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Preface

The figure on the cover of this book was not drawn. It is a
photograph of one of ‘the results of the behavior of light in
crystals, which is what this book is about. Since the book is writ-
ten for people with no previous training in either the subject of
crystals or the subject of light, the first six chapters tell what sort
of thing a crystal is and the seventh tells about some of its phys-
ical properties. The remaining chapters describe some of the
effects produced on light, mostly polarized light, by crystals and so
constitute an introduction to optical crystallography.

In this subject, good color illustrations are essential, not only
because they save many words of description, but more impor-
tantly, because they give the reader that familiarity with the hues
and intensities which will enable him to interpret the optical
effects produced by crystals between crossed polarizers. Therefore
it is a pleasure to acknowledge my indebtedness to Ernst Leitz
GMBH, Wetzlar, for underwriting the cost of the color plates and
for providing the color photographs of interference figures and of
quartz and calcite particles between crossed polarizers. Without
this assistance it would have been impossible to include color
illustrations in this book. I am also grateful to S. O. Jorgensen of
the Bell Telephone Laboratories for the remaining color photo-
graphs. None of the photographs would have come through satis-
lactorily to the reader without the conscientious attention of the
publisher and printer to high-quality rendition of the color. Most
of the more intricate line drawings were done by F. M. Thayer of
the Bell Telephone Laboratories, to whom I am grateful for
their skillful execution.

Several people have read all or part of this book, and it has
benefited from their suggestions. First among these are Melba
Phillips of the University of Chicago, R. L. Barns, and A. N.
Holden of the Bell Telephone Laboratories, who read the entire
book and suggested corrections and additions of importance.
Others who have contributed in this way are E. U. Condon,
I. Fankuchen, V. B. Compton, W. L. Bond, 1. D. Payne, and P.
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vi PREFACE

Singer. My husband, I. E. Wood, has not only critically read parts
of the manuscript, but has also provided that understanding co-
operation without which a married author cannot enjoy
4 book.

This book is dedicated to Ida H. Ogilvie and Dorothy Wyckoft
These are the talented teachers from whom it w ‘
tune to receive my early education in cry.

At the 1962 meeting of the American Physical Society in Balti-
more, { ?o- H. Donrll]ay,.welil_ known among crystallographers, be-
gan a discourse on the signific i
:]em o gnilicance of crystal forms with the state-

. Jne should not turn up one’s nose at facts simply becaus
they can be seen with tl L
Y Ci 1 with the naked eye.” In these davs i
. days of pions and

muons and strange p'micles this i
e < b 11§ 1§ d tl - g i H
Lo . 1ought Prov okmg ad-

writing

as my good for-
staIlography.

Many of the facts presented in
naked eye, the reader’s eye.

s this b.ook can be seen with the
ay they give him pleasure.

EvizasetH A. Woon
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1 Symmetry

A crystal is a solid composed of atoms arranged in an orderly
repetitive array. That is about the shortest definition you will
find of a crystal. Some will consider it incomplete, but all will
agree that what it says is true.

Consider, for example, the very widely known crystal calcite,
calcium carbonate (CaCO,), which, because it is found in
nature, -is called a mineral. The metamorphic rock, marble, is
made up of very small interlocking crystals of calcite, and so is
the sedimentary rock, limestone. Most white crushed-stone drive-
ways are made of bits of calcite, and a crystal of calcite was the
essential part of an optical ring sight used in World War IL
Later we will see how this ring sight worked.

The pattern on the inside of the front cover shows the arrange-
ment of calcium, carbon, and oxygen atoms in calcite magnified
about a hundred million times. Each black carbon atom is sym-
metrically surrounded by three white oxygen atoms. If we were to
erect an imaginary axis normal (perpendicular) to the paper
through the center of this COy group and rotate the group
around it, the oxygen atoms would occupy indistinguishable posi-
tions on the paper three times during a complete revolution.
Therefore this is “an axis of 8-fold symmetry,” or “a 8-fold axis”
for short. -

Suppose we rotate the whole pattern around this imaginary
axis. If this is difficult to imagine, we can place a sheet of tracing
paper over the diagram, trace a few of the atoms of the pattern,
and then, with a pin at the chosen axis, rotate the tracing paper.
We find that the axis is an axis of 3-fold symmetry for the whole
pattern. We can choose the axis through any one of the carbon
atoms with the same result: they are all “crystallographically
equivalent,” which means that each one has exactly the same
surroundings as any other one. We will return to this pattern
later,




2 CRYSTALS AND LIGHT

Plate I is a photograph of a group of calcite crystals. Such a
crystal has grown by the gradual accumulation of atoms, layer
upon layer, in an orderly array, the atoms of each layer pulled
into the proper arrangement by the attracting forces of those
atoms already in place. In the photograph, a crystal in the middle
of the group with its edges outlined by ink dots is oriented with
its sharp tip toward the observer
page. It is down this axis that we are looking in the pattern on
the inside of the cover, and we see in the phoLtogr:lph that this is
a S-f(_)ld symmetr_y axis for the outer shape of Llhe crystal. This
fact is not surprising because the crystal owes its shape to the
orderly array of the atoms which compose it

As the crystal grows, the supply of m; :
greater on one side than another, so
added there. The cr
but me

» its long axis normal to the

ierial may happen to be
that more layers will be
Ay Of)'stlal SYmmetry may thus appear “distorted,”

gictanglestthat the faces make with each

()l.her “’ill Sho“’ [hdt th(‘.‘%(:‘ same leg “(llc S
b ﬂngles remain [I 5
; : & 1€ SZ A = 't
lhe relal]\'e S17€s8 Of the f:l - ;

ces. Ex . FALL
beginning of Chapter 4, 8- Lxamples will be discussed at the

This constancy of interfacial an
about crystals

professor of an

o be r gles was one of the first facts
ecorded. In 1669 Nicolaus Steno, a Danish

atomy, r
between correspond?' ep°fted that he haq measured the angles
of quartz from dif[erng pairs of faces on many different crystals
discovery that the ‘?nt localities angq had made the remarkable
resulted from g 1eZ ;er_ﬂ the same, The idea that this regularity
‘€gularity of inteyy
. {2 Internal str i
until a : al structure was n roposed
A ]nl“;_lred years later, as we shall see in C} . 0t2 i

Sense of symmetry j ‘ B
) _ Syn 1S a powerfy] ¢
It 15 a simplifying Key to the endl T [Or_thﬂ M
which make up erystailine yo11q various arrays of atoms

. e : ds, enablj i !
terms of familiay patterns B o
; There are only a fey g
ton is an operatjon suct
Pattern, which bripps i :
_ : MEs It into cojpe;

- - 0

if the object in Fig. 1.1 s e
%he Paper at its cengey po
It occupies » Position op

essly

ymmetry opey

ations, A symmetry opera-
1 35S rotation, bj y o]

performed on an object or

ce with s ample,
rotated 9o itself. For example

: around an axis normal to
nt, [he]’l, as

a result of this operation,
15 absolutely indistin-
Originally. This operation

uisk i i
guishable from (he Position ¢ olzcgc _“(;“Ch
upie
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is therefore a symmetry operation. Since 3 x 120° = 860°, this
operation would occur three times during a full rotation, and
the axis is therefore a 3-fold symmetry axis.

We can generalize by saying that if an object has an n-fold axis
of symmetry, it occupies the same position in space after each
angular rotation of 360°/n around that axis (e.g., 120° = 360/3).
In Fig. 1-1, we may consider another axis passing through the
center, but lying in the plane of the paper. Let it go right be-
tween two of the circles (tangent to both) and bisect the third. In
order to rotate the figure around this axis we must let it swing
into the third dimension out of the 2-dimensional page, but if we
rotate it 180° the figure will again be lying in the plane of the
paper, occupying a position just like its original one. So this, too,
is a symmetry operation of this object. Since 180° = 860°/2, this
is an axis of 2-fold symmetry. How many of these are there in this
figure? We could choose one through the center bisecting each
of the three circles. There are three such axes, as there must be
il one of them is to rotate into another about the 3-fold axis
which is normal to the paper at the center of the figure. Fig. 1-2

FIG. 1-1 FIG. 1-2

shows these 2-fold axes, tipped with two-cornered symbols to
identify them and, coming out of the paper toward us, the 3-fold
axis, tipped with a three-cornered symbol. We say the 2-fold axes
are consistent with the operation of the 3-fold axis, just as the
3-lold axis is consistent with the operation of the three 2-fold
axes: one end of it is just like the other, so that a rotation of
180° around any one of the 2-fold axes will bring it into a posi-
tion indistinguishable from its initial position.
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Since we have already moved into the third dimension, let us
explore‘ the symmetry of some familiar three-dimensional (,)I)iccl&;.
COHSI(]EI: a square four-legged table, like a card table. If we
pass an axis vertically through its center like the shaft of a large
Pmbrella. over a table in an outdoor restaurant, we find tl{at thgi‘;
1[;;:1 I’IXIS of 4-fold symmetry of the table. Unlike Fig. 1-1, thé
o tlze glsasg :i(; syg;r:etrgtr) axes normz.zl to its 4-fold axis because it
i vE yof wm:lr:l, hut hone going up: even disregarding the
i ¢ ave to turn the table 860° around a hori-
zontal axis before it coincided with its original position in space

"This can, of course, be called i
’ dn ax - S
really means an axis of no symmetr;/sa[zfail[om o

FIG. 1-3
FIG. 1-4

T"I‘he :1-Eold axis is not the on]
here is another sor¢ of sym
sawed the table jn two ac &

88 Up aga; dle, Par.allel to one side, and
tical mirror, as in Fig.
- The mirror image of
the position occupied
efore a vertical mirror

E—
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plane through the center of the table from the center of one
side to the center of the opposite side is a symmetry element of
the table. Expressed in terms of three mutually perpendicular
axes, x, y and z, with y and z lying in the plane of the mirror, any
feature of the table that occurs at a point +4x,;, +y;, +2; also
occurs at a point —¥;, +¥;, +2. To have only one such plane
would violate the 4-fold axis, and indeed, without having to saw
another table apart, we can see that there would be a second
vertical mirror plane of symmetry at right angles to the first, as in
Fig. 1-4.

There are also vertical mirror planes (sometimes called sym-
metry planes) that cut the table diagonally, through opposite
corners, so that from the top the complete collection of symmetry
elements of the table looks like Fig. 1-5, in which the thin lines
represent the mirror planes and the small black square is the
four-cornered symbol on the tip of the 4-fold axis.

FIG. 1-5

FIG. 1-6

Does the table have a 2-foid axis of symmetry? If you rotate it
180° around the 4-fold axis, its position coincides with the
original position, so it has a 2-fold axis which is, so to speak, in-
cluded in the 4-fold axis. Since there will always be a 2-fold axis
coinciding with the 4-fold axis, we mention only the axis of
higher symmetry.

Suppose the table has a metal brace to hold each leg, as shown
in Fig. 1-6. If we take these into account, the table loses all its
planes of symmetry, although it still has a 4-fold axis.




6 CRYSTALS AND LIGHT

There is a third kind of symmetry element in addition to
planes and axes. We can illustrate it with a brick. (See Fig. 1-7.)
Mosft brif:ks have some sort of markings and irregularities b'ut lf;t
us 1magine an ideal brick with every face smooth :;nd un-

Ny

FIG. 1.7

blemished. What Symmetry elements does it have? It has mirror

planes and axes. Try to determine ho many of each and where

th :

noey are beffore reading any further. ot s A
square faces as an ersgtz brick to hel oD

problem. P you visualize the

1g. 1-8 shows the Symmetry planes and axes of the brick. We

FIG. 1.8

FIG. 1-9

of them Jike th

€ one in Fig. 1.5 i

v / g. » looking
op, but we Will have to find some

"€ of symmetry, the one

can make a diagram
down on the brick fr
way of indicating ¢
normal to the direc

l'le horizonta] pla
tion in which we

symmetry. Whatey

met
er feature of he b Iy element: a center of
away from the ex

Tic - :
A k ?ccurs a given distance
ay in the opposit -€eton will also occur the
of the brick (o 3 d!rec[mn_ If we draw a line
One corner, then that same line
7

from the center

D
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extended in the opposite direction {rom the center, will meet
another corner at the same distance from the center, as shown in
Fig. 1-10.

B -

FIG. 1-10

If we keep the center fixed and move the left end of the line
toward ourselves along the edge, the right end will move away
from us along the opposite edge, both line segments changing
length together, always pivoting on the center of symmetry as in
Fig. 1-10. In this way we could proceed along the entire surface
of the brick; the two segments of the line passing through the
center and ending at the faces, edges, and corners of the brick
would always be the same length. This is the test for a center of
symmetry in a brick. The “operation” is called inversion through
a center. Expressed in terms of three mutually perpendicular
axes, x, y and z, with their origin at the center, for any feature
at x;, y;, z;, there will be an exactly similar feature at —x,,
=Y —%1-

The table did not have a center of symmetry, and neither did
the three-circle pattern in Fig. 1-1.

FIG. 1-11

FIG. 1-12

In Fig. 1-11 we sece a solid object bounded by four isosceles
triangles, called a sphenoid. It has a 2-fold axis of symmetry
through the centers of the short edges, and two symmetry planes
intersecting in this axis are normal to each other. But so also does
the house-like object in Fig. 1-12, which, unlike the sphenoid,
does not have four similar surfaces. We need an additional sym-
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metry element to indicate that the sphenoid has more symmetry
than the “house.” If you rotate the sphenoid 90° around its 2-fold
axis and then perform the operation of inversion thro
center-point of the object, it will occupy
again. This combined rotation and inv
operation, and the symmetry element ¢
a rotatory inversion axis, or simply a
case it is a 4-fold inversion axis. In diagrams it is convenient to
distinguish rotatory inversion axes from rotatio
opeén squares or triangles instead of the soliq fi
using. Looking down on the sphenoid fro
see the symmetry elements shown in Fig.

ugh the
its original position
ersion is thus a symmetry
hat represents it is called
n inversion axis.* In this

n axes by using
gures we have been
m the top, we would
1-13, the open square

FIG. 1-13

FIG. 1-14

indicating the 4-fold Totatory-inversion axis, the sol

indicating the 2-fold rotation axis coincident with i

straight lines indicating the two mirror planes,
‘The mirror plane describes Symmetry with reg

the rotation axis describes symmetry w to an ax;

the. center of symmetry 557 i ;C axis, and

point. The inversion axjs describes Symmetry with re:IE):Cit tct)oa;l

axis plus a point. The operation of Totatory inversion i«
bined operation, and if You try to se Hine Sdovis

its character completely Note how
A R Fale .
(Fig. 1-14), Afer & TN '; 't operates on the sphenoid

id almond
t, and the

) PEct to a plane,
ith respect

* Note that the Symmetry
position indistinguishah]e fro
the representation of the act.
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the rotated object (formerly point D) is now related to .A of the
original object by inversion through the center, and similarly for
B’ and B, €’ and C, D’ and D, as well as for the edges and facea
Thus the combined rotation and inversion brings D into A \'ua A’
Neither one acting alone can bring D into cmncu}ence \\.’lth A.
Therefore the sphenoid does not have a 4-fold axis and it floes
not have a center of inversion, but it does have a 4-fold axis of
rotatory inversion. :
Othllwtlge 1215&: of the three-circle pattern, the table, the brick, and
the sphenoid, the symmetry operations we performed aIw_a)s left
one point unmoved: the center of the ol?]ect. The 'OPEI]‘HU.OI:-S clm
an object that leaves one point in. the object unmoved ¢ u_rm,:_, the
operations as well as keeping distances bet.ween- all p?l]ltb un-
changed, as in a rigid body, is called the‘pomt gmulp. _Iil.‘:fte;;t n}
Appendix II, we will not need to consider any other kinds o
/ / ations. ' \
S)ngzéi;r)s,?gggsy operation m11§t, of course, be conf}s;fent wz;:r
every other symmetry operation in the point group. 1s me ks
Ehat‘whilc certain assemblages of symmetry operations can make
i others cannot. ]
up}??nfil&fé??é 3-fold axis canno‘t have a single mirror ];Ia;m
parallel to it because the axis requires that every featu_re o) _t e
object, including its mirror plane, 'be repeated 'three[ times in a
complete revolution around the axis. Jf\nother \\‘ay 0'-elxpr§s;1r]:§
the same thing is to say that, if you design an objec;_mgt; le.d -azis
axis of symmetry and a mirror plane parallel to t is 3-fo +1200,
you will find that the other two symmetry planes exist at =
10'l[jlll’eisﬁirls)tt‘erdependcru:e of the.symmetry operatlonls_ m.::mll.):t?z
group can be explored more easnl.y when we have a ¢ mg[l([he (ele_
way of looking at three‘dimen.ston'al arrange‘mentsthc:)d s
ments that represent them. This diagrammatic me
; i hapter 4. ‘
de;li]cé]l)fa(:)::rg wcg)will find that not all possible point fgroups c;:g
be used to describe the symmct_ry of arrangement o1 atom: |
crystals. The continuous periodic array ?f the lcr}i'ls_ta I‘slr}:;: 1;;2
can only have certain kinds of S')’mmff“}”. anc ttols32lml
number of possible mystaﬂogmphzc point groups :
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* * *

If you want to practice determining the point-group of various
objects, here are a few suggestions, (Answers are given at the end of
Chapter 2.)

What are the symmetry elements of:

1. The human bod
- A shoe?
A cube?
- A box kite?
A pinwheel constructed by
nearly to the center and bringing
to the center point to be impuled

¥, disregarding the insides?

U‘»-b..usio

cutting the diagonals of a square
one corner of each triangular wing
on a pin? (See Fig. 1-15.)

