.de.

•(c) Photographic method i The tone may be received by
-e mi rophone and .tier proper amplification by a valve circuit
the wave-form muy bh recorded on a photographic iilo crossed
by standard time-marks- ^
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[ii) Comparative method : A sonometer wire with a

-constant tension may be calibrated in frequencies by a set" of
tuning forks of graded frequencies which are again previously
determined by the phonic motor method. The length of the wire

is then adjusted till slow beats are obtained 'Vyith the tone whose

frequency is to be determined.

2. Analysis of frequency : Analysis of frequency can be
conveniently made by means of a Helmholtz Resonator.

A Helmholtz resonator consists of an air cavity whose
dimension is small in comparison with the wave-length of the
sound to be detected. One type of resonator A is a pear shaped
vessel with a pip at the back and an aperture called neck at the
front. The other type B is a cylindrical vessel with a rather

long neck and its volume may be continuously variable.

B

Fig. 45

To calculate the natural frequency of vibration of a resonator
of volume v and a neck of length I and radius r, we must suppose
that the air in the neck acts as a piston and rarefaction or
condensation at any instant is uniform in the cavity.

Let S = displacement of the "piston" of sectional area s at any
instant t and let dp be the increase in pressure in the cavity.
Then

sdp = sPl where P=density of air.

Since pressure change in the cavity is adiabatic, dtpuV) =0 .
duwhence dp — - Yp,
V

V. s;

V

Or. ^f+-^-S = 0
ut p.V

I
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whence frequency of vibration is

N=~ /^=— /±. (■ •25rV plv Iv * ' o '

~ is known
1/

aso the conductivity of the vessel and has the

dimension of a length. For a circular aperture ; Rayleigh
■shows that in this case conductivity is equal to the diameter of
the aperture. Helmholtz and Sondhauss experimentally obtained

' that natural frequency as calculated is higher than the observed
frequency. This is due to open end effect and I should be
corrected to l-f- 6r.

The expression for frequency as deduced, refers only to the
fundamental tone of the resonator, but a large number of tones
sre possible.

2  {a) Distinction between a pipe and a Helmholtz
■resonator :

(1) In a Helmholtz resonator, the state of rarefaction or
condensation is the same throughout the cavity at any instant.
In a pipe resonator the minimum length of the pipe must be at
least a quarter of the wave-length of the tone to be detected and
■state of condensation varies from point to point.

(2) Damping'in a Helmholtz resonator is very small. If the
■volume of the resonator is large and area of the neck is small,
then the vibration in a tuned resonator will persist for a long
time Since the damping is small, a Helmholtz resonator is' hSiy selective and the response is very sharp.

2  (6) Detection of a frequency by Helinholtz resonator :
A series of resonators of different natural frequencies may be

ged The ear is placed at the nipple of the resonator which
ir when the frequency of a tone sounded near the neck of

' thrresorator equals its natural frequency. A thin reed of mica
anprture of the resonator and tuned to itsfi xed across tne apemuic

al frequency is a very sensitive arrangement of detecting^frequency of a tone. At resonance, there will be a vigorous
t  reed which can be detected by a ray of lightvibration of tne re

xeflected frpm it.



144
SOUND

largenumber of r! 7 several harmoni, ,
is very helpf°artr^ required. Hence*ifc
volume ; this may be"^Lh^v''7°7''°'' continuously^arlable
water column of variable heigL. piston or a
in the resonator A nuethods of detecting resonance
^°"ar or a Eavleiet .-1 7"7 placed across the
a very sensitive afrans 7^°®^ at 45 to the axij of the neck is

ror 1 ■'«'•=' 'ha re,on.„, condition. '
This consists of two res 7^ resonator may be used,different conductivities, same natural frequency but of
generally greater than that of the outer resonator is^ i^ot wire mierophone°ia uT ^ Rayleigh disc
resonator. Ttjg arrane • ''i'o neck of tfee inner
selective and hardiv s^i'remely sensitive as well as
i'yit- perceptible sound can be easily detected

_ e axis of a sounding e r ®nspended at an angle toright angles to the axii ^ ^ resonator tended to turn at

. ^ "e suppose that v'"'
f We eepahle of rn77 '^'^® suspended in a stream of s

^f^etthestr^ ^
from th7 fi! ^®gions of ' ^ne fa gure of maximum nr^acn,... t*. ;=, ^l^ar

se mu,t u stopped at 'I'C^ lh?fi! """ "8i0M of ' ^ '""J
revera ti j the linpq eximum pressure. It is clear"""'■i^aiceclioo Of Vo°" ° »»" wm_be nn.Hcrod for .

Q  US a couple vsill act on the disc
9

i

I
SOUND MEASUREMENT AND ANALYSIS -14-5-.

to turn it across the stream. In the case of a circular disc of
raifius a and the normal to the plane of the disc making an angle
d with the direction of the undisturbed stream the moment of
the couple acting on it is, as developed by Konig

■  Pa^V" sin 20

where P =density of the fluid
and F= velocity of the stream.

Thus if 0 = 4'5°) the moment of the couple is maximum.

In the case of an alternating current of air, the mean value
of the square of the velocity of the stream is to be taken.

In practice the disc is of mica of radius 1 cm. and suspended
by a thin quartz fibre 10 cm. long. The disc is suspended at an
angle of 45° to the plane of the opening of a Helmholtz resonator;:
a ray of light reflected by the disc falls on a scale placed outside...

Since the turning couple
is proportional to average V',.
it is also proportional to
intensity. For a small angle
of deflection, the intensity is
directly proportional to it ;
the magnitude of the torque
can, however, be measured

by a torsion head by bring-
SCALE

Fig. 47

ing back the disc to its original position.
A Eaylei^h disc can be used with a tube resonator or a double

Tr, flip latter case it is placed in the neok of theresonator, in uu ,
resonator and selectivity of the arrangem.ent can be made

^'^"^'^high when the natural frequencies'of the two separate^®'^^ forming a double resonator are same. With a resonatorresona^ojs^o^^^^ variable volume, Eayleigh disc is a very useful
t °°7nt of measuring intensities at different frequencies.
Corrections in Konig's formula : Konig's simple theory of a

Eayleigh disc ignores the following factors.
hi The diffraction of sound radiation by the disc : Th^s wiU

•  'hi when the diameter of the disc is small co^mpared

10
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(2) Viscosity effect of the medium : The motion of the disc
due to motion of the medium in addition to its small rotation ;
This effect cannot be neglected when intensity of^sound is
measured in a heavy medium such as a liquid. In this case the
moment of the disc must be multiplied By a factor
where ̂  = ratio of tbe amplitude of velocity of the disc to that
of the medium. The moment M then is

when the disc is set at an angle 0, being the velocity of
■the particles constituting the medium.

(3)^ Possible transverse vibrations of the disc : If the
wibration of the medium coincides with one of the modes of
•transverse vibrating of the disc, then the disc becomes useless
•for the intensity measurement. c

3. (a) Measurement of intensity by hot wire microphone •
If a heated wire is placed in a stream of air whether unidiree-

^tional or alternating, there is a cooling effect on the wire due
to air draught. This principle is utilised in the design and
•construction of a hot wire microphone. Tucker in the fi rst world
war designed It to locate the position of enemy guns and since
then It has been developed by him and Paris for detection of
•sound and measurement of sound intensity.

SOUND MEASUREMENT AND ANALYSIS 147

j~"WWVNz—

has a resistance of about 140 ohms at 10°C. The temperature
rises to just below dull red heat (400°C) when a current of about
30 milliamperes passes through it and the resistance then ip
about 36o' ohms. The arrangement is mounted in the neck of a
Helmholtz resonater C. When the resonator responds to a tone
of suitable frequency, air dranght in the neck cools the platinum
gird causing the resistance to fall.

The decrease in tbe resistance consists of three components
■eB BB and'SJBs. The change is the §teady component

nroiortional to whereas SB, is oscillatory and proportional
to usin ptand SRs to cos 2pt when iV being the
frequency of the tone and u the maximum velocity of the air-
atream in any direction. SBs is very small and is usually
"^^Thrsteady drop SBi which is proportional to the intensity

ured by Wheatstone bridge method. It is made oneismeasu^^^ the heating current of 30 milliamperes
wpii«a "p"LrLt mlhegal™i.oo.eter, when the grid is eooled at resonance.-

a

at

Pig. 48
•B is a platinum wire made from Wp,it ^•eilver ebealh which is r.„„,ea by niWe acid '.tr T '

wound on a rod Of glass enamel and mounted na central hole. The two ends of tb • ^ disc with-annular rings of silver lit f "^^^ected ^o two-disc. The platinum wire is verylhb ('OOO?'ry mm 10006 cm. diameter) and

►Frequency

Fig. 49

ure of the intensity of the sound. That this is so.gives a meas verified by Tucker and Paris who showedihas beenexper^ current is inversely proportional to the
-that the ou j,j^uce between the resonator and an electri-

lid 'turning fork in open air, the resonator being

'l/i f-'-if/-' , ■

'  Hv

w,' •'■ )

'• '"•j'K. I i:

'1 ■ :„„•:

IP;"''' '•
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To measure bE^, the oscillatory potential difference across-
the wire is amplified by a valve amplifier and the output current
which is proportional to the amplitude of vibration is passed
through a suitable measuring device.

Pans used the hot wire microphone with a double resonator-
e vibrations in this ease are coupled and there is a response-

over a range of_ frequencies. The grid can be calibrated over

of the'°^' ^ known constant output. If the frequenciesthe separate resonators constituting the double resonator are
made ejahthen there is almost uniform response over a small
asmall cerardij:' IVhTrbir"'^
n.tar. of re,po„,e „ilh . doubl.re.oo.tor. and with I
hot wire microphone is shown in figure 49 T
measured by the out of balance current
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'«nd hence, energy of amount (c+u) E is compressed, in a length
c-u. If t^+(5Bis the energy density in the reflected wave,

{c.+u)E = {o-v,){E + bE) -

•  E c-u I c'\ c'

2?^
==H— approximately.

c

I

C, 'J*

3. (b) Absolute measurement of intensity :
A Eayleigh disc with a resonator nr o •

» • very „itab.. i„str„„„t trobt°"°'°ftatepritie, „( ..p.d n, Fcr Tdi^''!
fr=qusBeyaaiff.r.pttaMdre.o„.t„ri.p.,d.d,„d°- "Of a resonator at different frequencies is n f R u
comparison of intensities of sounds in suc^l '
-tter. To measure intensity absolutel
■•ency, several methods have been devised and f
given here. them are-

Thus rr —
E

when c ^ n

SE 2u o

I

r, c5E = 2u E

If P is the pressure on the wall, work done per second in
moving Lit area of 'the wall against this pressure accounts for
-the increase in the energy in a length c in front of it,

or, ■ P.u = cSE = 2uE-
■  P^IE

(0 Sound radiometers ; Altberp
the intensity of sound" waves from nr absolutely
by sound waves reflected from its surfacr^TL ^
the method can be understood from the f ii
due to Larmor. ® following treatment

Let us suppose plane sound waves of velperpendicularly on a totally reflecting ni ■! ' i'^cident-
to itself with a velocity in a drrecti Parallel

le. b. ,b. d.„r;iub:'rf »'
one second, a length of wave train '

IS uc.d.nt on the^walL

Thus radiation pressure is the total energy density in front of
the wall. If the wall does not reflect at all P = E.