FIG. 115

Symmetry m Crystals

A crysta] i

repetitiv oms arran

e arr;
rray. That was (he Way Chapter 1

ged in an orderly
We exploreq s

began, and in that

v » Deginning 1y : v of
erly arrangemen, of some qf th{i ;lth the symmetry of

toms in the crystal

11
SYMMETRY IN CRYSTALS

atoms is repeated in all directions puts certain lrESt::;“‘i::S‘zlﬁ 21;;?
kinds of symmetry crystals can have. In this chap

se restrictions are. { y ;
WIEtea[?lirsi}Iiecr}'Stals actually have.various kfnds lclJf lllmfe;;ccill;)er;i
scattered here and there in their structure w ‘Carer'Jvibrating
unending perfection, and in all crystals the atomsordin S
parh el oML s sttt e 1‘3551[ actctnctiogn of the
temperature of the crystal and the strength of a ‘[iﬁcations of
atoms for each other. However, these are mmolr lrn Tl( atoms are
the ideal structures of our models. In tht? models 15ees i
shown as balls, although we knm-v that in sogl_e _cz}n SRy
will share some of its electrons with certain a-Jomll—og[uberanCES
that it should more properly be shown as hav,l;lg Ph T
toward some of its neighbors. But if we regafl ce izllxc atom in the
dicating the average position of the cer.Jltiar 0,e ‘«’:er (well.
perfect parts of the crystal, the models will serv y

" FIG. 2-1

Fig. 2-1 shows the pattern 0[. the arrangc.erlnent C:)CEC ;hiezt%r;}sﬂi:
cesium chloride. Lines connecting the pOSI:;-O]‘qje the ir‘jstal into
cesium atoms help to guide the_eye. They }nln © G T
cube-shaped cells, each of which has a c1or_ bl
center. If these lines had been drawn Connelamg ium atom in
atoms to each other, each cell would have hac a Ce;el.ei !;th 2o
the center, as shown in Fig. 2-2. In each com;'r 1stom wﬁere they
chlorine atom, since eight cubic cells sh?re v Fa atom and
meet at the corner. The cell thus contains one cesium
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one chlorine atom (eight eighths), in accordance with the
formula of the substance, CsCl. The repetition of this unit of
pattern results in the orderly structure of the cesium chloride
crystal. If we translate (not rotate) the unit cell shown in Fig. 2-2
in the direction of any one of the arrows (the directions of its
edges) by a distance equal to the length of its edge, it will occupy
exactly the position of the neighboring cell that is just like it.
This repetition, which may be regarded as resulting from the
operation of translation alone, is sometimes called translational
symmetry.

The smallest pattern unit of the arra

ngement of atoms in a
crystal from which the whole cr

ystal can be built up by (men-
tally) translating the unit parallel to itself in the direction of its

edges by distances equal to the lengths of its edges is called the
primitive unit cell of the crystal. Although an infinite variety of
such cells can be chosen, each witk the same volume as the others,
it is commonly easy to choose one that is preferable to the others,
usually one that exhibits the Symmetry of the crystal. In some
cases we have reasons for choosing a unit cell larger than the

primitive cell; these cases will be explored later,
The guide lines outlining the unit cell need not have been
iliza::“triv;l;ebcz:fg; (:]fe].atlo?s.'The corners of the cubes could
_ ghboring chlorine atoms, and contain

Y be regarded as the “building blocks’

led that
each one indistin

guishable from the next.

ape that will engble them to f
- tt
fill space solidly. A shape such as the sphenoiq o

would not fulfill this condition, W

Clearly, space can be filled so]
exactly alike. What if ench cell o
direction than it js ;

er to

for example,
hat shapes would?

idly with cubic cells that are

-unit is longer in one
&se cells still fi]] space

—
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solidly, as shown in Fig. 2-3, and so will the cells that .have di[f‘er-
ent dimensions along the @, b, and ¢ directions of Fig. 24 like
bricks, so long as each is exactly like all the others. In Figs. 2-1,
2-3, and 24, the angles of the cells are all 90°. But the spacf:—
filling property of the cells is not spoiled if the whole structure is
skewed, as in Fig. 2-5.

M = =

FIG. 2-3 FIG. 2-4 FIG. 2-5

So far, all of these cells have had their opposite faces parallel.
The general term for a body with parallel surfaces is a !)aml-
]e]epipcd. Can we fill space solidly with any other kind of cell?

FIG. 2-6

FIG. 2-7

In Fig. 26 triangular prisms are packed together to fill space,
but we find that each one is not derived from its neighbor by
straight translation in a direction parallel to one 9f its edges, 5O
they will not serve as unit cells. However, a pair of such .tn-
angular prisms makes a proper unit cell, as we can see by looking
down on the top of the prisms (Fig. 2-7).

FIG. 2-8

FIG. 2-9

In Fig. 2-8 we are looking down on the tops of a number of
hexagonal prisms packed together to fill space solidly. Tiled
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floors are often made this way. But here
hexagonal prism is not derived from ;
translation parallel to one of its edges.
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and this is shown in Fig. 2:9. Since fiy
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just the parallelepipeds like those in Figs. 2-1, 2-3, 24, 2.5, 2-7,
and 2-9. When we classify their possible shapes systematically, we
find seven types that form the crystal building blocks of the seven
different “systems” of crystals. These are shown in Fig. 2-10. We
will call the lengths of the three edges a, b, and ¢ and the angles
between each pair of edges «, 8, and y (alpha, beta, and gamma),
in each case using the Greek letter whose Roman equivalent is
missing from the pair of edges (Fig. 2-10a).

Some possible parallelepipeds have been omitted because they
were equivalent to others that were included. For example, in
Fig. 2-11 we see a=b=c¢, a =g =90°, y590°, but looking

FIG. 2-11

FIG. 2-12

down on these prisms from the top, as in Fig. 212, we see that
the same pattern can be considered as made up of orthorhombic
cells that have the advantage of being orthogonal (i.e.,
a=f=1y=290°. The new a and b are not shown in Fig. 2-12.

The fact that crystals are made up of such “building blocks™
or repeat units of some three-dimensional pattern has been
known a very long time. Crystals like those shown in Plate 11
and in Plate III (1) occur in rocks and can be pried out—with-
out damage, if the job is skillfully done—or the weathering of
the rock loosens them and they lie in the soil, where their
smooth plane faces reflect the light and attract the attention of
children and naturalists who explore unlikely places.

It is in the nature of naturalists to describe in detail the odd
things that they find, and the early naturalists wrote full descrip-
tions of the crystals they found, recording carefully the angles
between their faces. It was in doing this that they noticed the
special angular relationships between the faces of a crystal that
led them to the conclusion that crystals were made up of “build-
ing blocks.” We can repeat their discovery by looking at the
topaz crystal in Plate III (1) and measuring the angles that its
small side-faces make with the long side-face of the crystal. In Tig.
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2-13, where the outline of the crystal is traced from the photo-
graph, we find that the angles indicated are 24.5° and 42.3°. The

tangents of these angles are 0.456 and 0
2 x 0.456. nd 0.910, or 1 x 0.456 and

How can we explain the fact that th
by small whole numbers? Let yg suppo
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FIG. 2-13
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and solid angles by planes. The Abbé René Just Haiiy* (pro-
nounced “Howie™) carried this idea further in his Essai d’'une
théorie sur la structure des crystaux, published in Paris in 1784,
enunciating clearly the whole-number relationship which we
have just rediscovered.

Of course, the Abbé Haily was bothered by the fact that the
edges of the building blocks could not be detected at the faces
of the crystal, even with the strongest microscope. Nonetheless,
the small-whole-number relationship provided such convincing
evidence of the existence of the repetitive structural units that
he concluded that those building blocks just must be extremely
small, so small that they did not even make the crystal faces look
frosty the way the surface of ground glass looks because it is
slightly roughened.

How big would the irregularities have to be in order to scatter
the light the way ground glass does? They would have to be
somewhere near the dimensions of the wavelength of light,
about 5 % 10—5 c¢m, although this figure was not known until
the first decade of the nineteenth century. So the naturalists
following Haiiy knew that the pattern units of structure in
crystals were smaller than 10—3 cm, and they knew the units’
shapes quite accurately from their measurements of the inter-
facial angles on crystals they had found. But they had no way
of knowing what the pattern within the unit cell consisted of,
nor could they tell the cell size.

We can now determine with great accuracy the dimensions of
the unit cells of crystals, and the arrangement of atoms in the
cell is known for a very large number of crystals. These results
are obtained by the diffraction of x-rays from the orderly three-

* René Just Haily was born at St. Just, just north of Paris, in 1743. His
parents could not afford to send him to college, but friends who recognized
the young man’s ability made it possible for him to receive advanced educa-
tion. He had become interested in botany when an accident made him be-
come a crystallographer. The account of this accident must be postponed
until Chapter 7. Imprisoned during the French Revolution, he later became
a professor of mineralogy under Napoleon's reign. However, with a change of
government in 1814 he was discharged and was again a very poor man when
he died in 1822. Although he was, in fact, not an abbot, he was called
“Abbé” because of having been made an honorary canon of the Cathedral of
Notre Dame.



18 CRYSTALS AND LIGHT

dimensional array of atoms in the crystal. When a beam of ?c-ra};SI
enters a crystal, each atom in the crystal scatters x-rays in a
directions. X-rays, like light, can be represented as waves (Fig.

L
|
L1

FIG. 2-15

2-16), and as in the case of visible light, the distance from crest
to crest (or any point to the next similar point) of the wave is
called the wavelength, usually indicated by lambda, A. In visible

Wave lenqih—-\

FIG. 2-16

i

light the length of these waves ran

to about 8 x 10=5 c¢m, but in X-rays the wavelengths range from

about 0.1 X 10=% cm to about 10 x 19-s .
1000
of the length of those of visible light. W uahout 1/

ges from about 4 % 10—5 cm

g €ets of cesium atoms in Fig-
2-1){l sleerx que 1i)n. To s:mpl_lfy the picture, only one atom in
each layer 1s shown. The distance between the two layers 1s
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cated by a marker at the position of each wave crest. The two
rays, A and B, of this beam meet the atoms in the two layers
and bounce off in all directions, several of which are shown, the

FIG. 2-17

wavelength markers being properly measured off on every ray.
The two rays start off with their crests and troughs in step, so
to speak, or “in phase.” However, the fact that ray B, which
penetrates more deeply into the crystal, travels a longer path
means that it gets behind. Only if it gets behind by exactly one
wavelength (or exactly two, three, four, or any whole number of
wavelengths) will it be in phase with the other ray again, and
this, as you can see from Fig. 2-17, will only happen in certain
directions of the scattered rays. In these directions the beam
leaving the crystal toward the right will be strong, whereas in
directions where the waves are not in phase it will be weak.

K

Fig. 2-18 is a diagram of two waves that are exactly out of
phase: one is retarded with respect to the other by half a v ave-
length, so that the crest of one is in line with the trough of the
other. You can see that the sum of their displacements from the
middle line is zero: such.waves would “cancel” each other and
the resulting intensity would be zero.
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The diagram in Fig. 219 is a geometrical analysis of the con-
ditions necessary for a strong beam to occur. In this diagram, the
darkened section of the path of ray B is the extra distance it

A A

&

o .
2052 Ia
&/
FIG. 2-19

travels, over and above that traveled by
pared.by drawing lines, perpendicular to both rays. As we
have just seen, this extra path has to be a whole number of
wavelengths long in order for the ray B to be in phase with
ray A on leaving the crystal. All the arc-marked angles in Fig.

ray A, which is com-

2-19 are 6, and in each of the little right triangles, sin § = 2
- : % C_t.
The extra path length is 25 long, or 2d sin 4 long, and since this
value must equal some whole number of wavelengths for a stron
beam, the condition for the strong beam is that 5

n\ = 2dsin 0 (the Bragg equation)

where n is any positive whole number,

Such a beam
; _ wh
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plane. In this way, but only in this way, diffraction is like
reflection of light from a mirror, in which “the angle of incidence
is equal to the angle of reflection.” * Because of this, one speaks
loosely of x-ray “reflection” from a crystal, the “reflected beam,”
and so forth. This terminology is so common that it will be used
in this book, but we must remember as we use it that we really
mean diffraction.

Unlike a two-dimensional diffraction grating, the three-dimen-
sional diffraction grating will not diffract monochromatic light
falling on it from any angle. The great power of x-ray diffrac-
tion as a tool for studying crystals lies in the fact that the
diffracted beam can only occur when a beam of a particular
wavelength, A, meets planes of atoms in the crystal that are a
distance d apart and meets these planes at precisely that angle,
¢, whose value will satisfy the Bragg equation for the particular
wavelength of x-rays used and the particular interplanar spacing
of the atoms.

Clearly, if we know the wavelength of the x-rays we are using
and the angle at which a strong beam is diffracted from the
crystal, we can easily calculate the spacing between the planes
of atoms in the crystal. This is how we now know the dimen-
sions of the unit cells of crystals. That of cesium chloride is
4.12 X 10—#% ecm. How many atoms are there per cubic centimeter
in a crystal of cesium chloride? (The answer appears at the end
of this chapter.)

Since the unit cells of most substances have dimensions that
range from 2.5 X 10—% to 10 X 10—% c¢m, a special unit is used
which is equal to 10=% em. It is called the Angstrom Unit.t
(The letter A follows Z in the Swedish alphabet, which also

* By convention, the angle of incidence of the x-rays is measured between
the incident beam and the “reflecting” planes of atoms. In optical reflection
the convention is to measure the angle of incidence between the incident
beam and the normal to the reflecting planes, as in Chapter 12.

T Anders Jonas Angstrom, born in 1814, was the Swedish physicist who first
deduced on theoretical grounds that an incandescent gas emits light of the
same wavelength as that of the light that it selectively absorbs. This is a very
important fact in spectroscopy, the study of the absorption and emission of
radiation by matter. In 1862 Angstrém announced his discovery of the
presence of hydrogen in the sun’s atmosphere, based on spectroscopic evi-
dence.
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ment of the intensities of the spots enables us to check whether
the atoms are arranged in one way or another. In general, one
must postulate a structure and compare the intensities calculated
for x-ray diffraction from that structure with those of spots
actually observed. One cannot, in general, proceed in a direct
way to the determination of the structure, that is, of the exact
location of every atom, by measuring the positions and intensities
of spots.

To show how the intensity of the diffracted beam is affected
by the arrangement of the atoms, we can take the cesium chloride
structure (Fig. 2-1) as an example. If a beam of x-rays scattered
in a given direction from the top layer of cesium atoms is just
1A ahead of the beam from the next layer, the two beams will
be in phase and, combined with the similarly in-phase beams
from lower layers, will result in a strong diffracted beam. But
the same incoming beam of x-rays will also be scattered by the
layers of chlorine atoms which are just half way between the
layers of cesium atoms. The extra path length will be just half
that [or the cesium atoms (Fig. 2-20), and the resulting diffracted

FIG. 2-20

FIG. 2-21

rays from the chlorine atoms will be just exactly out of phase
with those from the cesium atoms. If the two kinds of atoms
had the same scattering power for x-rays, the amplitude (half
the distance from the crest to the trough bottom) of their
scattered waves would be the same and they would cancel each
other, as in Fig. 2-18. However, since the cesium and chlorine
atoms have different x-ray scattering power which depends on
the total number of its electrons (55 in cesium and 17 in chlo-
rine), the diffracted wave is only weakened by the out-of-phase
contribution from the chlorine atoms, as in Fig. 2-21, where the
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broken line is the sum of the two curves, Thus the fact that this
reflection has an intensity which can be accounted for by the dif-
ference in scattering power of the two kinds of atoms tells us where
the atoms are. Usually, the intensity of many reflections from
many di[ferently oriented layers of atoms in a crystal are needed
for the determination of its structure. In the case of complicated
structures, many hundreds of such measurements are made and

the analysis of the structure may take years of work, even with
present-day computing machines, o

A cubic crystal in which the ato

inguishable from that at' the
corners is called a “body-centered

cubic crystal.” In order to
discuss this crystal, it will be useful to have a name for a con-
tinuous array of unit cells like those in Figs. 2-.3, 2-4, and 2-5.
Since these frameworks are lattices in three dimensions, they
are called space lattices. Their Cross points are called lattice
points. If we remember that such a

S, at any lattice point, your
surroundings would look the same as they would jf you s:t at
any other lattice point. In Fig. 2.1 a

its corners at the cesium atoms

lattice has been drawn with
1t 1s clear that the environ-

PLATE | Mica on mica in crossed polarized light.
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PLATE 11 Group of calcite crystals.

(3

PLATE 1Il (1) Topaz crystal. (2) Polycrystalline brass showing twinning on (111)

polished and etched. (Photomicrograph by F. G. Foster, from Crystal Orientation
Manual, by Elizabeth A. Wood, by permission of Columbia University Press). (3) Back
reflection-Laue photograph.
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(3) Uniaxial interference figure without the micioscope (guanidinium aluminum
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bands where thickness changes at surface step.
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lated, relative to the cesium chloride structure, but each lattice
point is still indistinguishable from every other lattice point:
each has a cesium atom a short distance up to the left of it, for
example.

To return, now, to the body-centered cubic crystal, it was
defined as having an atom or group of atoms at the center of
the cubic unit cell, indistinguishable from that at the corners.
In other words, it has a lattice point at its center as well as at
its corners. If this is so, it must be that a smaller unit cell could
be chosen. Such a cell is shown, shaded, in Fig. 2-23. Comparison
of its edge lengths and angles with those in Fig. 2-10 will show
that it is triclinic. Without making any measurements, we can
see that its volume must be just half that of the cube-shaped
cell, since it contains only one lattice point (remembering how
the shared points at the corners are counted), whereas the cubic
cell contains two. A cell that contains only one lattice point is
a primitive cell, and a lattice made up of such cells is called a
primitive lattice. A primitive unit cell can always be chosen
for any crystal structure, but sometimes, as in the case of the
body-centered cubic cell, we prefer to choose a cell that is double
the size of the primitive cell (or more than double) because its
symmetry corresponds to that of all the properties of the crystal.

For the same reason, both body-centered and face-centered unit
cells are used in other systems besides the cubic system. When
all these systems are counted, we find that there are 14 space
lattices. Cells from each of these are shown in Fig. 2-24, where
the lattice points are shown as black dots. Seven of these are
the primitive cells we started with.

The proof that the number of possible parallelepipedal net-
works of points is 14 was given by Auguste Bravais* in 1848,
and the 14 space lattices are therefore sometimes called the
Bravais lattices. They had been derived six years earlier by
Frankenheimf, but Frankenheim did not rigorously prove his

* Auguste Bravais, born in southern France in 1811, was a naval officer as a
young man, Later, through his interest in various aspects of ”"“l?“_"ﬂ“ml
physics, including astronomy, he held the Chair of Physics at the University
of Paris.

+ Moritz Ludwig Frankenheim, Professor of Natural Philosophy at Breslau.
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derivation, and in fact made the mistake of including a fifteenth
lattice which, Bravais showed, was the same as one of the others.

In 1962 a Commemoration Meeting was held in Munich on
the fiftieth anniversary of the Laue experiment, which had been
performed in Munich. When plans for the meeting were first
made, von Laue was alive and active, but he was killed in 1960

e
£ c
B b B--14 b
a e =
2 3 =
e —
A \ e 7
] “\ // ,_;fr ':.\\ /"nll
S B h
SN\ A Wl WS
S
° ¢ o| N W AN
VAN r\ b."/ i
b 7 A f\ ’,?\/ Y
S
‘‘‘‘‘‘ =7 A \ e =
2 ——25)
4 5 s =
mmmemnacag
= A
" \ ¥
H \ /4
H ~,
5 ~\\ .\ ’
] c N
1 )
1 c N
Ny
é ot Pty 7?l' Y
e 4 ap | | / \ a3,
| = @ y \
s 120° ¢ ! 20, \
10 11
\ s
a3 SN T
a “}‘ ”,
s,
dz ¥ \ .
4 a ~
; Ao ™~
(] ‘\
12 13
FIG. 2-24

SYMMETRY IN CRYSTALS 27

when the car he was driving collided with a motorcycle. Paul
Ewald had now become Professor Emeritus Ewald of the Poly-
technic Institute of Brooklyn, President of the International
Union of Crystallography (a scientific union, not a labor union)
and Editor-in-Chief of Acta Crystallographica, the international
crystallographic journal. For the Munich celebration he under-
took the enormous task of preparing a volume entitled “Fifty
Years of X-ray Diffraction.” Much of it is written by Professor
Ewald himself, but some 35 or more other crystallographers
have contributed their personal reminiscences and accounts of
the development of the science.

This book is richly rewarding reading. In his autobiography,
von Laue gives such personal items as “As sources for the primary
current we used chromic acid and Bunsen elements, as the
apartments of our parents were not connected to the city's
electric power. Many a hole did the required chemicals burn in
our clothes.” “I was plunged into deep thought as I walked
home along Leopoldstrasse just after Friedrich showed me this
picture. Not far from my own apartment at Bismarckstrasse 22,
just in front of the house at Siegiriedstrasse 10, the idea for a
mathematical explanation of the phenomenon came to me.”

Professor Ewald writes of the days when he was a graduate
student at Sommerfeld’s Institute in Munich, “Even more effi-
ciently and informally than at the Institute an exchange of
views and seminar-like consultation on any subject connected
with physics took place in the Café Lutz in the Hofgarten, when
the weather permitted under the shade of the chestnut trees,
and otherwise indoors. This was the general rallying point of
physicists after lunch for a cup of coffee and the tempting cakes.
Once these were consumed, the conversation which might until
then have dealt with some problem in general terms, could at
once be followed up with diagrams and calculations performed
with pencil on the white smooth marble tops of the Café tables—
much to the dislike of the waitresses who had to scrub the tables
clean afterwards.” Concerning the man who got the Nobel Prize
for the discovery of x-rays, he writes, “No need to say that
Rontgen never came to this infermal meeting—nor even to the
regularly scheduled Physics Colloquium; he was dominated by
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| B« |
3 a shyness that made him evade personal contact wherever he
could.”
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| Problem: In a face-centered cubic lattice, each cubic unit cell has a

" lattice point in the center of each face in addition to those at L.hc

. corners. (1) Draw a face-centered cubic cell and outline the primitive 4

% cell, as we did in Fig. 223 for the body-centered cubic case. (2) What

| is the space lattice of the primitive cell? (3) How much larger is the

| f.cc cell than the primitive cell? (Answers are given at the end of
Chapter 3.)

* ¥* *
|

Answer to question in Chapter 2: In a cubic unit cell of cesium

chloride, 4.12 X 10—8 ¢m on an edge, there are two atoms (Fig. 2-2).
How many of these unit cells are there in a cube 1 cm on au edge? =
Along one edge there are 1/4.12 X 10—8 = 0.248 % 108 = 2.43 X 107.

Along one face there are (243 X 1072, and in the entire cube there

are (2.43 x 107)3, or 14.35 % 102! ce]]

s with two atoms in each cell.
Therefore there are 2.9 x 1022 atoms per cc in cesium chloride.

A
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* * *

Answers to questions al the end of Chapter 1

1. One vertical mirror plane halfway between the ears. Actually .\f
cven the exterior of most people does not obey in detail such a sym- S =
metry element. An amusing photographic experiment is to cut a photo- E
graph of a face in two and replace the left half with the mirror image
of the right half (printed by reversing the negative). Even when skill- T
fully produced, the finished face does not fully resemble the person,
and most people have difficult

/"*
y determining what change has been
made. Some people are very unsymmetrical, and

~ -~ _.——-'-'""
their portraits would —— - -
be almost unrecognizable after such treatment,

2. None.

y 3. Nine plancs, three 4-fold axes, four 3-fold axes, six 2-fold axes, and ¥
a center. (Sce Fig. 2.25.)

4. One 4-fold axis, four 2-fold axes, five planes, and a center. (Sec
Fig. 2-26.)

1
5. One 4-fold axis normal to the paper.




3  Directions and Planes,

Mller Indices

In any geometrical situation it is convenient to have a frame
of reference to help us describe relative orientations of things.
Latitude and longitude lines serve this function on a map: on
graph paper we have the x and y axes, as in Fig. 3-1. In this
figure two directions are shown by arrows startin

inati at the origin,
O and terminating at M and N respectively, g origin

and we could satis-

Factorily describe these directions by giving the coordinates of

7)) through which each passes.
be 2,1. For the direction ON

the first whole-numbered point (x
For the direction OM this would
it would be 1,1.

Y
[
r N
M
K 2,
0 Lo
FIG. 3-1
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lattice is shown in Fig. 3-2 with some directions indicated. We
can now conveniently describe these directions, just as we did
the directions in Fig. 8-1, but listing now three point coordi-
nates in order of reference axes, a, b, and c.

OP [111] 0S [010]
0Q [110] OT [112]
OR [100] oU [201]

The square brackets are the crystallographer’s convention for
indicating a direction. Commas are unnecessary, but the digits
are named in succession: “one one one,” not “a hundred and
eleven.” Just as (x,y) refers to a point on the graph of Fig. 3-1
whose coordinates are not specifically given, so [uvw] refers to a
direction which is unspecified.

We can also use this lattice for describing the orientation of
planes of atoms by giving their intercepts on the three axes.
For example, in Fig. 3-8 the intersection of the triangular planes

FIG. 3-3

with the a and b axes is twice as many units from the origin as
their intersection with the ¢ axis. Their intercepts are therefore
2.2.1. For reasons that will soon become clear, it is useful to
describe the orientation of a plane by the reciprocals of its inter-
cepts (in this case 4, 3, 1) rather than by its intercepts. Since the
usefulness of this notation was first shown by Miller, such num-
bers, when appropriately converted to whole numbers, are called
Miller indices.* To get whole numbers, in the case in Fig. 3-3,

* This system of indexing crystal faces was suggested by the Reverend Dr.
W. Whewell, who was a professor of mineralogy at Cambridge University in
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we multiply the reciprocals by 2 and get 112, called “one one
two.” Multiplying all intercepts, or reciprocals of intercepts, by
the same number will of course not change the orientation of
the plane, which is what we are interested in.

4

FIG. 3-4

Fig. 3-4 shows the axes of a lattice
each designated by a letter. It wou
reader to try to determine thejr M
to the list on the next page.

with a number of planes,
Id be good practice for the
iller indices before referring

".I“h.e M.ill.er index for an intercept on the negative part of any
axis is dlStlngU.iShed by a minus sign directly over it, e.g. D,
When a plane is parallel to one of the coordinate axes:, we say
ﬂ that axis at infinity, o, Accepting the convention that

T e S en used earlier in some of the work of C. S-
e p'2()-') 1;;l}ps (An Introduction to Crystallography, Long-
Whewell's pTOfcsst;rs];ip ::vl-;e|1li|f:l;-lent' Wi'lliam H. Miller, who assumed Dr-
and showed its usefulness in his auter resigned in 1832, adopted this system

: : Treatise o : . ;
this work such indices are known as lf‘lirlsl‘cro;il(ﬁ::z:lauogmph}' in 1839. From

Haiiy's law (Cha e
Indiceg." The {wor(}lng:agtgcu:slfow generally known ag “the Law of Rational
al” has the mathematica] significance, referring

to a number that can be
sed i ik
il i a5 a ratio of two whole numbers (unlll\f-‘
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1/00 = 0, the reciprocal of infinity thus gives us zero as the
Miller index for that “intercept.” The Miller indices of the
plancs in Fig. 3-4 are as follows:

j (112) l (221) n (211)
k (221) m (110) o (001)

The parentheses are the crystallographer’s convention for
indicating a plane. Note that, since orientation, not position, is
what is being described, we divide the Miller indices by their
common factor so that plane o, which is shown in the figure with
intercepts w, o, —5, is given the indices (00T).

Just as [uvw] refers to a direction which is unspecified, so
(hkl) refers to a plane which is unspecified.

We can now label the cube faces of a crystal with the appro-
priate Miller indices, hkl, as shown in Fig. 8-5. The faces of many

ﬁ FIG. 35
(oor
(100) 10
FIG. 3'6 m
(010} (100)

e ——
L wammy

crystals with cubic unit cells show the eightsided crystal form,
octahedron, sketched in Fig. 3-6. Four of the eight. sides are
labeled. '

It would be good practice for the reader to duplicate the
sketch, adding the a, b, and ¢ axes, and supply the Miller indices
for the four faces on the far side. Compare your answer with
that given at the end of this chapter.

In the hexagonal system there are four crystallographic axes,
the ¢ axis and three a axes in the plane normal to ¢, which are
customarily labeled a;, a5, and a3 as in Fig. 3-7, where ¢ is normal

to the paper. These ¢ axes are shown in perspective in Fig. 3-8.
All three have the same unit lengths. Only two of these, a; and
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a,, were given in Fig. 2-10d, where they were labeled a and b.
Indeed, as we shall see, the third one is, in some ways, unneces-
sary.

In Fig. 3-7 consider a plane normal to the paper (parallel to

C(H)

~C(H)
FIG. 3-7 FIG. 3-8

¢), cutting the positive ends of a; and a, at'4 units, i.e., at the
ends of the axis segments shown in the figure. If you lay a
straight edge on the figure, you will see that this plane cuts the
negative end of the third axis, ay, at 2 units out. Its intercepts
are thus 4, 4, —2, «. Taking reciprocals, to get Miller indices,
we have 3, }, —3, 0 and multiplying by four to get whole num-
bers, we have (1120) as the indices of the plane. The general
symbol is (hkil). If the crystal has hexagonal symmetry, there
will be five other planes like the (1120) plane, on around the ¢
axis. Naming them in counterclockwise order, they are (1210),
(2110), (1120), (1210), and (2110). Notice that the third index in
all these planes is equal to the sum of the first two multiplied
by —l—i.e, i = —(h + k). This is always so, as you can find by
testing other orientations of planes on Fig. 3-7. Therefore in
writing hexagonal indices the third index is sometimes replaced
by a centered dot, thus: (11-0). The intercept on the ¢ axis is
handled just as it is for other systems of axes, :
This adaptation of the Miller indices to t}

is due to Auguste Bravais, and these indijces
as Miller-Bravais indices.

1e hexagonal system
are therefore known
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For a discussion of the notation for directions in the hexagonal
system, see Structure of Metals, by C. S. Barrett, and Crystal
Orientation Manual, by E. A. Wood.

The use of the crystallographic axes with units and angles
appropriate to the particular crystal you are trying to describe
makes the task of description simpler, rather than more com-
plicated as it might at first appear. In the case of the topaz crystal
in Plate 11T and Figs. 2-13 through 2-15, it is not only simpler but
more meaningful to use a notation for the faces that will indicate
the small whole-number or building-block relationship between
them than it would be to give their axial intercepts in terms of
the same units (as, for example, fractions of a millimeter) in all
directions.

The description of the unit-cell dimensions given in Fig. 2-10
is thus the description of the crystallographic axes appropriate
for each crystal system. A crystal with a unit-cell shape belonging
to one system cannot, in general, be simply and easily described
with reference to crystallographic axes belonging to another sys-
tem. The one outstanding exception is that crystals of the
rhombohedral system are very conveniently described by using
hexagonal crystallographic axes, as shown in Fig. 3-8. If you
know the Miller indices of planes on one set of axes, you can
find them for the other sct of axes by the following formulas.

hy = hp — ke
kyu = hp — kg
ky = kp — Iz
= he + ke + I

where H refers to hexagonal axes and R refers to rhombohedral
axes. For example, consider the face (111),. Visualize its orienta-
tion and you will see what (hkil)y must be. Check your result
by the [ormulas above. (The answer will be given at the end of
this chapter.)

Sometimes it may be more convenient to describe hexagonal
crystals using orthogonal axes. Examination of Fig. 2-9 will sug-
gest that a rectangular repeat unit could be selected which would
give an orthorhombic unit cell twice the size of the hexagonal
cell for the same substance. Such a cell is called an orthohex-
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agonal cell, and it is sometimes used when one wishes to describe
the crystal on orthogonal axes. The formulas for transforming

Miller indices from hexagonal axes (H) to orthohexagonal (O)
are as follows:

flo = ."CH + 2]1]1
kO = kH
lo= Iy

The crystallographic axes also provide a satisfactory coordinate
system for describing the positions of atoms within the unit cell.
To take the familiar cesium chloride example, in Fig. 2-1, the
cesium atom is at 0, 0, 0, the origin of the coordinate system. The
chlorine atom is at 4, 3, ; its coordinates are one-half unit along
each of the three axes. In Fig. 2-2, the unit cell is so chosen that
the chlorine atom is at 0, 0, 0 and the cesium atom is at 4, 1, 1,
but of course the two describe the same structure (arrang}ﬂ;en-t
of atoms), with cesium and chlorine alternating along the [111]
direction. ‘

When the units along different crystallographic axes are differ-

ent, we can still describe positions in terms of fractions of these
units without knowing their actual len
2-10c you do not need to know the dim
that an atom at }, 1, 1 is at

cell is shown in Fig. 3.9, §i

gth. For example, in Fig.
\ ensions of the cell to know
1ts center. An atom at 4, 0, 1 in this
nce its coordinate along the b axis is

0

Zero, its center is at the boundar

is in the cell and half out of th
at the far end of the ceJj

y of the cel] so that half the atom

DIRECTIONS AND PLANES, MILLER INDICES 37

atom in the cell at the position 1, 0, }, just as the 8 eighths of an
atom at 0, 0, 0 in Fig. 2-2 gave one atom at position 0, 0, 0.

In the cubic'system a plane with a given set of Miller indices
is normal to the direction with the same indices, as shown in
Fig. 3-10. Examination of this figure will show why this must be

L3 i
1 o, [on] . FIG. 3-10 § [on]
032
2, FIG. 3-11
\J > b —>b
| (o11)

so for the (Okl) planes (parallel to the a axis which is normal to
the page) and the [OkI] directions (normal to a-and therefore
parallel to the page) shown there. This relationship depends
upon the orthogonality of the axes (b | c, i.e,, @ = 90°) and the
fact that the units along both axes are the same. When this is not
so, a plane and direction that have the same indices will not be
normal to each other. Fig. 3-11 shows the (011) plane and [011]
direction for a tetragonal crystal (b 5= c).

Note on usage of “a,” “b” and “c”: These letters were first used in Fig. 2-4
to indicate the directions of what were later called “crystallographic axes.”
In Fig. 2-10 and the accompanying text, the same letters were used to refer
to the lengths of units along these axes. Crystallographers use them in both
ways, as we just have in the preceding paragraph. In earlier crystallographic
literature “a,, by, ¢,” were commonly used when referring to the unit lengths,
but more recent practice has been to omit the subscript zero.

When a crystal of sodium chloride grows from a water solution
of the salt as the water evaporates, it grows with the six faces of a
cube. The salt grains in table salt show the cubic form nicely
under a magnifying glass. Various processes of preparation used
by different companies result in different habits of growth. In one
brand, the crystals occur as isolated cubes, all very nearly the same
size. In another, the cubes stick together in clusters and are of
various sizes. In Kosher salt, the crystals show skeletal growth,
parts of the cube not being filled in solidly. The structure of
sodium chloride is not the same as that of cesium chloride, but
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both arrangements have all the symmetry elements shown for a
cube at the end of Chapter 2. Each of the cube faces on the
sodium chloride crystal is therefore indistinguishable from any
other of the cube faces since they are all equivalent, being related
by symmetry.

The name for all those planes that are symmetrically equiva-
lent is a form. When the symmetry of the crystal is known, one
needs only to mention the indices of one plane of the forn; and
the rest spring into existence because of the symmetry elements
W_hen one plane is used to represent the whole form in this wa -
it is f.:nclosed in curly brackets, thus: {hkl}. To represent the cug(;
in Fig. 3-5, for example, we need only write {100}. If we then
operate on the (100) plane with all the symmetry 0' ey
dicated for the cube at the end of Chapter 2, we End th e
generate [in addition 1o (100)] (010), (001, (To0). (0T0) and
(00T). Similarly, angular brackets, (uvw) refe; to all, l( : )d?nc
tions that are symmetrically equivalent, J @ (W]

Suppost? we had a crystal which belonged to the orthorhombi
system (Fig. 2-10c). It might have faces like those on the b OTC in
Fig. 1-7 with the symmetry shown in Figs. 1-8 and the brick in

Let-the three 2-fold symmetr | RS

and ¢ axes in the usual orj
symbol {100} refers

Y lhe S 'mme'; .
(IO(?) fa.ce has been set up, we set u}p the HO?)?efmuons v
on it with the 2-fold axes (Fig. 3-12) ace and operate

c

FIG. 3.12
100
FIG. 3-13
o

a m
(o §¥
F o
This is a form with onl
3 Yitwosfaces; an| “onen' form.” Clearl
when an orthorhombic erystal grows wieh {1([1)0} faces .ther: av:ri){i
also be other faces on the crystal. Fig. 3.13 i s
crystal of barite (BaSO,) sh & is a drawing of a

flowing the formg (] 001
e S Bt L s Fig. 3-12 that t}Ee Ofgi;n{o{ll%}(;}{in i

100
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crystal with this symmetry, consists of (100) and (T00). Similarly
{010} consists of (010) and (010), and {001} consists of (001) and
(00T), but how about {011}? The face (011) is.parallel to a, but
cuts b and ¢ at unity (not necessarily the same distance from the
origin in this system). Act on it with the 2-fold axis that is parallel
to ¢ and you get (0I1). Now if you act on this roof-like pair of
faces with either the 2-fold axis parallel to a or that parallel to b,
you will get (0TI) and (01T)—i.e., two faces parallel to a and
cutting the negative end of the ¢ axis at unity. So this form has
four faces.