The steady pressure exerted by sound waves was measured
q V Altberg in the following way. A little hole is made in a

11 This is nearly closed by a loose piston which is suspended
„ „prv delicate torsion balance. If the constants

vfrom one arm oi a veir . , , ,, i ;3
7ly. torsion balance are previously known, the couple and

fl «t fhe pressure exerted on the piston on which sound
'  incident can be measured by the deflection of a spot^Tuf%otave a measurable deflection very intense sources
°  taken, such as glass'rods exhited longitudinally..of sound V Altberg calculated the pressure as ■24dyne

In an which energy density hecomes"12 erg.
, he completely reflected). By multi-

the velocity of sound (about
per square cei

energy density byplying nximately) the intensity comes to be about
3.5000, cms/sec. appi - second.
4200 ergs per sq. ^ suppose interference fringesyu f fhnd •

{ii) Optical beams of light. Let one of them pass
are obtained the sound waves trawil where-^eross a sp8ce,.a undisturbed air., When sound

'  the other passes . ^

'  ' ' ' '

m

u

vi- - V- ■ ■
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■waves are allowed to move through A, the width of a fringe wiU
appear to increase. Prom f.hfi n>.aT,o<. «.u i.i _ n.appear to increase. From the change in the width, t>a density
variation and hence the intensity of the sound waves through,
space A may be calculated. The increase^ in the width of a
fringe may be explained by the fact that rapid variation of path

ifiference between the two beams occurs as a result of density
change of the medium in space .4. Hence tho position of a

mge in the field of view rapidly changes about the mean
posi ion and due to persistence of vision the width seems to.
o" ^ band may he found,
pressure calibrated by taking air at different

sound wave of a

X"
fnax

tional to intensity. The rane^ nf j-l iiot propor-about 20 cycles per second to about 2o'o00 1' f '
the sensitivity of "normal ear is J ® and,
freqaencies. The maximum pressure variationir f
a]ust audible sensation of sound at 9 ^ to produce-
large as 10 dynes/cm^ while it h afl a.
1000 cycles per second. The ear is ^ynes/cm® at.
about 3500 cycles per second when thT ' ̂ ound of
audibility is -00008 dynes/cm'' only • th^'T-'''r- ^^"^^abold of
a;z:LZ,r-

•echner Uw. The

1^. . ■■

i'X* ':"■ '

iii-" .-i \i'. ..'j'ihiiito' - .■•>

-■ l'. ■' .' ■_' «■■
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dl
the'sensation of loudness is proportional to , where Sj is the
small incr'ofese of intensity I. Hence, increase in the sensation
level of the sound is«a-Sx=k. logio ^®> where A: is a constant.
If ifc = l then sensation level of two sounds is given in Bels and
is thus equal to logio bels.

The intensity level of two sounds is given by logiojj and is
expressed in bels. If expressed in decibels, the intensity level
is 10 logio^ decibels, since 1 bel= 10 decibels. The reference
intensity' for loudness comparison is lO'^" watt/cm'' at 1000intensity tor iouuucdo

cycles per second (at r.m-s. sound pressure = 0002 dynes/cm )
which is the threshold of audibility at that frequency. A sound
Taving an intensity 10 times this value is said to have an
intensity of 1 bel or 10 decibels.

H-nn level of a sound of any frequency is measuredThe sensatio j ^1^3 threshold intensity at that
by the ratio of its intensityOr sensation level = 10 log-i, decibels.particular frequency. Ur. sens ^

T  • f«n«i^v at that frequency and lo'-thresholdwhere Jj.—intens uy ^j.
intensity at that level for a particular value of
high frequenBies, the sen

is small at high or low frequencies.
„„f of eauivalent Joudness : Loudness,Measurem joudness of the standard

of a sound is measure and intensity
reler^ce P"",'""" ° t„„e may be ptodueed free free.

JO'^® watt/cm . -i-his Ji^e gound whose loudnessharmonics by a valve osc^^^ standard reference tone is-
level is to be ° from the same distance,
alternately beard oy ^^^^lly increased in intensity^  'Ue irgradually increased in intensity
The pure reference 1^^3,3^33
till the the two sounds PP threshold
intensity ° of the equivalent loudness of the

HV/:

. . '-'.Aki.-.... .. • 1. ..' 'i -

•ipt!
.  ■ A ■ ':■•: '•, tJifi

»« A-l
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sound. The intensity level, sensation level a.nd equivaloob
'oudness in phons are numerically equal at 1000 c. p- s, the
frequency of the standard reference 1:006.

51 Measurement of quality : The sCund produced by a
musical instrument reaches our ear through air. Hence if the

vibrations of the free air particles could he recorded, the quality
of the note emitted could he found out hy performing Fourier
analysis of the vibration curve. The essential requisite of a'
faithful recorder of vibrations is that it must have a uniform
response over the frequencies comprising the audible range.

[a] Miller's Phonodeik :

Fig. 50

^ ■ H,8 . comcl horn at the e-a ol whieh o« .oft ruhbe. rings
there .. . tbaphragm of gl... thickness abonl O'OOS inch.
,4 ..Ik «bre or a pl.tinnn. ,ir. CooOo i.eh thick) altached at the
centre of the dmphragm p.s.e. round a small pnljep trith
a small steel ep.ndle mounted on jewelled hearing, and is then"
connected to a .pr.ng. On the spindle ih.re i. , .„,all
oscillograph mirror which rotates when the ,1; n
A ray of light is reflected from ^'^P^ragm moves.
The motion of the diaphragm is magniTn

pnragm IS magnified about 2,500 times. .
" The serious defect in the ahm-rr.. • .
response is not uniform ; the natural fre^^^ is that the
rhay be made very high, but it is impossible^'trelem- ""f
^effect due to the horn and the air column ' resonance
phonodeik by tones of different fren, '• t.loudnc. andconld incorporate IrXl^tth"'
::ot tne curve 0 Earned on the sensitised film. . ' .

_~2Ei
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' .(b) Cathode ray oscilloscope :

• The Qathbde ray oscilloscope is the ideal instrument for
analysis r/f frequency and studying quality of a musical note.

Fig. 51

f is an evacuated tube containing a cathode KTheinstrumen ^ ig a coated filament emitting

.and an anode F- J- current. Whenthe potential
•electrons when heated y by application of
.of P is made positive wi j^^^^^red volts, electrons emitted by
.a potential difference of a p a
•the cathode are acce era e ^ qhole in the anode emerge of the tube and cause

centre of a fluorescen p^j^s of deflecting
fluorescence there. ggtablished between i,A
plate. ..a >«y '■"'•t .lectr.uc l-ori.o„t.ll, or
or B. B will cause the
vertically. _ , distortionless microphone or a

The .oo»a " /""lose re.pou" to dilereut fr.gu.uc.e.
..alibrated mieroP one
sis known. microphone is° amplified hy a
\The fluctuating -rrent on ^ ,,,Ued across the
\\ i-flrav and the ampune ^ vertical line through 0■"H Tb Due to pereint®" « ™' jiaplaeemeut eurre ofPl"'^# the S®""" s ou a photographic film when
--'TTrro::-
mre swept horioontaHy
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hndimentsr'ftr °' '"doenoy equal to that of IhV
type- The cLve aud wave form of aawbootb
tie Fourier eeeffieieuTsoUh!''''"'?"'''''^ ""eieuts 01 the waveform calculated.

iPerulTreatut t""' TT
ipst.u6.„,„r M i. linear and

. 'L<? jLiAi'lLi*<Uk*=. j M'

^  CHAPTEE XIV

VORTEX SOUNDS AND MAINTAINED
VIBRATIONS

1. Vortex Sound : (a) Aeolian tones ;
.  Let us consider a fluid streaming past a solid, e.g.. a cylinder-
dipped in the Md aa shown in the fignre. In the region behmd.
2 eylinder at B "3 " ">» -f
hv the arrows and form vortice. rolat.ng m the opt.,s.l..by the arrows a fluia ig above a certain minimum
directions if the velocity ^
value. If the velocity roac e j j i„pg the stream,
attaining a snfUcient sine wdi b «r
the detachment taking pla«« «llc™"">'

Fig. 52

bl series o£ vortices is due to-
The formation of these ® ^nd the surface of the
-the viscous drag tvvo rows of vortices be h and
obstacle. If the ̂ ''''"".''fvmHccs in the.same row-be i. then it-that between the succe .h^-na Thus the distance-

f  llv shown that-:-
has been experimenta ^ ^ same row will be

between two »«"7;;°titt t'he increase of
"independent of the "'l"" J „d detachment of the ces-
the stream, the rale »'
will be increased.id. eter d under tension placed!

""ihT. "W- .If.rces on the string as the

isider a string ° be alternately detached
,f a wind. Vor velocity is

Irorthr'sidek m l-;- " crl-foreee en the stridg as the-
'constant, tb.re will be P



156

I  f

i  •'>

t  •

I  ■

!:

SOUND

two types of eddies are form a
< experimentally that the wave I "^^tached. It has been found
alternating pressure wave is i-J!. ̂ stationary air due to
"i", a.ee the tre,„er.r„f a" ot the
tte eddies detached is ^ cross-forces of

•disturbance is equ f frequency of the periodic
string under tejjsion, then th °\ harmonics of the

a tone is fcnown as in resonancS.
Morenl dueler, f '»»«• II .everel wires with
"  'h.tihe piiehe, of the f / eaiusted

-... .he .triod=.«
inaf-r produce an an excite one or

Jet tones • t,-,). . .

P, ° .h mfloile ocean of

o
o  o

^'S- S3

■ '.■! 1 ,

■the same fluid. Dyg .

^'^arllLoctTdirection as shn^ '^'^®ation and the ]□ ^ revolving infwo l:' r 'h. Sdure j';rr, - 'he cioctwise
successive onn • and I fk ^ distance between"
then. ■ '° r„l b.'ween two^  'he.relation between

'The freQ„„ ^ ^ 7^'28. ■
^  of the jet f ■

'actuations in (.l, tormed dna fstationary fl„:. . ^
'8 given by

a

f
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where v=veIocity of efflux of the fluid and a the width.of the slit.
??he tones produced by a jet are weak and uncertain. This is

due to the fact that there is no solid resonator here to resonate-^
to the tone Voduced.

(c) Edge tones? Masson and Sondhauss first observedi
that when a blast of air is directed against a sharp edge, tones
can be produced.

Let us suppose a blade shaped stream of air issues from a slit
and impinges on a sharp edge as shown in tBe figure. Two
vortex rows are formed, the vortices in the two rows revolving
in opposite directions! In the simplest case, a vortex revolving
in the anticlockwise direction just reaches the tip of the wedge-

Fig. Bi

c vnw is just near the slit. In this

"^''t-of'tre ■ is on'e vortex rotating in the clockwise directionposition there vortices in the upper row.

"  °\?iretol°'b.' lor ..rolooi'vool 'l- offlor V the..rrrot^ H".-- be.w..» 'b...i' .oathew.^.
"'Tf't tbell'oi' 'b. roov. towra. the

®  p i. la cfi'vpn hv N=— when x iseage,th.o'hepi"H°"'>"«»"'-"®' « '
®  . the slit. and the tip of the wedge ; ai the

the. b«'wee n„,„..,ow 1.the wavleogtb
.distanos be""™ „! elSux ol the air stream,
■of th. jttoi ooostao'. H.nee IreW.ocJ ol the
is U,  ,' then r . . . • ■

I
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■edge .on. is ■W=f. Thus if a is i„ore.s.d ieoping .he „ag.
slit distsno. oonslsn., th. fsogn.uo, sJso i..r,.„, .i„
P is °klu.""'T°f 1"" Lss us supposeZl the T 's°' "" '= '"""'"y •titt.d swsyd .11 „ 7 7 ° 'o the u.iniu„,l•clisfcance for formation of an edsp fnna f,, tu . •
With the increase of wave-length ai the f
If h is the distance between the two vo ,ween the two vortex rows, then according

-to Karman's formula - will hp oi.„^  be always constant ; hence h will

■ vairof r= 2Jo'thrf' ^t a
and will be equal to suddenly jump to an octave•hy th. f..tt.':ht°::r7r.tir
.ru,i=:~ -vosUoe. he sg.i. ... ^ Zr"""

■Ci. G. Bichardson pointed onf fho(-
- is formed on the layer near the J
vortices formed between the slit «n,l S .
vortices ultimately Ibe up ,, ® secondary

^formation of two vortex streets. P^^^^ry ones with the
.0

Fig. 55
2. Organ pipes :
(a) Plue organ pipe ;
The vibrations of air in = a•ads. .cuss ,os„.,a when si. PjP. «. n.aint.in,a b,

-on an edge. through a „i.
A flue organ pipe may be eith»

■ThlZ-"'l! "''""•t'o atop oiZTThose p.pes h... . P « °a'ng on, .og
'l>«n made of „ood „r „sis,. 7 o™s..s,clions

® Wind from a windchest

*  VOBTEX ^UNDS AND MAINTAINED VIBRATIONS lo9

.supplied by foot bellows at a constant pressure of several inches
■oPwater enters the mouth piece through the narrow end A and
passing the narrow slit F (flue) striks the edges E which is a
bevelled e'^ge of the pipe- The speaking length of the pipe from
E to P can he adjusJted by the stop P in a closed pipe-

It was Wachsmuth who fi rst discovered that the vibrations
■in the pipe are coupled to the edge tones. We have seen earlier
■in this chapter that the frequency of the edge tone is determined
•by the distance* a: which is equal to OE, the opening of the pipe
-and the velocity of efflux of the air stream. The organ pipe is
■so designed that at a normal blowing pressure, the pitch of the
edge tLe equals that of the fundamental of the pipe. Hence
■for a pipe meant to produce a tone in the bass of the scale OE is
made comparatively large.

(i) Effect of overblowing and underblowing the pipe :
Let us suppose that the blowing pressure be gradually

•increased from the normal blowing pressure Po corresponding to
nroduction of the fundamental vibration in the pipe. In the

-  - 4-V«n a/^eta fnno T*nlTthe
•absence of the pipe the frequency of the edge tone will be given

>ty lb. ,.l.tioo £=.«»»'•»». ">■•« «-0E ™ oubmuKipleof OE
,  -t-.r nf efflux which increases with blowing pressure,,3„aF.bov.lo...yofeffl«^_^^^^ But thing, ttill be .iilie„n.

.and n frequency vibrations in the pipe are coupled. The
•when edge on psriod is not alternable to any
datter are ^be period of the pipe will he forced on

, .appreciable ex distance between consecutive vortices
•that of the edge altered to such an extent that the natural
•in the same row wi ^^g^intained. This accommodation willvibrations o e 'jessure is P' when V' the velocity of efflux of
,continue till the pres^ equals
•the airstream is the pipe ; then the vibrations of

•the pipe w ] blowing pressure is reduced from the normal
Similarly, i ® jbe edge tone natural to it in

blowing *" . -.ju be lowered : but here "also the
/-«f P1P®> VIA**-tbe^ absence^ ipe-will be forced on it. Very soon the blowing



160
SOUND

pressure is reduced to such an extent that edge tone can hardly
be produced. Still the pipe tries to impose one of its overtones

Zll production and the fundamental is sounded veryfeebly. Thus if V he the velocity of efflux when edge fone is
resonance with the tube producing its fuiidamental. it is still
possible to have the fundamental sounded at velocity ^ when
the spacing between two consecutive vortices of the sameType or
the wave-length, is —

N'

(n) Effect of the width of the pipe : The end correction
a  he blown end is very large, about twice or thrice the radius
of the pipe. This end correction is also dependent on frequency
ence the vibrations in the pipe do not form a strictly harmonic-

series. Eor a narrow tube where the end correction is small,
the natural vibrations depart less from a harmonic ratio.

{b) Reed pipe : The vibration of an air column can
also be maintained by a reed. In this type of organ pipes a reed
of brass is at the vertex of the pipe proper which is conical. The
reed is attached in the side of the opening of a small tube
called a shallot covering a hole in it. The end of the conical
tube just fits into the shallot which is fed with air from a

^  chamber called boot. The period of the fundamental vibration,

of the reed can be adjusted with the help of a wire spring.

Due to rush of air into the shallot, the,reed is deflected and.

again springs back due to tension. The overtones of the reed

are nob harmonic ; hence the resultant note is the fundamental. °

of the reed which is also the fundamental of the pipe.

*  3. Singing flame? Higgihs in 1771 observed that a jet of
hydrogen burning in an open tube sometimes emits a musical!

note. De la Eive tried tq explain that the note was due to-
periodic, condensation of water vapour formed by combustion of

hydrogen. But Faraday showed that a note could be produced
burning carbon monoxide in air, in which case there is no
formation of water. His idea was that the note was due to succes
sive explosions of the combustible gas. Sondhauss first showed ^
that the note was due to intermittent heating of air near the jet

\
»
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andjihe pitch was related to the length of the tube. A satisfactory
explanation of the singing flame was given by Lord Eayleigh.

The following arrangement may be made to obtain a singing
flame.

An upright supplj?' tube 10 cm. high with a pinhole burner
at the top is fastened with a horizontal

gas pipe. The jet is lighted into the

wider glass tubp of about 1'5 cm. in

diameter and 30 cm. in length and

supported by a clamp. When the jet
is at ahout 7 cm. or 8 cm. from the

lower end of the tube, the flame may

begin to sing spontaneously. The flame

may be i^oaxed to sing by gradually

decreasing the size of the flame by

lowering gas supply. The pitch of ^
c  *

the note is equal to —, where c is the
2ib

velocity of sound and I the length of the tube which shows
that vibrations are stationary. When the jet burns steadily with
out producing any note, it appears like a band in a rotating
mirror l when the flame sings, it has a tooth like structure in the
rotating mirror as shown in the figure, which shows that the
flame burns intermittently with a period equal to that of the note.

m
Aa

A3

Fig. 66

Fig. , •

Lord Eaylsigh showed th.l the most
phase of heat supply hy the jet relative to that of the v.brat o„
in the tube. The vibrations are most encourage w en
supplied at the moment of greatest condensation and near the
region of greatest condensation. . ,q;anlnf>p.
.Since the vibrations in the lube are stationary, 't-

'ments of particles between a node and an an mo e a
at maailm condensation. Hence, hea is supphed at tb
jpoment of qazimum displacement. This differs from the

11 *
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of ordinary forced vibratinn u •

impressed harmcnio for • encouraged where the<-• -zero. Tile difference maximntn at displacement equal to
harmonic natui-R r,f t-u intermittent instead of

Let u

ooe of the antinodes''^ fofmed in the pipe with
middle. At the insta t ̂  ^ ^ node at the
case of all stationary w "^^^imum condensation, as in the
<iisplacements Jrom th Particles hg,ve the maximum
heat he supplied at th P^sii-ions towards the node. Let
heating therd will he to air at and above N. Due to
hence creation of an ad the pressure amplitude, and^®ro pointg of the nn I'cstoring force on the air. Thus
^he open end away fro^ shifted in the direction of
compensated by the • ' ̂ho losses due to frictiofl etc-, are
^ostant of maximum Pressure amplitude at the
^^aintained. Jf OQsation, and hence vibrations will be
arefaetion when the "^P'^ made at the instant of greatest

vih ^ne to the r, particles is away from'a ion will he discon^ application of the pressure the
I  ged. Tile two cases are shown by fig-58'
0>

^n the ^ig. 68

3ed aho'^JscuBsedRKt ®®^'od as above there will be no change m
on has'no effect on ti*^®
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p|riod. In the case of heat supply being made at zero pressure
when rarefaction is just beginning, a sudden applied pulse of
pressure ̂ ill delay the displacement in being zero and hence tinfe
preiod will be increased ; but there will be neither any
encouragement nor any discouragement to the vibration. By
■similar reasoning sudden heating at zero displacement when
condensation is just starting, will decrease the time period. This
also will neither encourage nor discourage maintenance of

o

vibration.
The most important thing is that the oscillation of the flame

•maintains the correct phase relationship with the vibration
■  the tube This is possible because the stationary waves are
Iho formed in the supply tube with a node above the jet and

finode at where the supply tube connects the longer gas
rbe^° At condensation the particles in the supply tube and
^  • • g tube rush towards the node. At rarefaction the■the from the node and thus heat supply to the air
•""thTtube is minimum as the flame is partially withdrawn. The

^ the supply tube must be above the jet ; otherwise therenode 0 combustible gas particles into the outside

'! rfhrough a node. In the figure N. correspond to nodes.tube t Buuply tube and N, Aa are the same of the
.and antinodes of the bupp y
singing tube. supply must be at the moment of greatest

To sum up, should be near the node of the singing
-condensation an should be a little more than
■tube. The length oi
,(,. + 1)1 where »i,

A  Trevelyan rocker; It is an example of vibration
heat The rocker consists of a prism of brass or■maintained by ® terminating in a knob. The prism has one

■copper with a , groove with two ridges are made as
..of the edges removed anu
• shown in .^yith a rounded top is taken and its surface

A block 0 rocker is heated to a temperature
is cleaned by smap placed on ^the lead
below the qJ ^ smart tap near the ridge, vibrations

-■may be started in the block.

I
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mann T vibration may be given in the follow^g.
contact during vibration, one ridge is in

®  whereas the other ridge is Kt a raised

Fig. 59

contact vvitute^bCkaL^'t Place through the ridge iafor local heating. Th created due to expansion
this time the oth ^ is tilted in the other direction,
the previous n-na • ̂  being in contact with the block and

«e the vibra-
block. The periodi fl * rocker to the
f® placed to vibrat ^ forces the table on which the rockei*
vibrations are mai \ ^ Produced. In order that the
between the ridgeT^u ^
there due to heating ^ ^ block and the creation of a humP'

CHAPTBE XV

musical scale : CONSONANCE

AND DISSONANCE

1. Consonance and dissonance : Two musical notes
sounded together may produce a sensation which may be either
nleasant or disagreeable to the ear. The. notes produce consonance
or concord when the resultant sound is pleasant, and dissonance

discord when it is irritating. When the ratio of the two
f-he individual notes can be expressed in

"" *"
concordimt g..i„i,oltz, the discord is due to lormution

f IdPats bv the component notes or some of theirof jg similar to the unpleasant sensation in the
overtones. The unpleasantness is negligible when
sye when u

the flicker is ei formed per second by the component
if the num er^^o^ practically no discord. But
notes IS less number of beats per second when discord
the upper imi^^ pitches of the component notes. Thus 33
vanishes depen s maximum dissonance at a frequency
beats per secon P diggonance when the number of beats is
512, while iJhere is n

" second at this frequency. The discord between theabove 78 « /anmnnnnrl mfiDnp.r on the ratio

compo

of the frequeui. discord may be due to beats between
in the frequencies. harmonics, the

'  fps depends in a compound manner on the ratiocompouent no ^ ^ oa woll OO f.Vip rlifffireneenponent n ^^g difference

the frequencie due to beats between
he frequencies. harmonics, the

the ^^„_dent on the quality of the component
..dissonance is ®P
notes. _ 'nterval: lu music, the absolute values of

2. Musical j^gg important than the ratio between
fi-equencies oftwo no^^
f^he two. The mus compatibility or agreeability of the
of their frequenom?. ^ gfmple ratio of the frequencies. The
two uotea depe
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^  xplanation of the vibration may be given in the follow/)ng.
con^»!r thaii during vibration, one ridge is ine block, whereas the other ridge is zt a raised