All four of the {011} faces are parallel to a. All those faces that
are parallel to a given direction are called a zone, and the direc-
tion to which they are parallel is the axis of the zone, or the zone
axis. In this case it is a—i.e., [100].

Given two of the faces of a zone (e.g., (011) and (011)), you can

01 1 0 11
o it 15 By 1

h

By
-

ke b b k|4

PRI AR g,
FIG. 3-14

h

-
»

find the zone axis by writing them as shown in Fig. 3-14 and then
subtracting the dotted-line products from the solid-line products,
thus:

L3¢ —1 > (—~1)=2

1X0—-1X0=0

1X0—-1X0=0

Since factoring does not change the direction given by the
Miller indices, we may divide through by 2 and get [100].

The zonal equations we have just used may be written:
kylo — kaly = u; Lihe — Lhy = v; hyks — hoky = w. If any face
(hkl) lies in a zone [uvw], hit + kv + lw = 0.

The zonal equations, in a different form, can also be used to



40 i © ' CRYSTALS AND LIGHT

find the indices of a face if it is known to belong to two given

zones. “To go back to Fig. 3-18, what face belongs both to zone
[100] and to zone [001]? : .

For the answer we set up the equation thus:

vy — oy = b wnty — wouy = k
e — uy = )
u

v1t_u1u;v1 wy

.

Dollalials

Us Wa

In this case:

0.0 1010

URE190 20551

1
0
08 10/=10; 8 190"

; 1—0=1; 0 — 0 = 0. The answer is (010).

The use of Miller indices has simplified the calculation of

zonal relations and also of the angle between any pair of faces
a

(i.e., any pair of atomic planes) in any system. The formulas for
the latter may be found in Structure of Metals 551005, Banktt
3k * *

Answer to question in Chapter 3 concerriin
octahedron: Fig. 3-15 shows the octahedron wi

& the Miller indices of an
th back faces indexed. The

FIG. 3-15

DIRECTIONS AND PLANES, MILLER INDICES 41

symmetry of the octahedron is the same as that of the cube, as given in
Fig. 2-26. All the directions normal to the octahedral faces are 3-fold
axes. All the (100) directions are 4-fold axes. - - %

e I i %

Answer to question in Chapter 3 concerning hexagonal indices of
the face (111)p: Since this meets the three symmetrically placed
rhombohedral axes all at the same distance from the origin (bottom
point of the rhombohedron in Fig. 3-8), it must be . normal to the ¢
axis and therefore have the hexagonal indices (0001). Calculation from
the formulas gives (0003), which should always be factored to give the
smallest whole-number indices, i.e., (0001).

* * *

Problem: In the unit cell of sodium chloride, the sodium atoms are
in the positions 000, $30, 0% and 03}. The chlorine atoms are in the
positions 003, 030, 3100 and 333. (1) Sketch the positions of the atoms.
(2) On a (100) face of sodium chloride, are the atoms all of the same
kind, or does this atomic plane contain both kinds of atoms? (3) Answer
the same question for the (111) plane. (4) Answer the same question
for the (110) plane. (5) In sodium chloride a = 5.627 A. How many
atoms are there per cubic centimeter? (Answers are given at the end of
Chapter 4.) g

3* * *

Answers to questions at the end of Chapler 2

1. Fig. 3-16 shows the lattice points of a face-centered cubic cell with
a primitive cell shaded in.

2. The primitive cell is thombohedral.

3. Since the f.c.c. cell contains four lattice points, it is four times
the size of the primitive cell.
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i
r
|
|
|
|
i
lu ‘ then, the internal symmetry of the crystal, its structural symmetry,

4 Th T . . is revealed by the orientation of its faces, not their size or shape,
€ hTee-DZme?’LSZOTtal and it is useful to have a way of showing clearly on our two-
dimensional piece of paper what the orientations of the faces on
- y X a crystal are without regard to their size or shape. -
| Crystal on Two-Dimensional ! : i
I 1
| - Paper , \ é\
| l A
Crystals are three-dimensional obj : I
; : al objects. They should be held in %
t%le h.an‘d and examined from all sides. Even with such examina- \_'/
. tion it is not a.Iwa‘ys possible to determine what the symmetry of FIG. 4-3 FIG. 4-4
tl-lE crystal latu.ce is because of the chance effects of growth condi-
tions. If a C“g:f CTYStf'I growing from solution happens to have Several methods can be used. Only one will be described in
n;c:)l;j ?toms- a hed t(? it a‘long o.ne direction than another, it may this chapter. Fig. 4-4 is a sketch of a cubic crystal on which the
]gon erolfegt;;;: ?t dlrE‘:“o“ (Fig. 4-1). Its outside shape will no faces of three different forms developed as it grew. It is
butgof of a cube, bec_ause_of the unequal rates of growth, viewed in the conventional way, from a little above and to the
i I(;ougse its un(;F cf:lls.wﬂl .Stlll be cube-shaped as shown, for right, as described in Tutton’s instructions for drawing crystals.*
c-an b[; S,eey Ec-ray F}Hlactlon; it will still be a cubic crystal. As From this view we see 3 of the 6 cube faces, {100}, 4 of the 8
n from Fig. 4-1, the interfacial angles are in no way ) faces of the octahedron, {111}, and 6 of the 12 faces of the

dodecahedron, {110}.
If we could put this crystal in the middle of a sphere and

‘ . draw an imaginary line from the center point of the sphere
@ through each face, perpendicular to the face, extending these
until each one met the sphere at a point, then this group of
v points would be a spherical projection of the faces of the crystal
\ (Fig. 4-5). If we now take away the crystal, the arrangement of

\ MG

FIG. 41 points on the sphere reveals to us the symmetry of the crystal

3 FIG. 42 without giving any information about its shape or size. (Examine
: : the spherical projection and find each kind of symmetry axis:
Clhangml by such distortion: consideration of the way in whicl 4,3,2)
the crystal is bui ; ; / which Db . ! )
| e e;}ul C’mnotlhi up convinces us that adding more material at But the sphere is a bit unhandy to carry around, so this es-
| Y the(O 5 ‘i]““ge the angles between the planes. Fig. 4-2 sential information must be transferred in some orderly way to a
ctahedr i . Fig. 4-2 3 '
LR ey ;0”' {;11}» with equal and unequal develop two-dimensional plane. One way would be to put a plane at the
eight faces. Fig. 4-3 show ; ]
twelvessided (do, 2, + dccag 10y § 3 l%lree dodecahedrons, the # A. E. H. Tutton, Crystallograply and Practical Crystal Measurement. Mac-
i » 10) form with {110} faces. Clearly millan, 1922. Chapter XXV: Drawing Crystals.

42




FIG. 4-5

THREE-DIMENSIONAL CRYSTAL ON TWO-DIMENSIONAL PAPER 45

top of the sphere, normal to the [001] direction, and extend all
the normals until each one met tnis plane in a point. These
points (hkl), would constitute a ‘‘gnomonic projection” of the
planes. This projection is sometimes used, but it has the disad-
vantage that many points will lie beyond the edge of any plane
of reasonable size.

An alternative which we will describe is the stereographic
projection (stereo: 3-dimensional, solid, + graphic, having to do
with writing or drawing). Connect each point in the upper half
of the spherical projection of Fig. 4-5 with the “South Pole” of
the sphere. These connecting lines pierce the equatorial plane in
points which constitute the stereographic projection (Fig. 4-6).
Every plane in the upper half of the crystal is represented by a
spot on the projection. Even the {hkO} faces, which were lost in
the gnomonic projection, are preserved here, since their spherical-
projection points are the same as their stereographic-projection
points.

Looking down on the projection (Fig. 4-7), we see how well it

portrays the symmetry of the crystal. By turning the diagram in
Fig. 4-6 upside down, we could project the faces of the lower
half of the crystal onto the same plane. Points representing these
faces are customarily indicated by circles rather than dots. The
full symmetry of forms {100}, {110}, and {111}, shown in Fig.
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4-4, is the same as that for the cube, shown in Fig. 2-25. Some of
these symmetry elements are shown in spherical projection in Fig.
4-8, but clearly the diagram would get too complicated if we tried
to show all of them. If we transfer these to the stereographic
projection, however, the rotation axes (which met the sphere in
points) will occur as points, and the mirror planes (which met

the sphere in great circles as shown in Fig. 4-6) will occur as
curved lines (Fig. 4-9).

FIG. 4.9

FIG. 4-10

This representation of symm
which is, in fact, the stereo
elements of the brick.

etry elements was used in Fig. 1-9,
graphic projection of the symmetry

the plane that it represe
on a stereographic proj
“net” or grid are given i
Knowing how the proj
plot points without the
time with the net. Howe
make of the projection

nts. Good directions for plotting points
ection with the aid of a stereographic
n the references at the end of this book.
ection is produced (Fig. 4-6), we could
aid of such a net, although it takes less
ver, there are many powerful uses we ¢

an
without plotting points precisely.
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In Chapter 8 we found that {100} in the ;:ubx;r;ysitterl:la:.;sﬂ;
form with six faces, whereas in the tetragona syIs A
four faces. We can show this very neatly with the stereogray
Pt?ﬂle?;;n‘fi-ll the upper figures are the Rro;ectllc;n ;Jff t;i;ec?‘;?(-:
metry elements of the most symrrfemcal po(;lnt gr:thp S
and tetragonal systems, respectwely.. Un. erlne_ Sebil
projection of the {100} faces. The little circle lllr; ke
represents the (00T) face which would be on t .ti‘:e B ,OE ‘a
from us, since we are always looking at the posi

is i se projections. _ .
4 nlxr:Scll?o([)l;ieng 1zheJ {100} form we are c?mosmg 2;}:8?\2 EZ:E]
The normals to its [aces are paralé::i ,:; :zsmlr:::e[tlz % ‘;e % St
'?.ee s [’e'f[f(;(:m(-)Eor:{n:le\v:l);;:??(:znormals were not parallel to any
si::ﬁ::(:ry axis or plane. Suppo:';e we choose 1an {1112!:}} ;T-.;lgth;lng
sero values and no two values alike, for example, { . Fig.

SPEL

231
321
. Tetragonal
b
& FIG. 4-11 FIG. 4-12

312 213

if~213

Tetragonal

i i in Fig. 4-11.
shows the form {123} for the two point groups given in F1gE o
\: b - - - r 0 ls
Below each, the stereographic projection of the [an:fs S
general form is shown combined with the stereographic proj
(i lements. )
tion of the symmetry ¢ . \ o]
There are many interesting things to notlce_here. Inl:he: c;ices
case, since all three axes are symmetrically equivalent, the in
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;m-a pcrrlnuted among all three. In other words, if the face (123)
lests, nen_, because of the symmetry elements of the point ro; o}
H:j)fol(l;:\;mg faces also exist: (312), (231), (2183) (321) g(l‘a‘°I)"
23), (812), (231), (2T8), (32T), (T32); 123), (312), (331), (219)
i X D), (213), » (132); 3), (812), (231), (213
(321), (132); (123), (312), (231) ; G S
o=l), (132); (123), (312), » (213), (321, (132); (123), (3T
(231), (213), (821), (182); (123), (31 o Gl
0R), (219), ((521), » (129), (312), (231), (213), (321), (13
- : : el o) (o] ; 3), (321), (132
E]TE:; ((3.11%)) ('?hl), (215),4(521), (132); (123), (31?)), ((231)) ((2175))
521), 2). ere are 48 faces all t , i
called a hexoctahedron (6 x 8). It is [oc:?rfcllhfg;nﬁ?(iltyhf)nf(;r'tnr]n(::

crystals, usually in combinati i
I ation with the dodecahedron, {110},

»

*

FIG. 4-13

FIG. 4-14

In Fig. 4-12, note the relation of the 1 i
S{r;z::;splﬁjection of the general form) {[0223“:];0;}1t:hét?;ni:;f:'
o pape.r Srei:aimple: because of the Symmetry plane parallel 13
gy ; hericaiv. a cn‘rcle' and a dot at each position: the circic
NP Ii . projection point on the far side of the

ot irom the spherical Projection point on the ne:ﬁaé)ifl:;

sides of the mirror planes,

The tetragonal case is simpler,
ments, and the general form has
a and b axes (sometimes called q

ymmetry ele-
only 16 faces. Here onlz the

1 and a, axes) have the same

oW
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unit lengths and are therefore permutable. The form has the
following faces: (123), (218); (123), (218); (123), (213); (123),
@18); (123), (213); (123), 213); (128), (213); (123), (213). All of
the planes meet the ¢ axis at one-third its unit length. In the
tetragonal system the ¢ axis has a different unit length from the
other two, the length depending upon the particular substance in
question.

In Fig. 4-14 the third index is given as unspecified (i) since,
from this diagram, the intercept on the ¢ axis cannot be de-
termined.

Referring back to Fig. 1-10, we recall that a center of sym-
metry relates any feature of the crystal to a similar feature on the
opposite side of the center. For every dot in the stereographic
projection of planes related by a center of symmetry, there will be
a circle on the opposite side of the center of the projection, the
same distance out from the center (Fig. 4-15). The dot and circle
represent the projections of a pair of parallel faces on opposite
sides of the crystal. In other words, they are the opposite ends of
a line going through the center of the crystal. Note that each of
the point groups shown in Fig. 4-12 has a center of symmetry.

Fig. 4-16 is a sketch of a crystal of the tetragonal mineral
scheelite (calcium tungstate, CaWO,) in which the {131} form is
shaded and two faces of {101} are labeled. If we could turn the
crystal around, we would see that the ¢ axis is a 4-fold axis of

FIG. 4-17

FIG. 4-15 FIG. 4-16




50 CRYSTALS AND LIGHT

symmetry with a mirror plane normal to it. The four kite-shaped
pairs of {131} faces follow, head to tail, like horses on a merry-go-
round, around the equator of the crystal so that no other planes
or axes of symmetry are present. Fig. 4-17 is the stereographic
projection of these {131} planes. Given just that figure alone, it
would appear that this form had four symmetry planes normal to
the paper as well as four 2-fold axes lying in the plane of th_e
paper. However, it is clear from looking at the crystal that this
is not so. How can we avoid this difficultyy We must put the
projection of the general form into its proper frame of reference:
the crystal lattice. In Fig. 4-18 the positions of the crystallo-
graphic axes normal to ¢ are marked at the edge of the projec-
tion. Now it is clear that the plotted form is skewed around with
reference to the directions of the edges of the tetragonal unit cell
(i.e., to the crystallographic axes) and that the only symmetry
clements common to both are a 4-fold axis normal to the paper
and a mirror plane parallel to the paper, plus the center of sym-
metry which this combination of symmetry elements implies.
The stereographic projection provides us with an easy way Lo
discover what elements are implied when certain elements are
given. In Fig. 4-19, for example, we have a 2-fold axis normal to

FIG. 4-19 FIG. 4-20

FIG. 4-21

the paper and a mirror parallel to the 2-fold axis.
general form is plotted as a point. If now we
with the two symmetry elements, the additiona
Fig. 4-20 are generated. Inspection of this figure
projected points are also related b
to the first and also normal to the paper, as shown in Fig. 4-21. If
we had started with the two mirror planes, we would have dis-
covered that the 2-fold axis came into existence. Try the same
experiment with a 4-fold axis and g mirror plane parallel to it.

One plane of a
act on this pomnt
1 points shown in
shows us that the
Y a second mirror plane normal
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Then make up your own combinations. If you try to put two
symmetry elements together that cannot belong in the same point
group, you will soon find this out by the difficulties you get into
with the projection of the crystal planes.

We can also now follow more easily the operation of an in-
version axis, such as the 6-fold inversion axis shown in Fig. 4.22.

3 L] 3 o=
_s;o_+ inversion: 6

SIS

3and 6
FIG. 4-22

This is a particularly interesting case since from the finished
projection of the general form it is clear that we could have
achieved the same result with a 8-fold rotation axis and a mirror
plane normal to it. Note that a center of symmetry is the same
as a one-fold inversion axis (Fig. 4-15).

#* * *

Problem: In each of the stereographic projections below, the sym-
metry elements of some point group are given, together with one point
of a general form. Act on this point with the symmetry elements and
produce the remaining projected points of this general form. The
crystallographic axes are indicated at the rim of each projection. They
are not symmetry axes unless so indicated.

IO

FIG. 4-23 FIG. 4-24 FIG. 4-25 FIG. 4-26

1. A 3-fold axis normal to the paper (Fig. 4-23).

2. A 3-fold axis normal to the paper and a mirror plane parallel to
the paper (Fig. 4-24).
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3. Three mutually perpendicular mirror planes (two normal to the
paper and one parallel to the paper) with three 2-fold axes, cach
lying along the intersection of a pair of planes (Fig. 4-25). This is the
familiar orthorhombic symmetry of the brick.

4. A 4-old axis normal to the paper and a mirror plane parallel to
the paper (Fig. 4-26).

5. Which of these forms has a center of symmetry? (Answers are
given at the end of Chapter 5.)

* £ *

Answers to questions at the end of Chapter 3

1. Tpe Rositions of atoms in the unit cell of sodium chloride are
shown in Fig. 4-27. Because of the repetitious nature of the structure of

c(2)
01/20
000,
05— ———————000 O Sodium (Na)
‘-'__--1075'7:26_:“ E @ Chlorine (CI)

4
ooo?———{--%——-—-(lj
1 b-—--—-O——-l-—;*ooffz

4

i (or vice versa)
@, b, and ¢ are called x, y,

. ™ | and z, respectively, when
| ,Q“{'"';’"—_F:O | cne refers to the coordinates

OD'/Z“"“{'“’G‘”““"# % of atom positions.