Pig. 59

conl.orwitUhrbtoka°na''rhfor local heatfnd rpu <=° expansioneating. The rocker then is (iiUo,q ir, hu^ nf-.hov /^IVftCfciODl
this time fu '^'fted in the other direct
the previous one°raisyt?^ block and

■ <^5008 are maintained '
block. Tlje pgj.- . , heat flow from the rocker to the
is placed to vib' f forces the table on which the rocker
vibrations are m • ^ Produced. In order that the
between the ridar"^ ^ contact
there due to heating block and the creation of a bunaP'

•  ' *?* t
;.rV'

LV **■ - . .. ' 'Vi ■ — •

CHAPTER XV

MUSICAL SCALE : CONSONANCE
AND DISSONANCE

1  Consonance and dissonance; Two musical notes
•sounded together may produce a sensation which may be either
Pleasant or disagreeable to the ear. The. notes produce consonance
or concord when the resultant sound is pleasant, and dissonanceor discord when it is irritating. When the ratio of the two

•  the individual notes can be expressed in

concordant geimholtz, the discord is due to formation
III heats by the component notes or some of theirof unpleas unpleasant sensation in the

overtones. fl j^jjers. The unpleasantness is negligible when
eye when a or too rapid. In the same way
the flicker is ei formed per second by the component
if the num er o practically no discord. But

is ISSS , , „ ̂ ^/-.v> nrVtrartnotes IS less number of beats per second when discord
the upper iKU pitches of the component notes. Thus 33
vanishes depen s maximum dissonance at a frequency®  a produce the maximum dissonance at a frequency
beats per secon aissonance when the number of beats is

1  *1 1® IIU512, while ui freouency. The discord between the,  78 per second at this frequency.•above 78 p ^
nent no difference

of the frequences between
of the two notes or any of the harmonics, theIpendent on the quality of the component

■  aepends in a compound manner on the ratio
component no e aa- waII fl s t;he difference

the
7 dissonance is

cotes. . . . In music, the absolute values of
Musical inteiva. ■2. Musical "^^^^^^^,^jgggijoportant than the ratio betweenfi-equenciesoftwono e

The music nr asreeabilitv of theIbe two. 'J-n'' ""7 " compatibility or agreeability of the
of their frequencies frequencies- The_  note, aepe.a. 0. •

.  ' ;'v.J.



Si.f.u

y{.'i' •

iilhiV

ty,y. :

I

166

J2K

SOUND

'  intexvals are expressed by the several terms 85
given below.

to

Interval

Unison

Octave

Fifth

Fourth

Eatio of
frequencies

1 : 1

2 :1

3 : 2

i : 3

Intervals

Major Third

Minor Third

Major Tone

Minor Tone

Semi Tone

Eatio of
frequencies

5 : i

6: 5

9: 8

10,: 9

16 : 15

Harmony ; Notes th
simple frequency ratios Pheasant in combination have
ratios are sounded togeth i, simple frequency

frequency ratio 4 • 5 is produced. Three notes
chord there are fn " ' a triad, while in the com-

is an essentLTr'r 4 : 5 : 6 : 8^
*otaI effect of a sequence ! The melody is th^another. of notes in the scale played one after

Hjatonic scale: A
ieh are divided into o scale is a scale of frequencies-

niited by the octave'of groups, each group being: ■
of a musical sc i j i'one of the group. The

from'^'^'^ The S'^oup is to32 to 4000 • gp„ scale extends over 7 octaves-

ot th.
Mles' «>"ea th, I .""'S'"''"'® from the lowest

^®namedin^3gj °"'o or key note to its octave. The
m'-

denoted the n' f Ua Dh ̂'°^^^bythelett;^^^;^Ni. Sa. Helmholt. first
'®rs G, D, E, E, G. A, B, c

^11

>  ■!
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^he frequency relation, etc. of the notes comprising the
diatonic scale are given in the following table.

7"
M

Symbol
Frequency relation

with Tonic

usical interval
between succe

ssive notes

0 „Do 1
, 9: 8

D Ee 9:8,

0

OC

B Mi 5:4: :
16 : 15

F Fa 4:3
9: 8

G  • Sol 3:2,

5:3 :
10 : 9

A La
9 : 8

B Si

OC

16 : 5

c
do 2 : J.

Th, third colomo eivrs Ih, ratio of Ih, fr,9a.n,y of the,  „s„ecl to that in the tome or key note C.note witH P between the successive
fourth column gi expressed by

rhTratioTrelBd'two minor tones expressed by the ratio 10 : 9
in4be scale. _ _ tones and the semi-In Indian music, g 2,s/irMties respectively. Thus
tone are represente jher 22 shruties.in the octave there a diatonic scale are the ideal

The ratios of the n dissonant harmonics if suitable
ones and there wi jg the idealcombmations of j^g^monious combinations and no scale
one to produce the the scale is
can be designed to rep characteristic of modern
its iimited ° rgkeynote is frequently changed. ' Let
western music is tha ^ frequency 256 ; if
•US suppose, the -7 frequency 320, new nctes are

tonic is -changed to i:-
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■"irrdi.t2"T »fcott «»«»■Eqi.ilen,pereT5°cale"®'i°'aJ °°'V°twelve notes in fc h^ i equifcempered sc/le there are
any pair of successive^Itls interval between
interval called se > same. Thus if x is the
^'•^=2, whence a; successive notes, then

The intervals between 1-L
andtheequiteiperedsc«l of the diatonicscale are given below.

Equi-
tempered

c D E P G A B c

1 1"J25 1"250 1"333 1"500 1'667 '1-875 2

1 1122 1"260 1"335 1'498 1-680 1-883 2

squitempered scalp ic•ys like piano, organ t essential for an instrument v
Musical pitches • Tl, ' ®^^'nged instruments with frets■<^^6 laboratory. Early ^

Wain pitches in use. (i) century there were three
(2) New Philharmonic with A at 442 c. p. s.
Diapason Normal with J i- ^ P"
national committee reap 1° 1939, an inter-

P- 8. All the other'l'^r^^'^ ^
Vowel sounds • a ^ calculated on this basis-f  its own and it cannot t, ®°Pnd has a characteristic quality

0 Wind from the lun/ by any musical instrument-
Wo naembranous reeds cords which consist of

•  Ravelling up the mouth urnT The vibrations
sudd ^ Wouth. Tvf ^ sound determined feyn stoppage of the lina p ^ ^^nsonants are produced by the
CO According to Helmholt. ' ^lovement of the tongue,
oral r'l"' cord 1° ^he harmoniccavity^^a8^°°''®^®"°8ofthei^outr°^^^^ resonance in the^ Whole may °°S0 "^nd. throat. The oral

wo simultaneous resonances to* a

\

in

three

I  •
!

6i
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vowel sound. The tongue divides the mouth into two cavities,
-the larger one having a resonance between frequencies 300 to
850 and'^he smaller one between 600 to 2,500. D. C- Miller
made a Fourier aaalysis of the optical recordings of vowel sounds
and bis experimental results confirm Helmholtz's harmonic
theory. He concluded that all vowels can be grouped into two
classes, one having a single characteristic frequency of resonance
and the othe^ having two characteristic frequencies of resonance.
The vowel sound of a in'father' belongs to the former class
while c in 'met'belongs to the latter class. I. B. Crandall
Tth the help of a distortionless microphone and oscillographscT'riea out erieMi« study 01 »' 'ow.1 sounds and

Tr^ out their characteristic frequencies and the energycould' find frequencies in the human voice.
Ks'wo°ro''uI« lreq«.oo» oh.r.otsri.tia of . vowel sound agrees
avith that oi D. 0. Miller.

&.V

■ V. '
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5hus

-- -t possible,

twelve notes in the f equitempered sc^Je there are
anv nair nf • the musical interval between
interval caUed'Tem^tone"* b 1'
2.12 _n , between two successive notes, then
® -A whence a:=l'0SQ4R

The intervals between +lio •

Scale
D E P G B

Diatonic 1"250 1-333 I'SOO 1'667 ' 1'875 2

'ys lite piano, organ ete for an mstrui
Musical pitches • Th' ® instruments with tr

^be laboratory. Earl ^
■"lain pitches in use. fl) '|l^'^® _P^ossnt century there were three
(2) New Philharmn • . ^^^^barmonic with A at 442 c. p. s*
I^iapason Normal w^th c- P- s. and (3) French
national committee . second. In 1939, an inter-
^^9 c. p. 8. All the othT"""^"^^^ ^ should be taken aS

Vowel sounds • a '^o calculated on this basis-its own and it cannot h^^^ ®°und has a characteristic quality
^be wind from the In ^ by any musical instrument-
two membranous reeds oords which consist of
travelling up the mouthl / vibrate. The vibrations

0 shape of the moutJ" ^ ®ound determined bysi^bden stoppage of the lip " °o°sonants are produced by the
According to HelmhnJ naovement of the tongue-

components of the cord ^ to the harmonic
°rsl cavity coneistiug of ^ reinforced by resonance iia Whole ml ^ose and-throat. The

8 e two simultaneous resonances

'  « p
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■^owel sound. The tongue divides the mouth into two cavities,
+he larger one having a resonance between frequencies 300 to
850 and%he smaller one between 600 to 2 500. D. 0. Miller
made a Fourier analysis of the optical recordings of vowel sounds
„a bis esp„im.»t.l sssblls so.firm Hslmholtzs hsrmomo
!wy. He co»el«a=ath.t.Il™'-l> g.-o»ped mt. two
cUssel. ooe h.viog a siogl. eh„.et»istio fse,oeoey o r.soosnee
n pfher havin-' two characteristic frequencies of resonance.:andtheoth o belongs to the former class

W belongs to the latter class. I. B- Crandall
t' the°h°p 01 .alstottiooU.so.ieropho»a..a osamogr.pbsoTlattlUe stoay o. -tglJ.lta"

ooo,a.« out tbe bo..» yolc.
dieltibplioo O'O';7 J ohsrscteeislic ol a yowel sopod agrees
His work on the freq
•with that ol D. 0. MJler.

a

.1, y'v, ,
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^ the acoustics of buildings ®
^ ̂Reverberation: Lpf- i

sounding in a dosed hall If t-u ^ ^ source contfnuousljr
energy density will soon be verv Perfeoily reflecting, the
walls absorb sound perfeetl
walls have been removed. T' lu
■'^ary inversely as tho ° ^"atensity at a point will

B„. h.e. j::::,-""' «"»»- »< tbe pom^rom the walls and the en^ i' always sonae reflection
huilds up to a steady stafo ®°sity in the enclosure gradually

"- 'k-ouroep., ->.«. th, e.„gy ppoducea
8 Source of sound is Bndd i ® of foes due to dissipatiou.
="°>e time due to ,1"' ™' »«• 'i-e sound poosiBlsecting surfaces of the en ? ^ '^^H'lple reflections from the

as reverberation. This phenomenon is known.
The reflection from fK

but too much of it iml^^"', ^°°reases tbe loudness of the-Mo'oorer, ,1. encwl "r" " ">0 tall.
ere may be interference ®®°^ate to particular frequencies

reverberation Tto 0- the other-nsie IS affected. Thus loudne ^ ^ sonorous "effect of ,
ons of reflecting powe' " due to opposite

•oefore iggg^ d '

of a^ousls!'''!. f--to the ^ ^ ^ subject on a who fi rst
audit! fhst the r He cams

a good hall or

or in nfu ®03t be nn ,!• j. sound heard should
tlasorr""''"' "■= Mtiool . "■» ""und heard,
syltablee T^° 'be Sam' u'"'™ ""f eomponenls of

ThUtaTr''''"'""'"^ """""
/' ™ eee'osura, any"""" °' "^'beeetion :