1 000 1
ey S e

7/ '
| @F-———F-——1-@1200
7/ ’ 4
000G -~ —— @ ————o00
0120

a(x)

FIG. 4-27

a crystal, if the coordinate of an atom’s position along the a axis is 1, this
means it is one whole unit-cell length away from i
fore at the beginning of the next unit cell, that is, at zero. Thus, all
corner atoms of the cells have the coordinates 0, 0, 0. For the s'amc
reason, the atom at the center of the top face has the coordinates %, 3, 0
just as the atom at the center of the bottom face does ¢

2. (100): Sodium and chlorine atoms alternate (Fig. 4-28)

fS. (1 11):]Ea§111 atomlfc p}ﬂane of {111} orientation consists of one type
of atom only. Sheets of sodium atoms alternate with sh i
atoms (Fig. 4-29). Sacea clichlozing

4. (110): Each atomic plane of {110} orientation consists of rows of
sodium atoms alternating with rows of chlorine atoms (Fig. 4-30)

the origin and there-
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110)

FIG. 4-28 FIG. 4-29 FIG. 4-30

5. In the cubic unit cell, 5.627 A. on an edge, there are 8 atoms.
(See Fig. 4-27: whole atom at the center, 1, plus | atom at each of
eight corners, 1, plus 4 atom centered in each of six faces, 3, plus %
atom in the middle of each of twelve edges, 3, makes a total of
1 41+ 3+ 3 =8 atoms). Therefore in 1 cc there are 8 x (1/5.627 X
10—8)3 4.5 % 1022 atoms per cc in sodium chloride.

Compare this figure with that for cesium chloride at the end of
Chapter 2. If you want to calculate the number of atoms per cc in
other substances, you will find the unit cell dimensions in the Hand-
book of Chemistry and Physics published periodically by the Chemical
Rubber Publishing Co., Cleveland, Ohio, and also in Crystal Data
by Donnay et al., published by the American Crystallographic Associa-
tion, 1963, available from Polycrystal Book Service, G.P.O. Box 620,
Brooklyn-1, N.Y. The problem will not be quite as simple for the non-
cubic crystals.

5  The Therty-Two Pomnt
Groups: Crystal Classes

In Chapter 2 we reviewed the evidence that crystals are made
up of exceedingly small structural units, repeated, side by side,
indefinitely in all directions. A perfect crystal is a homogeneous
body. Any small bit of it is just like every other small bit of it,
and as we saw in Chapter 2, this places some restrictions on the
kinds of symmetry it can have, with the result that there are just
32 possible crystallographic point groups.

One might have been able to arrive at this conclusion by
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examining the symmetry of hundreds of crystals and finding that
only 1., 2-, 3-, 4-, and 6-fold rotation axes occur in their symmetry.
One could then try to determine what it was in the nature of
crystals that resulted in this limitation of their symmetry. The
rePetltlve-unit structure of crystals might have been discovered in
this way, but this was not the way it happened.

In 1830 a crystallographer named Hesse] investigated the possi-
ble types of symmetry for a solid figure bounded by plane faces, a
purely mathematical study. Being aware of the Abb¢ Haiiy's Law
of Rational Indices, the bui]ding-block law, he considered what
types of symmetry would remain if he excluded from his figures
all 'those that did not obey this law. He derived 32 types, and
having confidence that Haiiy's law represented the 11'ut11 ':11301“
crystals, I:Iessel stated that these 32 symmetry groups were the
Ol:lly possible ones for crystals. This conclusion was published in
his book, Krystallonomie ang Krystallogmphz'e inp Leipzig in
.]831..(I£ astronomy, why not crystallonomyp Tl;e suffix -o_nomy
is derived from the Greek verh nemein, meaning to disuiibute, ar-

ork appears not to have been read by

l - . .
Ga.dolin repeated the derivszftl?cr:lfea:;:l lcf;;;llze, o 1thaht, o 18637‘;
point groups, publishing his work botp in an I:Jir‘::ctl; e S;Tiiis{;
scientific journal and in hook form in Helsinki. G cllnlz'l s ork
was well known before the crystal physicist L- ek ¢
rediscovered Hessel's earlier b R LR AT

ook in 1891
The 32 crystallographic poj '
t J !
chapter in two different wayIs) 11t groups are tabulated in this

! In Table 5.1 the poin

. Lt groups are
Listed by symbols, and the SYmmetry elements of eacl i are
tabulated. In Table 52 3 perspective dia ach group 2
elements of each point group is given
graphic projection of t

he symmetry
form.” Under each of these are the}s

A great deal of information is cond

gram of the symmetry
and beside it, the stereo-
elements and of a “general
ymbols of the point groups.
ensed into these tables, and
be discovered in them.
8TOUDS given in Table 5.2 are, first,
a German mathem |
of C. Hermann of th

The symbols of the point
those used by Schoenflies, o
lographer, and second, those u;c:fm-cr‘ysml%
e University o
n of the University of Paris. The

THE THIRTY-TWO POINT GROUPS: CRYSTAL CLASSES

TaABLE 5-1

(Numbers in parentheses refer to axes inherent in other axes present.)

The 32 Crystallographic Point Groups

How many of each kind of

Point symmetry element?
Group
System Symbol m 2 3 4 60 N1 2L SRS
Triclinic 1
i 1
Monoclinic 2 1
m 1 1
2/m 1 1 1 1
Orthorhombic 222 3
mm?2 2 1 2
mmm 3 3 1.3
Tetragonal 4 (1) 1
(Every point S (1)
group has one 4/m 1 (1) 1 1
4 or 4 axis.) 422 44(1) 1
4mm 4 (2) 1 4
42m 2 24(1) 2
4 /mmm 5 4+4(1) 1 1IN 5)
Trigonal 3 1
(Every point 3 (1) (1) 1
group has one 32 3 1
3-fold axis.) 3m 3 1 3
3m 3 3 (1) (1) 3 1
Hexagonal 6 (1) (1) 1
(Every point 6 1 (1) 1
group has one 6/m 1 (1) (1) 15
6 or & axis.) 622 B
Gmm 6 (1) (1) 1 6
6m2 4 AT (1) 4
6 /mmm 7 64(1) (1) 10 1]
Cubic 23 3 4
(Every point m3 3 3 4 1y %
group has four 432 6(+3) 4 3 4
3-fold axes.) 43m 6 (3) 4 6
m3m 9 6(+3) 4 3 1 9.
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THE THIRTY-TWO POINT GROUPS: CRYSTAL CLASSES
TABLE 5-2 (cont.)

57

56
TABLE 5-2
TRICLINIC TETRAGONAL
c c
Q '
b
b A

a a -

g .

Ci- 1 Cy-4

(=3
-
— b o
a o
c <
S.—3a

b : G

: LY
a
ci~-T
MONOCLINIC ORTHORHOMBIC Cah = 4/m
<

%‘% I A

ci- 3

O3 =32 (see worer |

s

Caw = 3M  (5ee NoTE)

g

Dgh - 6/mmm

Osd = 3M  (sce noTE)
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Sghoenﬂies symbols are in part arbitrary numbers, but they are
still often used and are therefore included in the table for refer-

mb

m  Mirror plane
2,8,4,6 Rotation axis (2-fold, 3-fold, etc.)

1,2 3 4 6 Inversi i
81old, etc) msion axis (1-fold [= center of symmetry], 2-fold,

(Just as 2 signifies rotat
on of 360°/2 combined with inversi
! ok mb > 7
a center-point, so 1 signifies rotat / e o s

which just gets you back e ton of 360°/1, the identity operation
a center point—i.e,, T s ;i £re you started, plus inversion through
indicated in Table 5.9 b;g 5 i only inversion through a center point.
2 > : Upper corner of box.)
Zor 2/m ("2 o ah el
m : ( ver m") 2-fold axis with mirror plane normal to it.
mmZ ‘Two mirror pl 2
: Planes intersecti S y .
written as 2m or mm. e €cting in a 2-fpld axis. Sometimes

e, . © Saw 1n Figs. 4.20, 4-2] and 4-29, either
o ré(smz g::;fectmg mirror planes) will lead you to the
4/m mm  4-fold axis
Planes parallel to {
is illustrated in Fj
axis need not be

with mirror plane norm
t. This is the highest ¢e
. 4—1%. The two-fold ax
mentioned, since you
15 usually “closed up,” wri

hat on]
(o}
normal to the Totation axis, G jor

32 (“three two,” not “thirg i :
to an axis paralle] o Zﬁ? t) i R s e s
the unique axis js . The seco:r:d g otadin, o iadae
to the first, €xcept in ¢

al to it and two mirror
tragonal symmetry and
es normal to the 4-fold

e three mirrors can be

number refers i
he cubic 5 to an axis normal

axes which are neithe lel
: . r paralle
R djre};s allographic ayes. These are the 3-&5)1(1 axes

€0t in every cubic point group.

Therefore a 3 is alwa
symbol. MRS onbientin affn e ao
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Tables 5-1 and 5-2. A word of explanation is in order. All crystals
in which the unique symrhetry axis is a 3-fold axis are trigonal
crystals. [Note that this excludes cubic crystals, where there are
four 3-fold axes, not a unique one. It also excludes 6, a point
group which could be called 3/m (Fig. 4-25).] The smallest unit
cell of some trigonal crystals is rhombohedral in shape, whereas
for others, even in the same point group, the smallest unit cell is
“hexagonal,” i.e., the shape of Fig. 2-10d. Since this can only be
determined by x-ray diffraction, it was not known before the Laue
experiment in 1912. The term “rhombohedral” used in earlier
texts thus did not have the same significance that it has today.

For point-group symmetry the term trigonal is unambiguous as
defined above.

Symbols used in Table 5-2:

CAES Rotation axis 2, 3, 4, 6, respectively.
A& Inversion axis 3, 4, 6, respectively.

Crystallographic axes are marked at the rim of the projection
by short radial straight lines. The symmetry planes and the
projection of the general form have been discussed in Chapter 4.

Axes that are inherent in other axes are indicated in Table 5-1
in parentheses. For example, as pointed out in Chapter 1 with
reference to the card table, a 2-fold axis is always inherent in a
4-fold axis. If you have a 4-fold axis, it causes repetition every
90°, and 2 x 90° = 180°, which is the repetition period of a
2-fold axis.

There are some amusing relationships among these axes. For
example, 3 is inherent in 3, as you can see by Table 5-2, where
the projection of the general form for point group 3 also has the
symmetry 3. However, 4 is not inherent in 4. What about & and
2? You will not find 2 in Table 5-2, but you will find that it is
equivalent to m, which has arbitrarily been chosen as the symbol
for the point group instead of Z. Either would have been satis-
factory. ;

The term crystal class refers to a class of crystals which have a
given point-group symmetry. There are thus 32 crystal classes. In
the past the crystal classes were given names which were often
long and cumbersome, and different authors assigned different
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names
to the same class. For example, the cubic class with the

point-group symmetr

fool’s gold (FeS,
names: Diakisdo
hedral, Diploidal,
the classes begi

2/m

GYPSUM
CaS0,-2H,0

i

STAUROLITE
H FeAls Sip Oy3

TOURMALINE

Hg ﬁ«la(aOH)ash‘o!9

-010

y m3, the symmetry of the mineral pyrite or

), has been variousl
en v y called by the followin
decahedral, Didodecahedral, Pentagonal I—Iemig-r

and Tesseral Central. Since some authors listed

o - :
Ing with the cubic classes, while others began

mm/2 222

O AT

N

HEMIMORPHITE
21 (0H),8i,0,H,0

EPSOMITE
MgS0,- 7H,0

4/mmm

et QUARTZ sio,
2 (Right ~handed )
m3
c ?PATITE PYRITE
(] )Cn4(PO4)3 FeS,

FIG. 5.1
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with the triclinic, the numerical order could not be used for
identification. Recently the symbol for the point-group symmetry
has generally been used to designate the crystal class.

In spite of this shifting nomenclature, there is no doubt about
the classes themselves. Since Hessel derived them in 1830, no
writer has disagreed with the choice of the 32 symmetry groups.
You can recognize them by their symmetry in the oldest texts on
crystals, even though their names may be jaw-breakingly un-
[amiliar.

Fig. 5-1 shows crystals of a number of different substances,
illustrating various point groups. Compare Table 5-2.

* * #*

Problem: Assign the proper point-group symbol to:
1. A simple four-legged table like that in Fig. 1-4.

2. A brick (Fig. 1-7).

3. A sphenoid (Fig. 1-11).

4. A common hammer.

5. The scheelite crystal in Fig. 4-16.

6. The garnet crystal in Fig. 4-13.
To what crystal system would each belong if it were a crystal?

(Answers are given at the end of Chapter 6.)

* * #*

Answers to questions at the end of Chapter 4
1. 2. 3. 4.

5. No. 3 and No. 4: each has a center of symmetry.




6 The Crystalline State

Up to this point, we have been examining the orderly nature
of crystals, their repetitious structure and their symmetry. Be-
yond this point we are going to see some of the results of this
orderliness in the physical properties of crystals. At this mid-
point is a basket chapter which holds an assortment of facts
about crystals that will be useful to know.

Nearly all solid substances have an orderly
their constituent atoms, some more orderly th
structure of textile fibers has been stud
diffraction patterns, and even a match stick gives a good pattern.
The textile fibers have much better order along the fibers, as you
might expect, than across them. Whether you call these “crys-
tals” or not depends upon how exclusive you want the definition
to be. The fiber is “a solid composed of atoms arranged in an
orderly, repetitive array.” It doesn’t have very good three-dimen-
sional order and it doesn’t develop shiny faces like those of the
topaz crystal, but crystallographers study it and report their re-
sults at meetings of the American Crystallographic Association.

Teeth are made up of small crystals of calcium phosphate, and
eggshells are made of calcium carbonate crystals. These are good
proper crystals with three-dimensional order, but they are very
small and all intergrown, one against the other; their crystal
faces have not developed because neighboring crystal grains got
in the way. Such a polycrystalline (many-cryslal) mass might have
grain boundaries such as those shown in Fig. 6-1, which is a thin
section of Carrara marble ma

gnified nine times. Here the Ccrys-
tals are calcite crystals (CaCO,), and the straight lines in many

of the grains mark cleavage planes which wil] be discussed in the

next chapter. These planes are parallel to {10T1} in this crystal,

whose point group is 3m. Within any single crystal we can see

that the orderly array of the Structure is maintained, since these

planes are straight and continuous, The neighboring crystal may
62

arrangement of
an others. The
ied from their x-ray
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have a very different orientation, bu't inside_its boulnd:;]rg s:'n:z
homogeneous in its orderly array. This array 1s exaclt y i
as that in the crystal shown in Plate IIL The fact zlmtc;le ains};
small crystal in the Carrara marble has grown afoun a:n sgecwd
its neighbors, and therefore shows no faces, ha-s’m no w zcxly o
the orderly accumulation of the carbox.l. oxygen, an

atoms that make up the structure of calcite.

FIG. 6-1 Carrara marble, magnified 18 times. (From Metamorphism, by
: Alfred Harker. By permission of Methuen & Co. Ltd.)

Many of the polished rocks used for decoration on ll)uildm_gs
are quite coarsely crystalline, so'that you can see the grain
boundaries between the crystals without a microscope.

Plate I1I(3) is a photomicrograph of a piece of Pohshed brass
which has been etched with acid. The dark and light areas are
due to the acid acting at a different rate on tht_e dlfferem.ly
oriented crystals. Here again, the irregular boundztrles are grain
boundaries between crystals, The straight boundaries are bound-
aries of a different kind. 3

These straight boundaries are due to thr.mmg, the_ name
given to a “mistake” the crystal makes in growing. In twinning,
the later-grown part is not parallel to the earlier-grown part
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FIG. 6-2

(derivable from it by pure translation), but is related to the
earlier-grown part by some symmetry operation which is not a
symmetry operation of the single crystal. A few examples will
make this geometrical relationship clear. Fig. 6-2 is a sketch of a

301 --. =
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A
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structure model of a twin in a face-centered cubic element such
as copper. At some particular (111) plane, the arriving atoms
took positions which were the mirror image of those on the other
side of the (111) plane. Since this plane is not a mirror plane for
this crystal, these were the wrong positions. However, the crystal
continued to grow in the new orientation, the new part being
related to the old part by a mirror plane, known as the twinning
plane.

In Fig. 6-3 some examples of twinned crystals are shown. Com-
pare them with Fig. 5-1. One individual of the twin is always
related to the other by a symmetry operation, and the twins share
a plane of atoms that fits right into the structure of each. It is
this that distinguishes the twin from a couple of crystals that
just happened to grow together. Such crystals are shown in Plate
II. They are not twins, but just intergrown crystals of calcite.
Like neighboring grains in the Carrara marble of Fig. 6-1, they
bear no special orientational relationship to each other.

QLGOI OO O IOL O O FIG. 6-4
@) @i e ey el (el R e, . (o) (@)

PO OREOL OO O OO

In the process of growth of a crystal, an imperfection like that
shown in Fig. 6-4 may occur. The inverted T calls attention to
the defect in the structure. Such a defect is called a dislocation. If
a series of such defects occurs one above the other, as in Fig. 6-5,
the array of atoms on one side of the defects will not be parallel
to the array on the other side. The angle between them will
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depend upon how closely spaced the dislocations are. The
boundary between them is a low-angle (small-angle) grain bound-
ary. Many such low-angle grain boundaries may occur in the
course of crystal growth, as shown in Fig. 6-6. This figure is from

T
) |
: T
iEmERS
11
T11]

852 H HE
FIG. 6-6 (From The Lineage Structure of Crystals, Zeitschrift fir Kristal-
lographie, vol. 89, 1934, p. 195, by permission of the author, M. J.
Buerger.)

a paper published in 1934 by M. J. Buerger, who called this
particular kind of imperfect crystal growth “lineage.” Is a crystal
that grows this way a “single crystal”? Some would say yes: it is
certainly very different from the polycrystalline Carrara marble
of Fig. 6-1. Some would say no: there are boundaries in it that
separate nonparallel regions, so that not every unit cell in it can
be derived from any other by straight translation, It is a crystal
with lineage; a crystal with low-angle grain boundaries.