""" '0 be uniform throughout the

0 '■

I
if mffm • • ■ i7i

■:l

i

■f
I

■, a

■if

i7r.
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enclosure. Let E be the energy density at any instant and SS an,
A

element of area forming the enclosure.
6't' /

/r/

//
-® /

f

/Z^80

Fig. 60JJl^. vv

•J -mUbin the enclosure an element of volume-Let us consider withm ^
By = rBe. an angle d with the normal to <5S..

m.Z .t««» - »»"" » •" "" ™'"""Si) will be STF=HSu J^, whereScois
of energy reaching 8S from Si; will beof eneioi' go . p_of energy reaumm, -the small solid angle subtended y

Thus
EBv.Sco

^EdS ^^^0 cos edeS4,dr - w
. flirou"h SS from the front side will beNow ooo'Sy. '•".Icmispheto of radim C, where 0 ia the

that coutamed m
velocity of

j J jsio 0 cosO Ad cUdr
o 0 0

JiEGSS

W =

(!)■

(2)'
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CHAPTER XVI

the acoustics of buildings

Reverberation: Lpf^ •
sounding in a dosed hall If a source contrnuously
energy density will soon be ver J Perfectly reflecting, the
walls absorb sound perfeetl +u
walls have been removed. l'
jary inversely as ,tbe squaw ^
te source, Bui iu .ct„al » ' L "'
from the walls and the ene ® reflection,
builds up to a steady stafp ®risity in the enclosure gradually

«ou« per sscoud ">= energy pr»,uced
e source of sound is sudrl i ^ ® °f foss due to dissipation,
^O'T.e time due to one Pe^'^ists.

reflecting surfaces of the en I reflections from the
as reverberation. This phenomenon is known

Tbe reflection from ft,
«°"nd, but too much of it imna7^"', fricreases the loudness of the-
Meeeoyer, a. euc.oj, of speech in the hell,

ere oiay be interference °ete to particular frequenciea
!' «verber,ti.„ Tt' ■>"■«•nsic 13 ajcciej. Thus loud„. ">0 sonorous'effect of
ons of reaccin, ='•"'? .re due to opposite

•oefore iggg^ d '
pJtbf ■'"^■'.'i.ira"„euc3'''i, "■O"
to the ^ ^ enhieot on a trho ff ret
.udilo "=.t ih° ; fooling. He came
boioud °j)™r '''''''-""'fosTh)™"' .good hall or
"fo other bo "0 distortion of'Th""'"^^''""^'
s.>:r --bo »' 'b °c::;oueu:'of
re/^r '-"-'o .u^°'°'~0'- =
'° 'b°. tKra'n'd™.'-^ '™o:bi,r r '"t

""" to be nnifornr throughout the

;.i' I' f ,

)ki

Jic".
ff'.

v.
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enclosure. Let E be the energy density at any instant and 8S an.
element of area forming the enclosure.

S<|) /

/A/
//

9  ■ //// ^'^
Jr ' - •

Fig. 60xig.

within the enclosure an element of volume-Let us consi spherical co-ordinates at a point
Sy = rSd. ^ an angle 6 with the normal to dS.,
P distant r from . _ game in all directions, the amountSii^ce the energy stream IS the same m

V .SSfromSi; will be STT^H.Su where <5» isofausrgy reaching 8S iom
of energy reaumffethe small solid angle o.bfo-ao'f y

Thus
pSu.do)

Sxrse.SrslB^}m^^
=— b

^E8S ^^^0 cos eSBS^dr - (l>
. fhroufh 8S from the front side will beUo, energy ■'"•JJ''®^„iaphere ol radios C, where C is the ^ ^

that contained m bate .
yeloeityolsooo''- ^

j 1 ^ ^
O 0 0

J^ECdS
I

«

w=

(!)■

(2)'
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cn=los„e i, ' • ""8" i'« second by ib,

3-BC5;a(5S = ̂_BCy4, where A=SaSS.
If the energy produced per gecnn,^ K, 4.u

the rate of increase nf «n ? ̂
equal to the difference of ratl^^ enclosure will be
and the rate of absorption of energy^ry Ihe'^^T'^

y. En^ ^gyhy the enclosure.
cuerj

Hence P- ^ ̂
'dt

4

or, dt-- V.dE

(3)

.EGA

it!
4

Writing x=P--^£^ _ ,
we have dE=~^^

CA

Hence dt= — iZ^"!
OA X

m

Integrating within the linri,,
ana i-i,

P—ECA
iVf1't=

OA

1'[[ ̂°g « J

/

J.

P

Since at 4 = 0, energy densitv in firdensity m the enclosure is zero.
(4)

Prom (4), ~QA P~^
4F • A.

P

r

whence

The steady state energy p
putting 4= 00 ^0 may be obtained from (4), by

Thus energy density in the of i
^  ̂he steady state

^
I

0_ 4P
 IS

TT^'niewe can rewrite (5) as

.  •B-£o(i-c"rv')
:r-,. e ( (6)

Xi
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To calculate the decay of energy, let us take the help of
equation (8). In this case the source has ceased to sound when
the energy^density in the enclosure has the maximum value Ho-

T7.y-1 A ^IP„  EGA_ydE
Hence --v

dE _CA,fwhence — = ^ai,

,  the time counted itom the instant the source hasr.rdto:o:ua When energy density was..
CA.

Thus
E=EoO

- ift.
(7)^

CA,

Ae~ 4F
(8)'

a • io defined as the time in which the energy.BemrberaUon time , y;,.ie ^alue from an initial energy

density falls as large. This is a range of 6 bels
density which is
or 60 decibels.

From v'l HJ.. i w — w Jij

n- and H = energy density at just.
"where I = reverher.tio. fme eul ^
audible value.

tp^if.log 10"
AO

= 2-Bx|^logxolO'.
2'3 X 2A' (B>

jd V

•  foken in feet, then by putting the
• „ the measurement we have d-m l„ metres,

the value qf the con

Ifew''. U.'W'.- M'*!.
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Optimum reverberation time • u .•
^,iaU determines the suitability o'f sn h '
Optimum reverberation time in a hall IT
reverberation time for speech or fo •
is designed. The best f! t ■ ^ ioi' which the hall
on their sizes. For however, depend
reverberation time lies betwLn ran^lT
hall of volume of 253,000 c-ft if k ^ ®®°ond3 while for agenerally has a ̂value ^ 2 5^'
beration time is necessary for speech thTT '
again borne in mind that reverberation T
appreciably by the presence of ^ >^^11 is affected
absorption by clothes etc audience in the hall due to

3. Reverberation time in a dead room •

-alls of a room is less than oT^the'
^oom : it may be called a ,ea^ 1,,^
coefficient is above O'i. For a nerf. m absorption
reverberation time in such a room sh u
formula according to Sabine's

T = M' F
8when V is in c. ft s fu

Js in feet per sec. Thus cal^ffitld^ velocity
zero though actually it ig go. 'reverberation time is not

Taking into consideration hieV,«, j °
woo the =.le„,.„a revetbere'tirn " ''o'®

■-s logirr^when V and S are In
e''' fi' and so ff

icient. ' " 'raspeotively and a the
ixj Cu« 1(5

an absorption coefficient. auu a uneIhus for a completely dead . "
whence giving « = _ ^ ^nd log (1 - «) q
expression, r=n ' Bubstituting in the modified

T'or, a live room a ig
and then ff^antity ; then log (i--«)=.

Sa 4 .which is Sabine^Bfoi:^^!,. -a
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4. Measurement of absorption coefficients :
(a) Sabine measured absorption in open window units, the.  .

open window being a perfect absorber of sound. The absorption
by one square foot of a material of absorption coefficient, say "6. is
equivalent to that'passing through '6 sq. foot of an open window.
The unit of absorption coefficient is the Sahine.

Let us suppose, two sound sources of powers Pi and Pa are
taken. The sources may be loudspeakers supplied by known
audio frequency currents and hence of known intensities. Sahine
in his experiments used organ pipes as sources.

Let us consider that the experiments are done in a rever
beration chamber whose walls are covered by a material whose
absorption coefficient is to be found out. Let the first source

"  V hp sounded for a sufficient time till the energyof power oc Buu

density attains the constant maximum value ■^. Let the source
w ...it off and time Ti be measured till the intensity

.he Tb»
0-^qi

iP, ^

gjmilar experiment is done with the second sourceA secon simi intensity decays to same limit
.of power Pa wlien wee CAr,

4Pa ^7

OA

CA^

e

Hence
Pi_l '47'

Pa
47

Q^{Ti ~ T Pg.
4F

4F.
, piA

Pa
.^rhence A=aS~ q X

(9)

•g the mean absorption coefficient S t^he area,.^vbere a m tne m carriedout with the empty rever
These experimen absorption from the walls is ver]

aiC uv - o

^hich absorption from the walls is verychamber mderation cn
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small and then with the absorbent material whose coefficient of
absorption is to be calculated. Sabine in his experiment expressed
aosorption by the absorptive material in terms of the area of an
open window.' Times T, and T, in (2) can be measured by

ear or by an oscillograph.
(6) Stationary wave method :
Absorption coefficient of a material pan Kp a ,

f  . LUdueriai can D0 mGasure^ hv flif*-use of stationary waves. The method is very convenient and
fves --fe results, and a small amount of malell L the-
form of a slab is required for the experiment. But tl. i-
defect is that the absorption coefficient can be ^
n„™. incid.., s„d.;;::erwh:.rrh» r ̂

experimentally „.i6ea Ihet ebeorption depends ta l, s
on the angle o, ineidenee. The '.ttangeTen: n.e^T IT'
consisted ol an earthen ware pipe 226 cm. long and 30
diameter. One end ol the pipe terminated into a sound eh h
m which a loudspeaker was actuated bv n t hamber
bp a yalve oscillator at a consrnt Ir^anoTVh
the pipe was closed by the specimen of the
coefficient of absorption was to be found o^^St t""""'
waves were formed inside the pine due f. . .
incident and partially reflected waves A cafb
microphone was used to find out the i
points along the length of the tube, "^f't^^'l
measured with a good reflector at the end o thef
comparison of the displacements at the same no T'
cases, absorption coefficient of the al K in ^ ''he two.

5- Design a hall : '

Eegnirsmcntsolagoodaudiloriumarc:

01 ic'c^^Zh^rwh-(« Bcsonancc ol s.cta ol T,
space in the hall should be as sm!n hoards and air
is very noticeable in small halls P^^sible.. The last effect
M Curved walls and domeiq -i-

they tend to focus sound. should be avoided as.
(iv) Interference giving riso fo,

at different positions in the hall sbonri!'^^ and minima of sound
uld be as small as possible.
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®  I (>

The most of the defects can be eliminated by proper design
of the auditorium and lagging walls with suitable sound

9

absorbers. >

6. Stu^y of an auditorium :

(а) Hippie tank method :
A model .uditormm may bo tooted hy ripple tank method to

locolioe the del.elo ol . d.olgoed hell. Eipplee »e prodneed m
mercn y by . ptylu. .ttached to .» .eleetr.cUy m.mtamedmercury y ^ ^fchdrawn frbm the mercury

Tail suitable instant by an electromagnet. A model auditoriumat any , . i fUn nosition where the sourceV'^rtlVd br::\t:ot:i—. W„e,redeet.d
l7i:omth. wall, ol the m^e. au^^ri^
w.,e.Ieugth of oouud to the aelo.I aud.tormm.