* * *

Answets to questions at the end of Chapter 5
. Table: 4mm (tetragonal).
. Brick: mmm (orthorhombic).
. Sphenoid: 42m (tetragonal)
- Hammer: m (monoclinic).
- Scheelite crystal: 4 /m (tetragonal).
. Garnet crystal: m3m (cubic).

@ O W Co N =
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The symmetry elements of the sphenoid (No. 3 above) were
discussed in Chapter 1 to illustrate the operation of the 4-fold
inversion axis, 4. Attention was not called to the fact that it also
has three 2-fold axes through the centers of its opposite edges.
One of these coincides with the 4 axis and is inherent in it. If
you placed a thumb and finger at these points and rotated the
sphenoid of Fig. 1-11 through 180° around such an axis, its new
position would be indistinguishable from its original position.
The existence of the two 2-fold axes normal to the 4-fold inver-
sion axis would also be discovered by plotting the stereographic
projections of the faces of the sphenoid relative to the 4-fold
inversion axis and mirror planes, as in Fig. 6-7.

FIG 6-7

With respect to the perfection of their symmetry, the six ob-
jects above fall into three grades. We might distinguish them
arbitrarily as follows: 4, perfectly exemplary of the point group
listed; B, almost perfectly exemplary; and C, only roughly exem-
plary in external shape. Can you determine which objects belong
in each category?

Since the sphenoid is a geometrical object constructed from
our imagination, we can imagine it to be as perfect as we please,
so it belongs in grade 4. The two crystals, scheelite and garnet,
almost certainly have minor imperfections in the arrangement of
their atoms, but except for these occasional flaws, their structure
throughout has the symmetry indicated by their external ap-
pearance, i.e., by the point group given. So the crystals belong in
grade B. The table and hammer handle are made of wood fibers
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and _the E.)rick and the head of the hammer are polycrystalline,
looking ll.ke Fig. 6-1 under the microscope; their internal struc-
ture certainly bears no symmetry relation to their external shape,

which was formed by manuEacturing processes. They belong to
grade C.

* * *

Sources of crystals with well-developed faces

In many parts of the country there are well-organized mineralogical

and geol_ogical c!ubs that go on mineral-collecting trips. Often they
are associated with the local science museum. Contact with such 2
gr?;}l: may be a good source of crystals.
CI€ are many companies that sell speci ith well-
pecimens of crystals with W
gzvilopidtfaces. Two'of the largest that will send illustrated catalogues
quest are Ward's Natural Science Establishment, Rochester, New

York, and E i
B ckert Mineral Research, 110 East Main St., Florence

Sodium chloride crystals ma

By dissolving these in wat Y be found in the nearest salt shaker:

Efr al&d letting the solution evaporate, yoU

Or turther information on growing your own

;ry;t.als, see Crystals and Crystql Growing by r::.ng_ I—%o{den_ and

s mtglfr.lDoubleday-Anchor, Garden City, N.Y., 1960

ﬁrrr?sn wfa::ec?;tals .DE a number of substances are’ available from several
Vertisements may be founq in the technical jour"als‘

They are generall u u
. I .
e h : Y Purer and more €xpensive than most nat ral

7  The Relation Between the
Symmetry of a Crystal and
the Symmetry of Its Physical
Properties

In a footnote in Chapter 2 an accident was mentioned as the
cause of Abbé Haiiy’s becoming a crystallographer. An account
of the accident was promised for Chapter 7. When Rene Just
Haily was teaching at Lemoine College in France, he began to
devote all his spare time to the study of botany, but a good friend
of his was a mineral collector and, probably because of trips he
had taken with his friend, Haiiy had a small collection himself:
One day his friend showed him a particularly fine specimen of
calcite. From the description that has come down to us, it must
have looked rather like the specimen in Plate II of this book.

While Haiiy was examining the treasured specimen, he
dropped it. One of the large crystals broke off, and his good
friend let him have it for his collection! But Haiiy had noticed a
surprising thing. The broken surface was a smooth bright face,
and he was curious to see whether the same sort of face would
result if he broke it again.

“The prism had a single fracture along one of the edges of
the base,” he wrote later, “by which it had been attached to the
rest of the group. Instead of placing it in the collection which I
was then making, I tried to divide it in other directions. . . .”
He found that there were three directions in the crystal along
which he could break it and get a bright plane surface like the
first one. Such an easy plane of parting in a crystal is called a
cleavage plane. Cleavage is the tendency of the crystal to come
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apart between planes of atoms when struck or pulled apart. Mica
has excellent cleavage and can be pulled apart in thin sheets.
Some crystals do not exhibit cleavage at all. In order to have an
easy cleavage, the bonding between the atoms in the direction
n_ormal to the cleavage plane must be weaker than in other direc-
tions.

In calcite the cleavage plane is {1011}, expressed on hexagonal
axes. The poirlt group of calcite is 3m, and therefore the com-
Plete form {10T1} has six faces, in three parallel pairs, as shown
1n stereographic projection in Fig. 7-1. [Faces such as (0T11) and
(01TT) are of course parallel.] Plate VI(2) is
cleavage thombohedron of calcite with

of calcite were broken again and again into very small fragments,
every fragment would be bounded by {1011} faces, and therefore

the angular relations between the faces would be the same in
every fragment (see Plate VI(3)).

a photograph of 2
{10T1} faces. If this piece

FIG. 7-1
a3
(0111)

(o117)

When Haiiy observed that the

clea:rage faces were the same in every fragment (as in Plate
Yl(o)), he erroneously concluded that he could break lthe crystal
into thc? small pieces which were the ultimate building bloclzs of
W]:lich”lt wasconstrugted: 5 & and succeeded after several
mals,. he wrote, “in extracting its rhomhoid nucleus.” In spité
of this error, he did have the concept of a repeat un.it and he
showed th,:_tt he could reconstruct the originaiJ sharpl , ointed
c.rystals, with the proper interfacia] angles, b stackpir? I::,l the
little cleavage blocks which he calleq “mélég’ul i ﬁtes"
One of his figures is reproduced here as Fig. 7.2 T

angular relations between the
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The excitement of this discovery resulted in his forsaking
the study of botany for crystallography.

Cleavage, like all other properties of a crystal, is the result of
the nature and arrangement of the atoms in the crystal. As soon
as you know the symmetry of the crystal structure, you know the
symmetry its properties must have.

Given a crystal with point-group symmetry 3m and cleavage
parallel to (1011), you know that the 3 axis means that the other
planes of Fig. 7-1 will also be cleavage planes. Since three dilfer-
ently oriented planes will bound a solid if they do not all belong
to the same zone, all surfaces of a broken piece of this crystal will
be cleavage planes.

Plate VI(3) shows a number of such broken pieces of calcite.
Some are long and narrow, others more nearly equidimensional,
depending on where the break happened to occur. Since the
cleavage depends on the arrangement of the atoms, there are
potential cleavage planes throughout the crystal as closely spaced
as the repeat unit of the structure.

Plate VI(1) is a sketch of a model of the structure of calcite.
The surfaces of the model show the orientation of the cleavage
planes in the calcite structure. Compare the shape of the model
with that of the piece of calcite in Plate VI(2). Since the unit cell
is a few Angstrom units on an edge (a few x 10-% cm), there are
about 108 potential cleavage planes in one direction in a piece of
calcite a centimeter long.

What is the symmetry of the broken bits of calcite in Plate
VI(8)? If we think only of their external shapes, many of them
would appear to have lost the 3 axis, but each bit of calcite is
still composed ol calcium, carbon, and oxygen atoms arranged in
an orderly structure with point-group symmetry 3m. One might
say that, since each unit cell has this symmetry, there are millions
of 3 axes and mirror planes, all self-parallel, in any bit of the
crystal. The orientation of the cleavage planes will always be in
accordance with this symmetry, but, just as in the case of the
growth forms in Figs. 4-2 and 4-3, the exterior dimensions of any
cleavage bit will depend on the conditions of its formation.

The common mica, muscovite, is a monoclinic crystal with
point-group symmetry 2/m and cleavage parallel to {001}. How
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many differently oriented cleavage planes has it? From Table 5-2
we see that the mirror plane in the monoclinic system is normal
to the b axis and the 2-fold axis parallel to the b axis, as shown
in Fig. 7-3. Since the action of a mirror on a plane normal to it is
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FIG. 7-3

just to reflect it into itself, the action o
(001) in Fig. 7-3 will not generate an
ever, the 2-fold axis parallel to

sxmme_trica]ly ?quivalent plane, that is, the form {001} in musco-
vite mica consists of (001) and (00T). Since these two faces are
para}Hel, the cleavage in mica has only one orientati (U like
calcite, therefore, it cleaves in sheets, not in chunks gV
Now suppose we consider some other physical prc; erties. Take
for examplf:', the property of elasticity, the abilit ol?‘. a sul;stancf;
to change its dimensions eIastically in responsg to an applied
stress. (An “elastic” change refers to 2 change which exisg:l?:ml
as .long as the stress is applied. When the stress is removed thz
?b]ect Teverts to its original dimensions.) Each atom in a cr’ stal
is where It 15 as a result of the balance of attractive and re v{Si\’e
forces which it and its neighbors are exerting on each ogll::r If

f the mirror on the plane
y additional planes. How-
(001) indicates that (00T) is a
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we apply a stress to a crystal, we change the balance of forces,
and the positions of the atoms change in response—i.e., there is a
resulting strain (dimensional change).

If we apply a compressive stress along any one of the (100)
directions in sodium chloride (Fig. 4-27), we will be tending to
shorten mostly the distance between unlike atoms, whereas a
compressive stress along a (101) direction (the face diagonal in
Fig. 4-28) will tend to shorten mostly the" distance between like
atoms. It is therefore not surprising that the elastic constants
(the quantities expressing the amount of strain caused by a
given stress: the “yield,” or compliance) are different in these
two directions.

If we drew an arrow in the [100] direction with its length in
millimeters equal to the magnitude of the elastic constant for
compression in that direction and a similar arrow of appropriate
(different) length in the [110] direction, these arrows would be
vectors representing the elastic constants in these two directions,
since a vector is a symbol whose length and direction both have
significance. To show the complete picture of the way the elastic
constants vary for all directions in the crystal, we would have to
have an infinite number of arrows, radiating from the center.
Their tips would define a surface, an envelope touching every
vector tip. Such a surface is called a vector surface. We could, if
we chose, draw vectors representing stiffness to stress, the inverse
of compliance. Fig. 7-4 shows the vector surface for Young’s
modulus (which is a measure of elastic stiffness to compression in
various directions) in quartz. The symmetry of quartz is 32. (See
Table 5-2 and Fig. 5-1.) By examining the symmetry of the vector
surface and the symmetry of the quartz crystal in Fig. 5-1, could
you say approximately which direction in the crystal is the
direction with the largest Young’s modulus, the stiffest direction,
the direction that would deform least when a compressive stress
was applied along it?

(As always, in speaking of properties of crystals, when we speak
of the value of a property “in a direction” we mentally include
those other directions that are crystallographically equivalent to
this one, since the property will have the same value in those
directions because of symmetry.) Since the angular position of
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the _longest vector (outermost point) of the vector surface in Fig.
7-_4 is not given, you can, of course, say only approximately what
direction in quartz it corresponds to. The symmetry elements of
the vector surface must coincide in space with the symmetry ele-

ments of the crystal faces, since both result from the symmetry of
arrangement of the crystal's atoms,

Note that the vector surface in Fig. 74 has a center of sym-
metry, although the quartz crystal does not. The vector qurf:z’ces
of many properties have higher symmetry than that of Lhe‘ crystal.
Such is Fhe case, for example, in linear thermal expansion, the
cl?ang_c in the dimension of an object along som]e ).at'ti("ular
dlrecuop s a result of a change in js temperature l][ a cubic
crystal is heated, it expands uniformly inl all diréctio‘m' the
vector SU.I’fEICC is a sphere. If you cut perfect sphere from a 'cubic
Cl“,‘Slal,.lt would remain perfectly spherical 1—,5 ou heated or
cooled it. In crystal systems where one axis is u;iqzle (unl‘ike any

of the others) but the two normal (o it are symmetrically equiva-

1 : :
ent to each other, the vector surface [or linear thermal expansion

1;, an eflh!)sm;l};of revol.ution. Al? ellipsoid of revolution is a solid
. gl.lre onnelc y rotat!ng an ellipse around one of its two axes. 1f
it 1s rotated around its major axis, the resulting solid will be
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longest along its rotation axis, like Fig. 7-5. If it is rotated around
its minor axis, it will be shortest along its rotation axis, like Fig.
7-6. The lines on both figures represent various positions of the
rotating ellipse. All sections normal to the axis of revolution are,

of course, circular.
@D ! l
{ Zi
1>

FIG. 7-5 FIG. 7-6

FIG. 7-7

In crystals where no two axes are crystallographically equiv-
alent, the vector surface for thermal expansion is a triaxial
ellipsoid. In the triaxial ellipsoid (Fig. 7-7) there are three
mutually perpendicular axes which are, in general, unequal in
length. There are only two circular sections (dotted in Fig. 7-7),
which contain the axis of intermediate length. The angles at
which they intersect with the long and short axes depend upon
their relative lengths. All other sections are elliptical.®

Suppose we examine the symmetry of these solid figures, just as
we did the symmetry of various solid figures back in Chapter 1.
The ellipsoids of revolution, Figs. 7-5 and 7-6, have the sym-
metry oo /m—i.e., such a figure looks the same an infinite number
of times during a 360° rotation around its symmetry axis and

* The original for Fig. 7-7 was drawn by a computing machine. Miss
Ruth A. Weiss of the Bell Telephone Laboratories programmed the informa-
tion for the three dilfcrent ellipses, mutually perpendicular, seen in per-
spective, and the machine calculated the curves and produced the diagram
on transparent tape, from which an enlarged print was made. This print
was traced by the draftsman with improved quality of line.
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it::g;eit;s :ujzlrglg_let;"y plane normal to this axis. There is also an
o o sy};‘nmeny planes parallel to the rotation axis
et numI er of 2-fold axes normal to it. As we look
TAts we}see teht;)t( tehemen‘ts of the 32 point groups in Table 5-1
Mg ek e plomt group of an ellipsoid of revolution
i :St fy elements of any point group except those
R }é_fz?:l. The ellipsoids in Figs. 7-6 and 7-6 do not
sl AT axes that cha.raclerize every cubic structure.
S e T thatPShperty of a Cu_blc crystal could have a vector
n s e Ofaf;’;::f‘e_ Pﬁo"_’lt group of a sphere, with its
the four 3-fold axes requirec;nb; ::tjbiznclnrr?f::zg; il e

When the vec
tor surface of a particular property of a crystal is

ard R ;
owa,rz)lr ;espondmg to. (The heliotrope is a
the sun, the Greek god Helios.) The

thermal-expansion vec
that the triaxia] ellips
rthombic, monoclinic,
the more Symmetrica]

oid wi]] satisfy
and triclinje c
ElIlPSOld of re

the symmetry of the ortho-
rystals just as well as would
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quite compatible with the orthorhombic, monoclinic, and tri-
clinic point groups.

As in the case of the Young’s modulus figure for quartz, so
bere too we can see what orientation the thermal-expansion
vector surfaces must have with respect to various crystals.

Consider first the ellipsoid of revolution, the vector-surface
figure for linear thermal expansion for the tetragonal, trigonal,
and hexagonal systems. The unique crystallographic axis (¢) in
each case (4-fold, 8-fold, and 6-fold, respectively) must coincide
with the infinite rotation axis of the ellipsoid. No other direction
in the ellipsoid has rotational symmetry any higher than 2.
Whether the thermal-expansion ellipsoid is longest along its axis
as in Fig. 7-5 or shortest along its axis as in Fig. 7-6 will depend
on the nature of the particular substance in question, as will also
the relative dimensions, the ratio of the axial diameter to the
equatorial diameter.

The orientation of the triaxial ellipsoid of thermal expansion
in the orthorhombic system is fixed by the fact that its three
2-fold symmetry axes, indicated in Fig. 7-7, must coincide with
the three orthorhombic crystallographic axes in order that the
symmetry elements of the vector surface will coincide with those
of the crystal. This orientation does not place any restriction on
which of the three ellipsoid axes (all different in length) will lie
along which of the orthorhombic crystallographic axes (a, b, and
¢), so there are three possible orientations in this case. Again
the relative dimensions of the vector surface will depend on the
nature of the particular substance in question.

The only restriction on the orientation of the triaxial ellip-
soid in the monoclinic system is that one of its 2-fold axes will
coincide with the 2-fold axis of the crystal in those classes where

the crystal has a 2-fold axis, or one of its planes will coincide
with the symmetry plane in the crystal where it has a symmetry
plane.

In the triclinic system the triaxial ellipsoid vector surface may
have any orientation relative to the axes of the crystal.

This discussion of the linear thermal-expansion vector sur-
faces, their symmetry, and its relation to the symmetry of the
crystals whose expansion they represent has been followed in
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8 The Velocity of Light wn

Cubic and Uniaxial
Crystals: Observation n

Crossed Polarized Light

As in the case of thermal expansion, cited in the previous
chapter, the vector surface for the velocity of light in any cubic
crystal is a sphere. For any noncubic crystal it is not.

In order to discuss light in crystals we must first consider light
itself. The concept of light that one uses in a particular situ-
ation depends somewhat on the situation. In what follows it will
be convenient to think of light as a wave like that in Fig. 2-16.
There the plane in which the waves are oscillating (from crest
to trough) is the plane of the paper, and the oscillation (or vibra-
tion) direction is up and down, normal to the propagation direc-
tion which is toward the right. (This “vibration direction” is
direction of the ‘“electric vector” in the terminology of electro-
magnetic radiation.)