(б) „„d by Sabine. A model ot
Spark pulse „.„,j

the auditorium is place ^ produced at the required
"light" spark gap ; a sovm ^^gress of the pulse is photo-
position of the ^ith the help of the light spark,
graphed at varying mt by a fraction of a
The light spark is beui gy
second, the exact ^graphic plate is protected from
automatic arrangement ^ resemblance

XtoSrShy taken by the ripple tank method and
between the pn
the spark pulse method.
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*  CHAPTER XVII

ULTRASONICS
1. Production of ultrasonic waves •* rn. .

frequency at which sound waves cease to nrnd
sound in the ear depends on the individll lVr
frequency abovq 10,000 c.p.s. is call./ I convenience.
though waves may produce senn f r ultrasonic frequency,
frequency is 20,000 c.p.s. The °
producing sound hv b i • generally used method ofg  sound by supplying a loudspeaker win, j-

•or o„„. ^ se M the duphragm-
impedance of the coil is so laree frequency and the
be passed through it. The most generTir'''''i'
produce ultrasonic waves are-fl) fVip methods to■method aod (2) the pieaci.etrio oa„m°rreThoT"°°

2. Magnetostriction oscillator ; Whenevmagoet. „ateria, hhe troo or oiehe. i. ^agor/a; ̂ Idl'^::

,  Fig. 61
a change in length If fi,. . .
-'-^..terp.t,pgoprrept;;ae:;rj-^
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magoelio field of the coll aloog the lepgth ol the rod, ^ ">«e w
cycles ol change in length, s.nc. change n length .a

iodenendent ol the direction .1 the field. B.l .1 the rod .»
initiaily magnetised by a second coil carrying direct current, theirenueney ol alterjtions in the length will he the same as thatfrequency o ^ change in length of a rod due to
''^''^^o1Stlfis very minute; about one part in a million;

the frequency of the magnetising field is the same
thll 0° one- ol the natural modes of yibration, spseially the.as that of on Htude may be very large due to

fundamental on . ^ ultrasonic
•resonance, ana nichrome, monel
waves. Pure nic e magnetostriction oscillators.^etaletcatematsnaUlo eircnlt .0. gsne'r.tion 0,

A  i„ ,1, flgore. A nickel or steel rod is
^iltrasonic waves i g the grid
clamped in the mi ®' ^re connected in such a way
and plate circuits o£ a _ couplingAhat by a proper feed a maintained. G is a variable
•of the two coils osci circuit can be tuned to
condenser by means resonance is indicated
•the resonant frequenc milliamperemeter A. The

a change of cur through thecomponent ® rmsgncticslly. or sn .ddition.1 coil
^'•'«"^'°'T.■n..»tm.yb.nsed.
carrying direc middle, the frequency of the

For a A-od clampea.  ' ivibratlonisgivenby(fundamental vi ^
P' 'P

f vibration of the oscillator can be selected
^Tbus tbe frequency ot ^ magnetostrictionLa suitable choice 0 ultrasonic waves up to

^.moitnr is suitable ^^^^^g^cy above this, piezo-electric
about 60.000 C.P
osciUators are,tors are used- ^ . j. ^nd P. Curie found out

piezo-electric ,„teh subjected to

'/ an their faces, develop electric, charges.■  or tensiou onpressure



Ui

180
SOUND

t  I

his is known as piezo-elecfcric effect of the crystals. Eochelle
shows the greatest piezo-electrlc effect, but due to its inferior

mechanical properties, quartz or tourmaline is generally used.
or production of ultrasonic waves quartz crystals arg generally

pre erable. Pig. 62 represents a transverse section of a quartz
crystal cut perpendicular to the optic ax% of the crystal
called z-axis.

I z- axi s

• I axis^

mmm

/y

•-X

,  Pig, 02

Let a hexagonal slice perpendicular to the z-axis be cut. Any
straight line joining two opposite angles of the hexagon may be-
called ai-axis and a straight line perpendicular to a!z plane-
is y-axis. The x-axes are known as electric axes of the crystal.
Slices of crystals with two largest faces cut perpendicular^
to the jc-axes or electric axes are known as x-cut crystals, while
those with largest faces containing the electric axes are known
as y-cnb crystals.

ULTRASONICS 181

* An electric field applied in the direction of the z-axis produces
no effect, while applied along a: or j/-axis causes the crystal td
contract or^xpand in the direction of the two axes ; _ expansion
in one direction being associated with contraction in the
perpendicular direction.

If a piezo-eiectric crystal is mounted within two metal plates
and an alternatdng field is applied across them, the crystal will
Vibrate with a frequency equal to that of the alternating electric
field. The frequencies of the possible vibrations are given by

AT

»~2iy p

(See Ohtftter VII) ̂ '^^^eftions in L^Z^mmTtl'^lcTysIa^the
different ̂ ^°°^^' ®'7ery vigorous if the frequency of the applied
;:Ml:ltne of thJ frequencies of the possible modes of
iKvofion of the crystal. _ _
^  • ffll like quartz can be maintained in

Mp oi.

Fig. 63

.  be used with advantage. The
„  Hartley to a tuned circuit consisting

.fltal 19 connected P Proper feed back for

\ ig maintain®^ Ijy ^ One end of the coil is
bigbleP""" °



182
SOUND

^connected to the plate and the other to the grid through a>
condenser. The coil is tuned with the help of the variable-
condenser to the resonant frequency of the crystal. The crystal
may be placed in a liquid in which stro'ng ultrasonic wave^
will be produced.

Velocity of sound at high frequency :
(a) Pierce's method : The velocity of sound in air at high-'

requency was determined by Pierce, using a valve maintained
quartz generator. The crystal ̂ rface was made accurately

to Itself by a micrometer screw. The waves reflected from the

in the 1 7 oscillator and an ammeter placed
whenthe^ maxima and minimawhen the reflector was gradually moved towards the crystal

waves V the phase of the reflectedwaves reaching the crvstal TTny • •

ammeter could be replaced bv a s. .f. measurements th^
initial reading in f-Vi i nmtive micro-ammeter, whose
with th h In f 7T to zero.rtaln'? a e„i, .„d

the disteece

successive peaks wUr ^ ^^^^'^1, the length between the two
which wLwrcofir, '"" '""•-'wo aodee from
fregoenoy of the ultraao'-""'""^' ''"""""owladge of the
determined. """ "I -Ohod eoold be

W ̂ •leelty of sound In liquids:

Wood .ndoftrpl,™','i"t„'° '''
in liquids at ultrasonic f '^®®-®^^oment of velocity of bound
o-P-s. or more, practically ̂ piTj" ^ of 2X lO'^
flPartz crystal of diameter aLnf H

-fleeted from a reflel f. waves after
react on it as described previfousl the crystal surface and-
lamp coupled with the osciUoi- circuit containing a neon.  oeedlater may be ertingni.hed when tfih

ULTRASONICS IBS

rejector is at a node of the stationary waves. Hence knowing
the wave-length velocity in the liquid could be determined.

{a) E. w. Boyle and Lehman measured the velocity of
sound in water using two quartz transmitters. The quartz
crystals in water with their faces parallel to each other are run
from the same valve circuit, and hence vibrations of both are in
phase If coke- dust is placed in the path of the beam, ib

h i.u mAoc! and from the nodal distance thenltimntely «oU.ot» at th. nodas
wave-length can be determined. ^waveienocn r52xl0® cm./sec. approximately
as found by them was lOAXJ-U
at 15°0.

5, B-itfraction of liSM bf »""»»»'• """"" '
■  • ,001 medicted that liSht passing through aBrilouin m f ̂  ̂jg^acted if ultrasonic waves of very

transparent liquid wil
short wave-length travel ^

Due to the effects o the liquid m
density variation along distances acts as a
which density «»'''»°";°";'gi;i!.imif.rtoo.einX-r.y.
grating, and the diffrac ion ^ j ,g,
by the regnl..- w.yes and > the wayedeng h of
grating space ^ is the angle of diffr.elio. at helight, then »»-2d sin f) when ^ w.«-le.6th of th.
nth order, fjotting d->o
sbund, p ,

.  sin 0„A = 2Ao sin0-^j,r ®

, jT the frequency. According
where C=v.losily of is sinnsoid.l, onl, first
toBriiouin, when the e'»'' « But in praetie. with a strong
order specti-nm is t» b® ̂ •" r ' t„m e.n be obt.inrf^

sr:nd N- S. B-genfi'. „ra.gemeut due
• —girrb:---'
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liquid kept in a transparent vesspl "R,, o ^ i , ''
;i , vessel. Uy a second lens the trans-

Xf A7tL^;;rr;re Ve:::;-™ - ̂
togir^'^'Th 7 ' ®'®'^"°^'°°^P«"^ra'Tf7te7l77rstogether with the undeyiated central heam may he obtained.

ultrasonic waves: Langevin's

of sma7crytX oscillator consists of a mosaicor small crystals of nuart:' 9 »v.»v, ru- i

1  j 1 , 1 rtz ̂  mm. thick cemented together andplaced between two steel nlafpa c c ... ^
mi , , . .. ^ of diameter 25 cmThe ,ho . v.b„t.s .. . p,,.,
natural frequency of oscillatfn^ci f .i.
40,000 b. p. s. and the p assemblage is about
about 3*5 cm, orresponding wave-length in^water is

Fig. 64

-U°ael]°! 'Ohkel with the sea,
■TOllage oseillatiop! " ekieldiag the other side. High
"i'l »h oh tr oiroult■'•".ped trLs is ocupied, A series o.•seemblag, ,t 0eBlrIl"rinLtX°'Thes''
reflected from the bottom nf fu ' ultrasonic waves are
position is to bb meas, ^
small e.m.f. Within th 7 "^osching the crystals generate
of the waves and their leturn between transmission
matically connects the -n ° assemblage, a switch auto-

The time Xr"??" ^^e receiving side of thereception of the nulse s'^ween the transmission and thedepth can he llr^i""™ " «"'oni,tio record,
^ound in sea water. knowledge of velocity of

sin-i iJgA oscillator forms a cone of semi-angle
where X ia t.u. _ ■ -

^  ̂ oone of semi-angleid "« h is the wave-length and B the diameter et

mim- ' . .

1

!y,v

A''
V,

k
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othe slab. The smaller the wave-length and greater the diameter,
the less diverging will be the transmitted beam- ^

7. fStome properties of ultrasonic waves :
fa) A rod di^ed in a liquid through which ultrasonic waves

are parsing becomes hot very scon due to the heat generated by
the vibration of the rod with the fi nger.

(i) Intef.se nltrasomc wave, transform immiseible l.,n.d
lite water and oil into .table emnlsion. Smote becomes
co aguiated, and large particles thn. formed cannot remam .n
suspension. a„i„„d in an ultrasonic

(c) Many micro-orgamsms are
field... Small animals lite fish, frogs, a po
or maimed.
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technical applicati6ns

a peiiodblny vL^ng Woiuoe^
takes place in air due to ^ en periodic change of pressure-
o<. .00. rr,l I':

(3) al r"-.' "°°' ooi.o.J  The sensitivity must be high.

w Carbon n.lorophone: n ^

'o vibr,.. oaertinfrrZ"'
the granules. The eleni • P'"essure on

«-oo„ea„., r„io. „o
pressure change • and a fl f Periodic
oblainod wbeo 'terminal, Z'TLT"""' "
=;>»«=>.. to the diaphragm .'a .1
Plate,_ The circuit T "
primary /;oil of a i-v c contain the

®  or MlL?tooT" f "-PP'
Partrcular (rcquencie,. He O'oM resonance at
a background hiss, speciaUy JC sensitive but has
employing batteries with larger" output is obtained

'-•■teating or tb, carbon gtTJer''®"- ">The quality of output of a u5ue to unavpidable response^To rather poor
certain frequencies and an.
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d-nequal change o( resistance in equal aispl.c.».«ts ol lb.
diaphragm in forward and backward direct.ons,

currei i Ibrougb a carbon miorophon. e.n be espres.ed .w
a / . V .a,A_L _?!_

^ = :
'B

=  ̂ sinpi + |a sin'pf...)
B\ B ■«

5(l-Lsinpl)

+i' sin pi -■

cbere s. = e.r,.. of the b.ttcr. 11 the
' H," IbW t°°rwSrtb°. brackst show, a second b.rm.m.
._4istortion. Neglecting It

.  b .a is uroportional to displacement ® of
the diaphragm, then m

. = sin pi

_ 'Jix, where h is a constant.
^  . ,-Hnnal to sound pressure,

Thus it the displacement 19 propo
the output will be distortionles . ^
is generated due induced e.m- ■ conductortttopo't..l -
a^lf tfe ;;"°be dTstortionle^B. _The
velocity, the niay be motion of the
belonging to g tuating soun P

moving dx̂+sx,

(»)
„,.nas..o

.^^J^COBPi' *

thuson.-po"«"'"
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are negligible, then
dx__pp
dr^

is very great. slsctromagQetic

&__7,

Thna
dt

tl)0 3rd

or mechanical)

sensitiveness is, however, infpaired b'"" ̂ ^^e^uency response. The
^ red by excessive damping.

2-(a) Movi"S coil microphone ;

Fig. 66
is a rigid th" • *

"r a ooi.
«'k. ZT s z" "»
r:;r »s:;r r --

of

Thf eo"'""™ °""»P6«ne:-""'S ^consists of a

lire ribbo„re2 «»"
0  ̂ sound waves both
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from front and back and hence pressure on it is the difference of
pressures acting from both sides. The induced e.m.f. geneiatedby

R  T

Fig. 67

th. vib.«io. ol Ih. ribboa may be Bt.pp.a «P by a m.toh.i
traasfom.r T. Tb. .I..tromago.ti« d.Bpmg » va'y 6"" ■

Th. ..nailivity of lb. aboy. typ. d mi.ropbon.a ,s leas thao
tbat IhTmoying .oil »i."Pk°"». 'T
rflit Th. raapona. of a ribbon ml.ropbo.e is a,r.ol.oa.l.

a, (a) Cryalal

:tSa. '• r:-tsr:;:r r'pro"
IrW iP =* Lats lb. oiyo'a'
allarnalioS

I principal axis.

Fig- 68

,  rr, the same crystal and cemented
"  rr n thin slices are cut ro gurfac'es of theTwo tnin » gjjges ana

tog.th.P- B.lwe» lb.
*  f)
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two crystalsj there are thin metal foils which form the electrodes
as shown in the figure. The slices are cut in such a mannar
tjiat equal and similar potential differences are developed in each.
Hence when they are hent due to vibration of the ̂ diaphragm
D, there is a potential difference across the two electrodes which
■can he suitably amplified by a valve amplifier.*

The response of the microphone is uniform from 100 c. p. s*
to about 5000 c. p. s. and then it rises gradually. The sensitivity
is poor. , •

^ 2. (d) Condenser microphone : A condenser microphone
consists of a thin steel diaphragm about "002 inch thick clamped
by a metal ring at its edges. P is another metal plate facing D,
and the. air space between the two is only about "001 inch.
The two are insulated from each other and output is taksn from
the leads Li and L^.

tfTJTJOON La

Fig. 69

A steady potential difference of about 300 volts is applied
across D and P through a high resistance. Any periodic displace
ment of the diaphragm due to a sound causes a periodic change
in the capacity of the condenser formed by the diaphragm and
the plate, and hence gives rise to a fluctuating current The
varying potential difference afross a resistance is amplified bv
a valve amplifier. The output is very low.

The response of a condenser microphone is nn.-f i
50 c. p. 8. to 8000 C.P.S. The linear !
damping is caused by the layer of air hefthe plate. A condenser microphone is verrBTitabl^f^^^'^^""
intensity of a complex sound. measuring

thetlwing. ' "^^''^^Pbone can be understood from'.
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Let Co be the capacity of a condenser microphone when
ijodisturbed by sounds, B the e.m.f. of cells, ?■ a very high
resistance, all in series. *

Suppo^ a sound of frequency p/25r is made in front of the
microphone and let us suppose that the simple harmonic pressure
changes in air cause corresponding changes in the capacity of the
condenser microphone which may. at any instant, be written as

G = Go-^5G = Go + Ci sinpt

The small' increase of charge due to the change in the
capacity is EdG. Hence the simple harmonic potential difference

ESG
developed is q

The instantaneous current may be written as
w.nn

L and 0-Co is a small quantity][where tan and u

Hence p. d. across r is
rHCjsin&l+i]

{ a complex vibration will
.  all components o ^
"  CoP

be e,«llr ampUaed.
2  Loudspeaker. pker can be understood fiom

•  .inles of a loudspeake ca ^The 'P'®' To the apex of the con
'^""^VlylinVical paper former can move freely

wire is attached. ^ magnetof thin copp ace between rally sr.pported
iithiP tbP ThP ■" ®
When catdbos'd tinB-
.t it. p..ipl«""'"' *

a
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I

"When amplified fluctuating current is passed into the coil,
there is a force on the coil due to the radial magnetic fields

This force is li H where I is the

total length of the wire" constitu
ting the coil, i the current through
it and H the magnetic field. Hence
the coil will vibrate along its axis
due to the fluctuating force. The
paper cone, being attached to it, will
also vibrate in a similar manner and
generate sound waves.

The construction of a moving coil"
loudspeaker is similar to that of a
moving coil microphone. The -'-ormer
transforms fluctuating current into
mechanical vibrations, while the

latter generates current when mechanical vibrations are-
t produced in air. Thus a loudspeaker is a microphone working

backwards.

The magnet used may be either an electromagnet or a
permanent magnet. When the cone vibrates, if compressions are
produced in the front, there will be rarefactions behind ; thus
there is a difference of phase between sounds coming
simultaneously from the two sides. Hence a large baffle is used
to screen vibrations coming from behind.

3. Recording of film; A standard size film^s 35mm"
wide and the width.of the space for recording sound at the edge-
.s nearly 2 5 mm. Generally two methods of recording sound
are in use: {a) variable density method, (b) variable area
method.

U) Variable density method : One method consists in °
modulating the brightness of a gas discharge lamp by amplified
microphone currents. A slit illuminated by this light will have
an image of varying brightness. Thus the sound track in thil
method,will consist of parallel transverse lines of varying opacity °
according io the brightness of the image of tlje sjit on the film.

1
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In the modern variable density method a light "valve"
is flsed.

The light valve consists of a shutter of a duralumin loop in
front of a slit. Light from a bright source is allowed to fall on a
slit whose image is fbrmed on the fi lm. A strong magnetic field

Fig. 71
o .

by an electromagnet is applied transverse to the loop which
vibrates when amplified speech current flows through the loop.
Since current flows in opposite directions through the upper
and lower portions of Ithe loop, they will either approacheach other or recede from each other, thus pemitting less or

to nass through the slit. The negative of the sound
ZZl ol the film, ll.m.lor.. will COBsist of hee, of diff.roBt
opacities.

(b) Variable width method :
o annrce after passing through a lens areBays of hght from ogdllograph mirror to a slit

reflected from the sur a^ direction of the arrow,
behind which the m through the leads and
Amplified microphone cm ^ jbe loop carrying

Pue to the action 0 _Pue to the action ^bout a vertical
tho flaotaolins Th. obI.bUo „hioI.

the lemth of to i, .g.f» deiormmed b, the
oBionUtioo of itoodShlboloPP- / 1» 'J'
ntronjlh of the onrvont fio« S i

• ffln. the fm.S« 0' .ound .»ob will, fherelor., con,,,.
•  formod, Tbo
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of a dark porfcion which is due to the
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('
image of the slit and a

o

Pig. 72
transparent unaffected portion

□ □
□ □
□

□
□

□
□

0
□

□
□

□ □
□ □
□ □
D

□

D a
□ f--

to -.

□ 4

a

□ m

□ ■M
□ ■M
□ .3

Q 3
a 1-

Pig. 73

-Reproduction of sound :

so 12°'

the sound track and is focussed on the cathode of a photo-electricIjr photo-electric current generated is proportional to
H  "incident intensity. Thus as the film moves across the beam,
atlbe rate a* which recording was made in the eircui t, we shall

FiLin ^ To Awi})lil'ie>

-IvwwwvJ

-rjF-
Fig. 74

current due to fluctuating brightness of the
get a fluctua varying potential difference across
heam on the ca circuit of the photo-electric cell is
a higb amplifier, and then the amplified current is

•i . -r: -. -r

'A '

... if'ttr' , .



appendix

(A) Doppler Effect

aTnopplereVeT''JLTffT 'b' too™. motor ..r pa.ses ao oLef/e '
Ti. pitch of the copoa appla' .' I
moviDg away, from the observer th^n^h
him. A similar effect is also observed wilh a''
blowing its whistle. Passing train

fr*

In the following detailed discussion on Doppler effect we
assume the velocity of the source or the observer to b ,7
than that of sound in the medium.

Let h so " ""server :
hsry ob,erv.raTo • statio.
to 5., let us suppose it has executed 00?"'^  executed one complete vibration and

Pig. 75 (3
the disturbance in, the medium (
to A. II T b. the period, at S. has ̂ ovsj
end 0 the velocitv ofsopp,,.™ 'f"'™ o, the eource
S. and A are the successive uosif <'T. Since
of the air particles are th, ,a„.o'rt "" '"'l"«'=™ehto
Changed wave-length A'=g . source is m .. .
mdependentoflbemotlopo, • "'»«"? of sound ia--ed bv tb. o"ccrr::::::;--mher Of r:,.;:

N'=:S
X"

mmrngim

i.'^v ;v'
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= -—- where ?>7'=frequency of the
®  N

source

" • * ' N

=iY.
c — u

Thus the pitch of the sound to the observer will appear to be
,  the actual pitch of the source when it is moving

totards the
Observer, substituting-" for » m (1). we shall get

^  . .. C IrrN(2)N'=aN.-^
C-t-M

Thus the .pp.""' i"'""Thus the appa"°""
case.

/.•I Source stationary, observer in motion awayCase (»)•

from the source :3in the source :
.u nosition of source, Oi the initial position of theLet S be^tne second. In this time the observer

'  _^v

Oi

Fig. 76

ontained in a length c except those
II fh© W8iV6S Creceive ^he number of waves received per

contain

sec

where is
1 .{fv of the observer, we can writethe velocity 0

(3)

^hus the appa
'  .p U ia lower than the actual piich in this

flxent pitch is i"

fJ?

(1)

V /'A'. ' .v.'vJvr-.x

LVri

;  I
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suli'if'f f o'^server were in motion towards the source,^substituting -V for t;, the apparent pitch would be

jj' _ N{c + v) 0
c  «

and the observed pitch would be higher,

ehanged^at aT^WeaTrlrsf\i)^
change in the wave-length • f>,
displacements at any instant j
what they are when the source is

-tion alon. the same

Let M and v be the velocities nf fu
respectively in the same direction along ir'"' observer

Let r = changed wave-length in a- . l^^e.
source. Then X' = A- !£ u lotion of theN ̂  ^ the wave-length when
source is stationary. If
velocity of the receiver t ^ apparent frequency due to the

'  '!>= PWious discuBrion,.
jSf^c^

?:

-(«-,)/(>.I)
^N'c-v)
Nx — ti

^N'-c ~v\
C-?f

(5>

iq'-.N(c+w - v)
C + lU~2i (6)

Case (IV). Source movinff in « j.
stationary : direction, observer

At ani instants, let the source he at ^
a velocity u in the direction of th^of the arrow, while the observed

I

APPENDIX 19»

i3,,stationary at 0. Let the source be at B after time St. A
disturbance created by the source at A will reach the observer

Fig- 77

*  ■ o

OA ̂ i,ere c = velocity of sound. The disturbance
atOattime<+V'^''

r ,,+8jwillreach Oat time t+6t+~.,  t 5 at time "

®  ̂ glap^es between receptions at 0 of
Hence the time ^ B at times t

ai.tarb»ces «re.t.a b,

t+S^ + T" V e f

ad e'D being a perpendicular on OA.
.St —T' ̂

^

i-fod of the source and T' the time
ifybe ^'^I'rtion by the observer;f T be the time ^ observer

3®°' , . oomple" vt"""" "Jor recci»ioS ^
y  8f'-r

■ <;

,, « cos 9

-

f7>

I
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0 being the angle made by the straight line joining the

N _T' ''
2^' 2?' 'W6 have from (7) •»Since

jtr

(8)N c-u COB e

Thus when d"=n/2, tliorA io i.
•  « the observed pitch.