In a beam of unpolarized light, each ray is vibrating normal
to the propagation direction, and any orientation of the vibra-
tion plane around the beam axis is possible. If, from such a beam,
those rays are selected whose vibration directions are all parallel
to each other, the resulting light is said to be polarized. If the
light has all wavelengths of the visible spectrum (ranging in
length roughly from A = 4000 to A = 7000 A.), then it is white
light. If the wavelengths of the rays are limited to a narrow
range (ideally, a single value), the light is said to be mono-
chromatic (from the Greek monos, one: chroma, color).

The easiest source of light confined to a narrow band of wave-
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lengths is the flame from some substance that has been wet with a
solution of sodium chloride (table salt) and then dried. The
heated sodium atoms impart an orange-yellow color to the flame.
This light, especially strong for a narrow band of wavelengths
near 5,890 A., is commonly called sodium light.

Now let us examine the vector surface for the velocity of light
in crystals.

Consider the simpler cubic case first. If we imagine a source
of light at a center point within the crystal, turned on at some
instant in time, we find that after an extremely short interval
of time the ray front will have progressed the same distance in
every direction through the crystal (Fig. 8-1), just as it would

(+)
FIG. 8-2

(=)
FIG. 8-3

(In Figs. 8-2 and 8-3 the difference between the spherical and ellipsoidal
surfaces has been exaggerated for illustration.)

FIG. 8-1

have in glass, in air, or in a vacuum. The vector surface is a

sphere: cubic crystals are optically isotropic. All other crystals
are optically anisotropic. In trigonal, tetragonal, and hexagonal
crystals the light traveling in a given direction is broken up
nto two rays, polarized at right angles to each other, traveling
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at different velocities. There are thus two vector surfaces. One
is spherical, like the surface in ordinary glass, ordinary air, and
somewhat-less-ordinary cubic crystals, and is the ray-velocity sur-
face of the ordinary ray. The other is an ellipsoid of revolution
and is the ray-velocity surface of the extraordinary ray.

The spherical, ordinary ray-velocity surface coincides with the
extraordinary ray-velocity surface at two points only. Consider
the geometry of Figs. 7-5 and 7-6 relative to a sphere, and you
will see where these points must be. They must be the ends of
the axis of revolution of the ellipsoid, so that a cross section of
the ordinary ray-velocity surface and the extraordinary ray-veloc-
ity surface looks like TFig. 8-2 or 8-3, according to whether the
crystal is optically “positive” or optically “negative.” The terms
“positive” and “negative’ are arbitrary. They could as well have
been “A” and “B.”

If the extraordinary ray is the slow ray, relative to the ordinary
ray, then the ellipsoid will lie inside the sphere, as in Fig. 8-2,
and the crystal will be said to be optically positive. If the
extraordinary ray is the fast ray, relative to the ordinary ray,
then the ellipsoid will lie outside of the sphere, and the crystal
will be said to be optically negative. Note that the ray-velocity
surface of the ordinary ray which is spherical is drawn with a
heavier line than that of the extraordinary ray in these figures.
The ordinary ray is of course the fast ray in positive crystals and
the slow ray in negative crystals.

Light traveling along the axis of revolution of the ellipsoid
(vertical in Figs. 8-2 and 8-3) will have a single velocity. This
direction is called the optic axis. Only along this direction does
light pass through a crystal as though it were glass.* In every
other direction the light is broken up into two rays, both
polarized, which travel with different velocities. The difference
in velocity increases from zero along the optic axis to a maximum
for propagation normal to the optic axis, as shown in Figs. 8-2
and 8-3. In general, the vibration direction of the polarized
extraordinary ray is in the plane defined by the propagation
direction (ray direction) and the optic axis. That of the ordinary
ray is normal to this and normal to the propagation direction

® For rare exceptions to this statement, see Chapter 15
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of the ray. These directions are indicated by short dashes on the
ray-velocity surfaces for the ordinary and extraordinary ray shown
in Figs. 8-4 and 8-5. In the q figure of cach, the optic axis 18

(b)
ORDINARY RaY EXTRAORDINARY RAY
FIG. 8-4 FIG. 8-5

VIBRATION DIRECTIONS
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rhombic, monoclinic, and triclinic crystals which have ray-veloc-
ity surfaces with two optic axes are said to be optically biaxial.
Biaxial crystals will be discussed in Chapter 13. Unlike the cubic
crystals, all of these are of course optically anisotropic.

In all optically anisotropic crystals, light traveling in any direc-
tion except along an optic axis is broken up into two rays with
different velocities, vibrating normal to each other: In order to
(emonstrate the very beautiful results of the disparity in veloci-
ties, we need to be able to polarize the light before it goes into the
crystal. Two small sheets of polarizing film may be used. Such
sheets will let through only that light which is vibrating in the
polarization direction of the sheet.

A simple test will show what direction in the sheet this is.
Light coming to your eye from any brightly reflecting non-
metallic surface such as the surface of still water, a flat piece of
glass, or even an enameled or polished window sill will be mostly
polarized parallel to the reflecting surface: its vibration direc-
tion will be normal to the propagation direction of the light
(a line from the surface to your eye) and parallel to the reflect-
ing surface. (See Figs. 8-6 and 8-7.)

FIG. 8-6 'FIG. 8.7

If the polarizer is so oriented that its polarization is parallel
to this vibration direction, it will let the polarized light through
to your eye as in Fig. 8-6. If it is normal to this direction (Fig.
8-7), it will not.

For convenient reference, mark the polarization direction on
the polarizing sheet. Although it is. shown parallel to the edge
of the square in Fig. 8-6 and subsequent figures, you should not
assume this to be so in the case of any particular piece of polar-
izing film without testing it.
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If a piece of polarizing film is placed on top of another wiEh
the polarization of the first normal to that of the second, as In
Fig. 88, no light from below will come through both of them.

!

FIG. 8-8

(Actually, a little comes through because the polarizers do not
polarize the light completely.) Since light with the only vibration
direction that the upper polarizer lets through has already been
excluded by the lower polarizer, there is none of it left for
transmission by the upper polarizer. Similarly, light with the
only vibration direction transmitted by the lower polarizer is
not passed by the upper polarizer.

Now let us consider a slice cut from the tetragonal crystal,
rutile (Fig. 5-1), parallel to the ¢ axis—i.e., parallel to the optic
axig. Light coming through it will be traveling normal to the
optic axis. In terms of Figs. 8-4a and 8-5a, this light travels from
tl}e ce'nter of the solid vector figure toward the reader along 2
dlrethn normal to the paper. In the crystal it will be broken
up into the extraordinary .ray, vibrating parallel to the optic
axis, and the ordinary ray, vibrating normal to the optic axis.

;l"sl}lese vibration directions are shown diagrammatically in Fig.

t FIG. 8-10 ‘ i

placed on 3 piece of polarizing flm ;%s
ha.t the light entering it from below %
€ction P-P, it will analyze this yibrationl

FIG. 8-9 FIG. 8-11

Now if this crystal js
shown in Fig. 8-10 so ¢
all vibrating in the dir

|
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into the two components of motion permitted in the crystal,
the E vibration direction and the O vibration direction. From
a comparison of Figs. 8-10 and 8-11, you can see that the propor-
tion of the incoming light that becomes the E ray relative to
the proportion that becomes the O ray will depend on the
orientation of the crystal relative to the polarizer. If the crystal
were turned still farther so that the E vibration direction was
normal to P-P, then the E component would be zero, and all
the light would be transmitted as the ordinary ray, vibrating
parallel to P-P (Fig. 8-12).

Now with the crystal again turned away from the position
shown in Fig. 8-12, suppose the second polarizer is placed on
top of the crystal with its polarization direction normal to the
first polarizer. The crystal looks bright between the two polar-
izers. In other words, light now comes through the upper
polarizer where the crystal lies between them (Fig. 8-18).

t FIG. 8-12

FIG. 8-13

If we again think of analyzing the vibration direction into
two component vibration directions at the upper polarizer, we
will see why the light comes through. Both the E and the O
vibration direction at the upper polarizer of Fig. 8-13 may be
thought of as having a component parallel to P-P and a compo-
nent parallel to 4-4, as in Fig. 8-14. The P-P components are

E iP
[6] P
P-P P-P
Component Component
A-A A-A e
Component Companent A A
FIG. 8-14




T

86 CRYSTALS AND LIGHT

not allowed to pass through the upper polarizer, but the A-4
components are, and therefore light does get through, though
it is less than what we started with because we had to leave
part of it behind at the upper polarizer. The first polarizer in
such a system is called the Polarizer, and the second, the one
between the crystal and the eye, is usually called the Analyzer.
In nearly all crystal work they are used with the polarization
of one normal to that of the other (usually with the Polarizer
up and down the page, or “north-south,” front to back in 2
microscope, and the Analyzer left to right). The crystal is then
said to be viewed in “crossed polarized light” or “between
crossed polarizers.”” The former phrase is not clearly descriptive
and therefore the latter phrase is preferred, but both are widely
used.

When the crystal is rotated to the position shown in Fig. 8-12,
then all the light coming through the crystal is in the P-P direc
tion. An analysis like that in Fig. 8-14 would give a zero length
for the A-A component, inasmuch as no light would come
thrc?u‘gh the analyzer. Such a position is called an extinction
position,

' A_ direFtion in the crystal which is parallel to the polar-
ization direction of the Polarizer or Analyzer when the crystal

Is at an extinction position is called an extinction dircction-

How many times will the crystal be in
during a complete rotation of the
the “line of sight” in crossed

an extinction position
crystal through 360° ﬂI‘OU‘?d

olarized light? Since it Will
ha i . 28 g
appen every time the vibration directions in the crystal are

Para'lllel to the vibration directions of the Polarizer and Analyzels

';rw‘ I}IHPPCF every 90°—i.e., four times during a 360° rotation-

U,-Og[,f,:. ;r;tct;jus state_ment is true for cvery bit or fragment o7 slice

metry exc:? i?’ 31”@”? amisotropic crystal, regardless of its Sy
5 bt when it is viewed along an optic axis.

2 ed

What does h: ; .
o Sl estidppen. W he1:1 a crystal is viewed in crossed polariz
rutile cr‘;’stgal o?f l?p ¢ axis? Suppose that, from the tetragon?
and observe thEmlg-' 51,.we cut thin slices normal to the ¢ 2%
In crossed 2L . s 7e s€€
that no matter how the polarized l]gh{ (F]g_ 8-15). We st

 are rotated around the ¢ axis they remall’

dark between ;
crossed polarizers, The reason is that light travel
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ing along the optic axis is not broken up into two rays vibrating
normal to each other. It travels through the crystal as it would
through glass.

Those who have looked at crystals in crossed polarized light
will be protesting that we have omitted the most striking aspect
of their appearance, their color. A colorless anisotropic crystal
between crossed polarizers may show bright colors. This is caused
by the fact that the two rays traveling in a given direction do
not have the same velocity, and therefore one gradually gets
ahead of the other. The amount that one is ahead of the other
will depend on the difference in their velocities and the distance
they have traveled with these different velocities, just as it would
with two automobiles. When this amount is small (s;, Fig. 8-16),
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light with some particular short wavelength in one ray will be
just out of phase with light with the same short wavelength in
the other ray. When we look at those components of the light
that are all vibrating in the same plane (selected by the Analyzer,
the upper polarizer), we find that this short wavelength has
been subtracted from the white light, which therefore shows the
“complementary color,” the color that is left when one of the
constituents of white light has been subtracted. Such a color,
which is due to the interference of one ray with another that
lags behind it, is called an interference color. If the lag is
greater, as sy, Fig. 8-16, the wavelength that is just out of phase
is a longer wavelength. This means that for a given slice of an
anisotropic crystal in crossed polarized light, the color will vary
with the thickness of the crystal. Such variation is shown in
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Plate IV(1), which shows a piece of mica in crossed polarized
light. Because of the easy cleavage of mica, bits can be peeled
off, leaving different thicknesses in different parts of the mica.
The square grid of lines shows the vibration directions of the
Polarizer and Analyzer.

The short wavelengths of the visible spectrum give us the
color violet. When these are subtracted, the resulting color is
yellow. Somewhat longer wavelengths are blue. When these are
subtracted, we have orange. Next, the subtraction of green gives
us red, and then yellow, orange and red, subtracted in turn, give
us violet, blue, and green. Then we start over again as the violet
light of one ray now lags behind the other by exactly two wave-
lengths. These successive sequences of interference colors aré
called successive orders of interference colors, numbered 1st, 2nd,
3rd, etc., as shown on Plate 1V(2), which shows the interference
colors from a wedge-shaped piece of quartz viewed normal to
the optic axis in crossed polarized light.

Where the quartz crystal is thicker, some rays are out of phase
by two wavelengths while others are out of phase by three wave:
lengths and perhaps still others by four wavelengths. We there-
fore no longer have the simple subtractive colors of the first and
second order, and the succession of higher orders is marked by
an alternation of pink and green, getting paler with higher
o.rders: Thus a crystal that just looks white in crossed polarized
light is usually showing very high-order interference “colors,”
as, for example, the fragments of calcite that are not at an extine
tion position in Plate 1V(5).

Very thin crystals may look white because the retardation 15
less than enough to show first-order yellow. See Piate IV(1):
Only when the retardation of one ray behind the other aP-
proaches half the wavelength of visible violet light do we begin
to see t}.1e subtractive color yellow. When the retardation is less
than. this, but not zero, light of all visible wavelengths is stil
coming through, giving us white light.

' The maximum velocity-difference between the O and E 137
;r‘!/ guarttlz ;s much less than it js in calcite, Therefore in P13t
caiclte. One which is thick in the middle a%
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thin on the edges is blue in the middle with the decreasing
interference-color sequence (red, yellow, white) outward to the
thin edge, as in the case of the mica in Plate IV(1). Other grains
of quartz in Plate IV(5) that show only the lower interference
colors may be thinner or may happen to be oriented so that
the line of sight makes a smaller angle with the optic axis, in
which case the velocity difference will be less. Some of the quartz
grains are at extinction.

From Figs. 8-2 and 8-3 we recall that the difference in velocity
between the two rays is zero for propagation in the direction
of the optic axis and increases to a maximurm for propagation
normal to the optic axis. Because of this variation, the inter-
ference color exhibited by a crystal in crossed polarized light
will depend not only on its thickness, but also on the direction
in which the light is traveling through the crystal. In a thin
slice of a rock, differently oriented grains of the same mineral
will show different interference colors. If you rotate a crystal
between crossed polarizers in such a way that the direction of
the light path through the crystal changes, the interference color
will change.

Twinning in crystals can be detected between crossed polar-
izers in some cases and not in others. If a trigonal crystal is
twinned so that the two parts are related by a rotation of 180°
around the 3-fold axis, the optic axis in one part is parallel to
the optic axis in the other and the two orientations are indis-
tinguishable between crossed polarizers. 1f, however, the optic
axis is differently oriented in the two parts of the twin, they
may easily be distinguished from each other. A good example
is the twinned crystal of barium titanate (BaTiOjz) shown in
crossed polarized light in Plate IV(4). This is a tetragonal crystal
and therefore optically uniaxial. We are looking through a thin
plate which lies in the plane of the paper. In part of the crystal,
the optic axis (parallel to ¢) is normal to the plate, but in part
of the crystal it lies in the plate. You can easily tell which is
which. Light traveling along the optic axis is not broken up into
two rays with different velocities and therefore cannot exhibit
interference colors.

To make sure that the black part of such a crystal does not
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just happen to be “at extinction” (as in Fig. 8-12), it should be
rotated around the direction of propagation of the light. If the
light is in fact traveling along the optic axis, the crystal will
remain dark during this rotation.

A physicist had a very pure specimen of the trigonal crystal
corundum (Al,Oy). It had been grown in the laboratory and
was transparent and colorless. Such a corundum crystal is now
called “sapphire.” He sent it to a crystal shop to have a cube
cut out of it, specifying that one pair of faces of the cube should
be no.rmal t.o the ¢ axis, since he wanted to measure some prop-
erty in a direction parallel and normal to this axis, When the
cul_)e was delivered to him, there was no indication of which
pair of faces was normal to the ¢ axis.

I_n crosst polarized light he quickly determined the orien-
tation. With the light traveling normal to the desired pair of
faces, the c'rystal remained uniformly dark throughout a com-
plete rotation around the light path. All other faces, being
parallel to the optic axis, had extinction positions which o'ccul‘l'fld

whenever their edges w

15 ere parallel to the IR L o Wi
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not crossed. Referring to Fig. 8-14, we recall that the function
of the Analyzer was to select those components of the two
vibrations that lay in the same plane. The 4-4 components
were selected. But suppose the P-P components had been
selected, i.e., suppose the Analyzer had been placed with its
polarization direction parallel to that of the Polarizer. Then
what would we see? We would still see interference colors, but
not the same ones. The many possible variations resulting from
various relative positions of Polarizer, Analyzer, and crystal will
not be explored here. They can be understood on the basis of
the effects discussed here so that the reader may experiment for
himself.

Interference colors can be seen under other conditions than
the observation of anisotropic substances with a Polarizer and
Analyzer. Whenever light is reflected from a very thin trans-
parent film so that the rays reflected from the bottom surface
of the film (4 in Fig. 8-17) rejoin those being reflected from the

FIG. 8-17

top surface (B in Fig. 8-17) after traveling an extra distance, the
A-refllected ray will be retarded relative to the B-reflected ray,
and interference will take place. The thicker the film, the more
the retardation will be. The same sequence of colors as that
shown by the quartz wedge or by the mica in Plate IV can often
be observed at the edge of a film of oil on the surface of water
on the street.

If a drop of thin lubricating oil is put on the surface of cold
water in a glass or cup, it does not spread out and stays too
thick to show interference colors. However, if it is placed on the
surface of very hot water, it spreads in a thin film and then
produces interference colors which show up well if the observer
looks toward the reflected light, preferably with his line of sight
at a low angle to the surface. The colors change as the oil “pulls
itself together” into smaller areas because of surface tension and

thus becomes thicker as it cools.
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The colors of soap bubbles are of the same origin, as are those
of many birds, including the peacock and the hummingbird. A
delightful paperback book about soap bubbles, written especially
for young people by C. V. Boys, discusses their colors. The title
is included in the list at the end of this book.