' If 0 = 0, ̂ =^
N 7^,

andif0 = sr, j^= ^
N c + ?«

as found earlier.

iireS::™- 'n a„,

^'t"'««^ ve,. iTin'L" tri

J'ig. 78

In this time the wave that was at a
to positions D and E, so that has moved

the observer were'

'• APPENDIX

.stationary, he would have received the.-abaoiuuai^, lie .vvmiii u».e 1 uLi..

201

 waves contained in A.E,

hut as he has moved in the mean time to B, the waves contained

in BF will also pass across him. Thus if N' is the apparent
»

frequency

^^AD/^^AD
E' l' A BE

AD AD

' AD+BF AD+AB COB d
(9)

where 0 = angle made by the straight line joining source and
observer with the direction of motion of the observer.

A7' r..dt+St. V COS
l^rom (9J cMcM

gA-v cos 0
c

(10)

If 0=;r/2. and there is no change in the apparent
pitch.

If 0=0, g

g = !t
N  "

I case I

and if

,v) S«u«® ""I '° 'Caseiv;. ^re moving in any direction,

I, the e"«« "^t'otloTof lh..om-cem.ke..n™gle
fliat the direction of mo the observer at any

^°fh the straight line ]ommg makes an
^ '-le -Th- •' "

,  a with tne o _angle a given
apparent pitch is g (^--ii^os^a!

J^'=i*^- cos 01

/

by s^bs^itnting
I coS da

(  1
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(B) Melde's Experiments

c P. Melde in 1859 showed experimentally that the transverse
vibrations of a string under tension can be maintg^.ned by a
vibrating tuning fork. The string, one end of jvhich is attached

^ to the tip of a tuning fork, passes over a pully and carries a
weight W at the other end.

1. Transverse arrangement of the fork ;

In this arrangement as shown in the figure, the prongs
vibrate transverse to the direction of the string. Bv adius
ting the length of the string or by changing the weight IV,

Pig. 79

Strong resonant stationary vibrations may be gpn i- •
string which may vibrate in one or several 1 the
of a loop between two nodes, then or T~2
velocity and N the frequency of fro,, ' ®
string which is also the frequency of vibrXs

c=m = N.2x=/T^
* m

string. per unit length of the

2a;V ̂  2ZV "

The laws' of length, tension a d
help of the above relation. ° verified w'th the

ij'
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string

2. Lougitudinal arrangement of the fork :
In this arrangement, the tip of the fork vibrates along the

By adjusting length and tension, the string may be-

Fig. 80

•H. .l.ree .mplW- II »'kMto "k" = i, to.t oi ti" TkPP " » •-
the frequency of the stringexample of Bubharmonie resonan •

Lmadeto**" i»>7unwever, he m distance between
Tte string can. how the

one loop ""^/^odTs are always ^1,3^ .f-

.„oT.'ce. Se CO
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periodic change of tension in the string A • >

When the prong of the for'k has the m
towards the right. let us suppose the TagTin thf't"""'
maximum and the particles of the string af T
at rest. As the prong has the maximum d f
the left, the string is straightened and has
velocity As the p.ong moves towards the righT t^T
to inertia continues to move unwa d 7
maximum displacements at all noinf/ u
maximum displacement towards the righl
vibration o^f the fork the string ha« " complete
vibration. ® midergone only half a

The laws of transverse v;v.« f ^
verified in this case, since ^ can also he

A7=-i /T
2ZV~

w eie iV—no. of vibrations of the string
per second.Phase and group velocity :

in cases of propagation of sound nf n
clastic media, we know that thrvetl
disturbance in the wave-front is independent o ^
displacement when such a progressive wave The
direction i. ,i„„ at .m/ZIT.,

"■ 4 _ • 2Jr ,ki-a Bin^ (ci-a;)

and c the velocity of^T pras^bT^''^"^^ wave-length'
valooil, of the wave. or tha phL

- 'oo'ii«aep.»aBoZrewZfnglha°s'-7h'Lonid Borfaoe aod light waves Leo.. "PP'o" "» a
transparent medinn., I„ e„eh a oa ,Z'®T7 "'"'"S'' '
oomponenl. which the wave sZ ''monic ,
on the others and thn i of will a •
,, . I'esultant wavn " ^ainthe resnltanf appliioje „ov., with . 7 ">»'-loctv wh.oh is different ,r„„ .hose of Z7hZ .

ynase waves.

\
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Let us have two progressive waves of same amplitude
proceeding along x given by

^i=a sin ^ (ci-x) and
A

2iram e ^ j, {{c-\-dc)t x}

one train of waves having slightly larger phase velocity and larger
wave-length than the othei. ^

The resultant displacement is then | = cj +£2
How f. = »sinf[(l-f)l(o+<'«''-'l]

=a sin ]
«>

Hence ^ = ?i+^3 ■

-acos-{cl-x) sinyjf {ct-x)-tdc]

= A sin y
siD7(7(^«-^)-W

2^ z) —where tany " j+cos

s=4a cos yt \\ dl^
, a, sinca i' "!

iTS^a cos a
where ^ ,

■  /



,.206-
SOUND

,/clear fiom the expression that the resultant amplitude
:has^a velocity. ei,en by = also the amplitude-
changes simple harmonically with a; and t

4-U^ , . ^
—"j "Aou u/ aoa i,

■the individual wavefc'olr^^^^^^^
Sharpness of resonance

Ip page 29, we have

M. =

The slope of a curve in fig. 10-is

4-]^eJ^m' 8^" A

•Hence

(re" A^4-46®)''

'i±)
d£^'' -' (w ■" A " + 4 h

when n is constant.

2

~~ 2^ A = 0 at resonance.
-Now radius of curvature B is given by

■

■  1=^ dx^
B

When A = 0, we have ^
dx dA = 0

^  H.„o. i
.i.e„is.tA=.0,gi,»by .•

i=_rel_
B  26" .

Smaller the value of B, sharper is ti,„
^sharpness will be very great if n is verv I«v„ 'f Thus

'8rge and & very squall.

■  \
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(E) Acoustic Impedance

207

Suppose we have a vibrating column of air in a conduit ; let
us considej instantaneous displacement over a section of area A
to be uniform and also the length of the conduit small in
comparison with the wave-length of sound, so that there is no

reciable difference of phase over the length. If m be the mass
Tair and ^ displacement of a particle at any instant t, we can

•ite the equa'tion of motion of the air under a periodic force as
-  (1)m''J+s^ = Fe ivt

dt

f-intf volume displacement X—A^, we haveWriting

m'd'X;.^X=^F'"=Pe'^' ••• (2)

p jg the amplitude of the applied periodic pressure
where

over the section.
Writing -jirei —I and equation (2) can be rewritten as

A

(3)

dX_ v gi2)« and simplifying
Putting

we have
„ii>t

M
dt

Pe
i{pt - 5r/2')

'ip--
cp

(4)

is similar to that for an instantaneous
gifje above an inductance I and capacitance c

V  lectrical erxttent ^ ' electromotive force in the circuit
A^runder

.  Eyl—f)iven by

/.

1\

i1
c

i
r' :

Mm .
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F.om (4), we gefe acoustic impedance as ir = Zp-i • l = JIL
^  cp' A'''is i-nown as inertance and c = ̂  as compliance, these being

equivalent to inductance and capacitance in electrical circuits.
The mass reactance due to inertance and reactance^ due to
compliance act in opposition to each other. We can^wdte the
combined impedance +23 ̂ here 2, and ^ - sand ^2--^.

When . = 0.i.e., or = the rate of volume dis-
Placement is maximum The frequency in that resonance
condition is iV=-^ = —i—

23e 2nVic' " '

(E) Acoustic Filters

By proper adjustment of acoustic circuits, an acoustic filter
can be made to transmit desired ranges of frequencies.

Let ns cOMider several eorrdeil, i„ eetlea each ot tapedance
Va separated by branches in parallel each ol impedance a Ut

rrrrrHnTt:"

Fig. 82

Let X. , Xe, Xa be rates of volume displaci
CD respectively. ement in ab, BO,

\
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Then applying Kirohhoff's Law in the closed-ucoustic circuit
BE FOB

*  ' (-^1 ~ -^2) ̂ 2 — {Xa — 22 — Xa Si~0

whence ?^+^^ = 2+—.
^2 -^2 ^2

We may suppose that rate of volume displacement decreases
tiuiformly over eachl series circuit due to similar impedance in
shunt after each conduit.

TX7 •4.- -^2 rfWriting;^ =

We have e*+e~°' = 2+—

or .l-

I  "" ot
e +e

= cos hoi
2sa 2

If "< is imaginary, there will be no attenuation during trans
mission through the line. Let oitatiB, where /3 is real. Then
•cosA'< = cos iiP = cos B. Since cos/3 can have a value between
+1, and -1, cc will be imaginary between those limits. Thus

'there will be no attenuation if lies between 4-1 and —i
2za

'  zi.e., when — lies between 0 and -4.

High Pass Filter -

1  1Let Zx and Za =pla '
PCl

When ̂ =0,
'Za p'oxl

= 0 or p= oc.

When~=—4, —-- = 4or p=— .
^2 P Cxla 2 Jcxla

Hence this filter will pass frequencies from
^cxh

f ,

. * •

m■H
■  ' ' >

to infinity.

14
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Low Pass Filtei*

1

pca

For — =0, ZiCaP® = 0 or p=»0

For — = —4, — ?iC2P®= —4
Za

or p =
Cz

Thus the above filter will transmit unattenuated frequencies

between 0 and-
^

n

 fJhxO £

Band Pass Filter

Let3x=?iP-— and Z2 = laP~~
pc PCi s

For
Zl.

Zz ■

■0,
hp-

PCx
=

hp--
 0

PCa

whence p = —7==! (ZaP?^—\
VZiCi \ pCa/

For ^^=-4
^2

I iP-
££i= — 4 whence

laP
pca

4ci+Ca
0x0 ̂ {l 2^

Thus the filter will pass frequencies between

1  / 4ci+C2
23rV f.2^ * CiCa(^i"l~41a)

without attenuation.

and
•Ij

o  ' »1
i il

-i
f
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Stewart made several mechanical fiilters of the above ifhree
types. The agreement with the theory is fairly good. Low pass
filters* were made from two concentric cylinders with space
between them and having walls at right angles to the axis of the
cylinders. There is a row of apertures in the inner cylinder
communicating with the space between the two cylinders. High
pa'ss filters .were made with a straight tube and short side tubes.
Band pass filters are generally the combination of the two
types.

The filters may be used with advantage for elimiaation of
needle scratch in a gramophone, microphone and valve noises.
They are useful when undesirable frequeripies are to be
eliminated.
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