Robert Hooke, whose insatiable curiosity caused him to study
clocks, the solar system, respiration, weather forecasting, and
soap bubbles, among other things, discussed the colors of soap
bubbles under the name of “fantastical colours” in his Micro-
graphia, published in 1664. It was Sir Isaac Newton, however
who analyzed carefully the manner in which interference colors
are produced when two slightly curved pieces of glass are placc?d
c]'ose together. He included a discussion of this phenomenon 1t
his “Discourse on Light and Colours” in his Opticks, book 1
Pub!ished in 1675. To this day, interference colors produced
in this way are known as Newton’s rings. They may often b€
seen from two microscope slides that are stuck together or tightly
pressed together. These are best observed against a dark back-
ground with a diffuse light source, such as L]igh: from the skY:

* * *
1. In Fig. 8-15, how could
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2. In an orthorhombic crystal, the surface is a triaxial ellipsoid
(Fig. 7-7) with its three axes lying along the three crystallographic
axes, in accordance with the symmetry. A knowledge of the lengths
of the three axes of such a figure suffices to define the figure. Therefore
we need to measure the thermal expansion of three rods, one cut
parallel to a, one cut parallel to b, and one cut parallel to ¢ (Fig. 8-19).

B
{%}b

FIG. 8-18 FIG. 8-19 FIG. 8-20
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8. In a monoclinic crystal, the surface is a triaxial ellipsoid. Sym-
metry requires that one of the axes of the ellipsoid lic along the & axis
of the monoclinic crystal since this is either a 2-fold axis or the normal
to a symmetry plane, according to the point group of the crystal. There-
fore we measure the expansion along b in one-rod whose length lies
along b. The other two axes of the triaxial ellipsoid may lie anywhere
in the plane normal to b (the plane containing the a and ¢ axes, which
is therefore commonly called the ac plane). So we are faced with the
problem of determining not only the dimensions but also the orienta-
tion of the ellipse which is the cross section of the expansion surface in
this plane (Fig. 8-20).

If it were a circle instead of an ellipse, one measurement would
suffice (just as it does for the spherical vector surface of the cubic
crystal) because there is only one unknown, the radius. In the case of
the ellipse in the ac plane, there are three unknowns: the major axis of
the ellipse, the minor axis of the ellipse, and the angle between an
ellipse axis and a crystallographic axis (either a or ¢). Therefore we
need three measurements so that we can set up three equations to solve
for the three unknowns.
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9 Uniaxial Crystals in

Convergent Polarized Light

In Chapter 8 we considered the optical effects observed when
a crystal is viewed in crossed polarized light. When the light is
traveling to the eye along the optic axis (Fig. 9-1), the grYSt“J
looks dark between crossed polarizers, but at Lol.her angles inter-
ference colors are seen except when the crystal is at extinction—

;_.e.,‘wuh its vibration directions lying in the planes of polar-
1zation of the Polarizer and Analyzer

4 FIG. 9.1
1

FIG. 9-2

If we do th; : .
polarizers P;:éZdWhﬂe IOOkm.g along the optic axis, with crossed
them comes befofen):ghere ' the light path (so long as one o
and with the oculay i crystal and the other after the crystal)
figure shown in pj 0% the microscope removed,* the splendid
ate V(la ang 1b) is seen. This, of course, 15
® An alternatiye y ;

! 0 removip i
cussed in Chapter 10, g the ocular of the microscope will be dis-
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just what you expected from the properties of uniaxial crystals
discussed in Chapter 8. The center is black because here the
light is traveling right along the optic axis. In all directions
outward from the center the light path through the crystdl has
made an angle with the optic axis which is small near the
center of the figure and larger farther out. Therefore, as you
would expect from Fig. 9-1, the retardation of one ray behind
the other is small near the center of the figure and larger farther
out so that, from the center outward, we see the increasing
sequence, yellow, red, blue, green, and so on up to higher orders
in which the colors simply alternate between pink and green
for the reason discussed in Chapter 8. The retardation in calcite,
shown in Plate V(1b) is greater than that in quartz, shown in
Plate V(la), and therefore the interference colors increased more
rapidly, from the center outward, in Fig. 1b.

Such a figure, which can only be observed in convergent (and
divergent) polarized light and shows the sequence of interference
colors resulting from the different directions of the light path
through the crystal, is called an interference figure.

We now understand the dark center and the increasing order
of interference colors giving the concentric color bands of the -
interference figure. What about the black cross? In Figs. 8-4
and 8-5 the short dashes showed the vibration directions of the
ordinary and extraordinary rays as they progressed outward in
all directions from an imaginary point-light-source in the center
of the crystal.

Suppose we look down on the “north pole” of such a figure
as we are doing in Figs. 8-4b and 8-5b. Combining these two
figures, we get Fig. 9-3, which shows us the pairs of vibration
directions of light contributing to various points of the uniaxial
interference figure. (The vibration directions of the extraordinary
ray are indicated by heavy dashes, those of the ordinary ray by
light dashes.) Since we are seeing the interference figure with
the crystal between crossed polarizers, the polarization directions
of these are marked in Fig 9-5 (P-P for Polarizer; 4-A for Ana-
lyzer). The shaded part of the figure shows where the vibration
directions of the rays lie parallel or nearly parallel to the planes
of polarization of the Polarizer and Analyzer. Of course no light
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or very little light can come through in this part, and so we get
the black cross.

The optic axis (normal to the paper in Fig. 9-3) is an axis of

FIG. 9-3 Heavy radial dashes indicate the vibration directions of the
extraordinary ray; light dashes, those of the ordinary ray.

infinite optical symmetry, and therefore rotation of the crystal

;?round this axis between crossed polarizers causes no change in the
interference figure.

Suppose we translate the c¢

stal pl itself, just
sliding it Gy plate parallel to itself, ]

: from left to right, for example, on the stage of the
microscope. Again, if the crystal is uniform in thickness, there
is no ch'ange in the interference figure because it, like the other
pmpertles.of a crystal, is the result of the orderiy arrangement
of-atoms in the crystal; if we are looking along the ¢ axis of
this arrangement, it makes no difference which particular group
of unit cells we are looking through. They are alil)alike
thIf, I;owlc:v:z]r. we tilt the crystal relative to our line of sight SO
at the hight comes through the crystal along a path which is
not parallel to ¢, then the appearance of the figure will changeé-
ght t_hrough the crystal to the eye makes
Sopticiaxis, ‘then, as shown in Fig. 9-4a,
ted around this path direction, the axis

3 € path directj . f
an imaginary cone. The 100, moving on the surface ©
: ; center of the cross will of course move

if the crystal is rota
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l I Microscope
objective

(Q) (b) L (c) (d) (e)
FIG. 9-4

The interference figure that is seen when a uniaxial crystal is
viewed in convergent crossed polarized light with its optic axis
normal to the line of sight (= light path) is called the flash
figure for a reason that will be clear from Fig. 9-5. As in the

P optic oxls P

Optic axls
/ ;

P P
FIG. 9-5 Heavy dashes parallel or nearly parallel to the optic axis
indicate the vibration directions of the extraordinary ray; light dashes,
those of the ordinary ray.

case of Fig. 9-3, this figure shows the vibration directions of the
ordinary and extraordinary rays and is shaded wherever these
vibration directions are parallel or nearly parallel to the planes
of polarization of the Polarizer and Analyzer.

As the crystal is rotated around the line of sight (nor-
mal to the paper in Fig. 9-5), the angle between the crystal
vibration directions and the polarization planes of the Polarizer
and Analyzer changes. Only when the optic axis lies almost
parallel to the plane of polarization of either the Polarizer or
the Analyzer is much of the area of the interference figure dark.
Then nearly all of it is dark at once. It is because this happens
for such a small angular rotation of the crystal that this figure
is called the flash figure. Compare this case with that of Fig. 9-3,
where the vibration directions remain unchanged as the crystal
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is rotated and therefore the interference figure remains un-
changed.

The colors that are observed in an interference figure viewed
normal to the optic axis, as in Fig. 9-5, are generally pale pinks
and greens in poorly defined patterhs, compared to the axial
figure. Referring to Figs. 8-2 and 8-3, we see that the retardation
is highest for this direction, and therefore, unless the crystal is
very thin the colors are apt to be high-order colors. The velocity
difference between the. two rays in this direction changes less
rapidly with change of angle than it does near the direction of
the optic axis, so that the change of interference colors is more
gradual and the color bands are therefore broad.

Under favorable circumstances it is possible to see an inter-
ference figure without the aid of lenses. If the eye is placed very
close to the crystal, then the light entering the eye has come
through the crystal from a range of directions (Fig. 9-6) and an

Anal.
Pol.

FIG. 9-6

inter‘ference figure can often be observed, especially if one is
looking along an optic axis so that the figure is well defined and
colorful.

In Plate V(3) we see a broken

Elate _ piece of a hexagonal crystal
(guanidinium aluminum sul

_ _ phate hexahydrate) showing an inter-
ference figure in this way. The large surfaces of the plate aré
{0001} cleavage planes, so the optic axis is normal to these. HoW-
ever, the plate is slightly tilted relative to the “line of sight”” of

the camera, and therefore the interference fi
center, as in Fig, 9.4,
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does not give as good a
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orientation of a large
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g an interference figure commonly
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2 x 1.5 x 1 inches with all surfaces irregularly fractured, but it
was clear and colorless. Reflection and refraction* of light at
its surfaces made it impossible to get a good optic figure or even
good extinction in crossed polarized light. However, when the
crystal was held in a particular orientation, the bright interfer-
ence colors of the first and second orders could be seen, unlike
the whitish light observed for other orientations. For this orienta-
tion the retardation must have been low, ie., the light must
have been traveling nearly along the optic axis. Trial surfaces
were cut on the specimen and the orientation confirmed.

In Chapter 1, the use of calcite in an optical ring sight or
target finder was mentioned. A picture of the ring sight is shown
in Plate VII(1), and a view through the sight is shown in black
and white in Plate VII(2). If it were in color, we would
see the familiar bands of increasing interference colors of a
uniaxial interference figure. In the ring sight is a thin plate of
calcite cut normal to the optic axis. The sight must be mounted
with the optic axis of the calcite crystal parallel to the gun
barrel so that when the target appears in the center of the inter-
ference figure, as in Plate VII(2), the gun will be aimed at the
target.

The calcite plate must of course be mounted between crossed
polarizers. How have the designers managed to get rid of the
black cross and to let light from the target come through the
center of the figure? The explanation involves a knowledge of
circularly polarized light. Since this knowledge will not be needed
for an understanding of the rest of this book, an explanation
has been placed at the end of the book as Appendix L

1. Sketch a sequence of diagrams like those in Fig. 9-4, but for the
case where the center of the cross lies just outside the field of view be-
cause the optic axis is making a larger angle with the light path through
the crystal.

Notice the motion of the arms of the cross in the field of view. This
would be what you would sce in the microscope, and from it you would
have to deduce the position of the optic axis.

* See Chapter 12.

. _
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2. What would a uniaxial interference figure, like that in Plate
V(la), look like in sodium light? Why?

* * *

Answers to questions at the end of Chapter 8

1. If the crystals in Fig. 8-15 were cubic, they would remain dark in
crossed polarized light in any orientation: tilted, on edge, or any other
way. If the crystals in Fig. 8-15 do not do this, they are not cubic. There-
fore you would tilt them and change the orientation of the crystal plate
relative to the light beam. If they let light through in any orientation
between crossed polarizers, they are not cubic. (For a rare exception to
this statement, see Chapter 15.)

2. The rhombohedral shape of the solid in Fig. 3-8 is approximatew
that of the cleavage thombohedron (Plate VI(2)). The optic axis must be
parallel to the 3 axis in calcite, which is shown as the hexagonal ¢ axis
in Fig. 3-8.

In a beam traveling normal to the top front face of Fig. 3-8, for ex-
ample, the ordinary ray will be vibrating normal to the direction of
propagation and normal to the optic axis. This direction of vibration is
parallel to a,(H) in Fig. 3-8. This direction bisects the acute angles be-
tween the edges of the rhombohedral face. The vibration direction of
the E ray, which must be normal to that of the O ray, bisects the obtuse
angles between the edges of the rhombohedral face (Fig. 9-7).

FIG. 9.7
Again, smce we are concerned with direction in relation to the Struc
ture, the orientation of the extinction directions as given above will be

unaffected by the physical dimensions (] h, wi ickness) that
the fragment happens to have (Fig. s)_(-;r‘)e_ngt PR hicRaE)

]
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10 The Polarizing Microscope

The polarizing microscope is a microscope especially made for
viewing objects in crossed polarized light. Like other microscopes,
polarizing microscopes come in a wide range of types and prices,
but nearly all of them have the essential components shown in
Fig. 10-1.

Axis of

microscope
| Qcular

Bertrand lens
-—

Analyzer
- —

Accessory plates

/o ——
EjOblecttva

“F7= “converging lens
———— Polarizer

Light
source

FIG. 10-1

The ocular (“eye-piece”) and objective lenses serve the pur-
pose of magnifying the object, as in other microscopes. A
pair of cross hairs is attached to the ocular. These cross hairs
are useful for reference in the field of view. (See, for example,
Fig. 9-4.) Their orientation can be changed by rotating the ocular
in the barrel, but they are most conveniently left in position
parallel to the polarization directions of the Polarizer and Ana-
lyzer. In most microscopes there is a notch and pin arrangement
which, when engaged, ensures the correct orientation of the cross
hairs.

The stage on which the object is placed has a hole in it so

101
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that the object may be viewed by transmitted light. It can be
rotated in its own plane around the axis of the microscope 0
that the vibration directions of light in the crystal under exami-
nation can be placed at any desired angle to the planes of
polarization of the Polarizer and Analyzer. 2
The Polarizer is held below the stage. It is generally left in
plface all the time, customarily with its polarization directioﬂ.
1y1ng in the front-to-back (north-south) plane of the microscopeé
but in most microscopes it can be removed or rotated if desired:
The Analyzer is held in the barrel of the microscope, usuall'Y
somewhere up near the middle, on a sliding carriage soO that 3¢
Toig btt slid in and out of the barrel at will. In some microscop
when it is in place in the barrel it can be rotated in its own Plan
around the axis of the microscope so that it can be “crossed” &
U!:lCI’OS?ed"' relative to the substage polarizer.
which .can Ibe :. aUXI{lary cor}v.erging . e Pr(lj‘whE“
needed. At the o o pomfon close beneath the Cr.YSta' us€
above the sta esaITe time a highly magnifying objective 151 lens
must also beg T the c_)cular is left in, then the Bertran(e
ot inserted into the barrel of the micr-oscol’ te
§ the interference figure. Like the Analyzer, this 15 oy he
and can be slid in and out at will &

Way and appears smaller, b

For many years the po
Iyz.er) n such microge
microscopes haye
Polaroid polarizi
that has been ¢
ordinary ray

ut usually also sharper.

larizing elements (Polarizer a!
>copes have been Nicol prisms. Tod: X
Nicol Prisms and some have a good 5"‘"‘ cite
Ng flm. A Nicol prism is a piece ok ri the
! apart and recemented in such a way 4% ¢he

refl T : . ets

a ccted off to oue side when it M7 e
result { €€, but the ex
15 that the light

;i;e .N'icol _prism has the vi
Y—le, it is Polarizeq |

* The Nico]
the erigina] o

d AnE
1y sommt

is
: oh.

traordinary ray passes Ihrounf ce of
. d

merging from the upper b dinar)‘
bration direction of the extra®"

i he Nico
ight.* The construction of t

om
rently H‘.ﬂr
enious

Prism a5 . :
ne. wi]lia;m;‘_used 1s constructed somewhat d{ﬁc
Icol, who first thought of this in&
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prism is described in detail in the references at the end of this
book, some of which also contain a much more detailed dis-
cussion of the polarizing microscope than is given here.

A slot in the barrel is provided for the insertion of accessory
plates which will be discussed in the next chapter.

* * &

Answers to questions at the end of Chapter 9

1. Note that the center line of each arm of the cross always remains
parallel to the polarization directions of the Polarizer and Analyzer.
The motion of the arm across the field of view is translation without
rotation. (See Fig. 10-2.)

(a) (b) (c) (d) (e}
FIG. 10-2

2. A uniaxial figure in sodium light would show the usual black
cross and a set of black rings on a yellow background instead of the
colored rings. Only a narrow range of wavelengths, all yellow, is pass-
ing through the crystal. Where the retardation is just right for yellow
light of the ordinary ray to be out of phase with yellow light of the
extraordinary ray (retarded by % wavelength, § g etc), no light
will come through and a dark band will occur.

of producing polarized light in 1828, was a Scottish physicist. During the
early part of his life he gave popular lectures in science (then called
“Natural Philosophy”), but apparently what he really wanted to do was
work alone in his home laboratory with crystals and optical instruments
since, when he had made enough money from fees charged for his lectures,
he retired to live a very secluded life, studying crystals and other objects
under the microscope. His chief interests were liquid-filled cavities in
crystals and the cellular structure of fossil wood, but he was known to have
been very skillful in grinding lenses, some of which he made from garnet
and other semiprecious crystals.




STTT———

11 The Use of Accessory Plates:
Determination of Optic Sign

11'1 Chaptfer 10 we saw that a polarizing microscope ¥
ﬁqmpped with an opening in its barrel for the insertion of
accessory plates.” These plates make it possible to distinguish
:3:;:: Soft thi two vibration directions of an anisotropic cr ystal
The :;nt-elfa?te" ray and which belongs to the slower ray:
e DS DL S Ve simple. All you need is a plate of an
sotropic crystal in which the vibration directions have been

identified: one as the dj i
: e direction of the f otheIisy
that of the slower ray. sk

X

FIG. 111

Suppose this plate i

iv : Sk s d
as on plate 4 in Fig, BIVeN to us with the slow direction marke

of the vibration directiolnl -1_' Now we want to determine which
which is that of the slow SIn arystal X is that of the fast ray 2%
the unknown, x, with th ray. We lay the test plate, 4, on toP 9
easily done between ¢r ¢ir vibration directions parallel. This 15
them at extinction, ff ossed polarizers just by placing both ©
our line of sight (noy WE NOW rotate the pair together arou”

polarized light, they :;;‘ll l;O the page in Fig. 11-1) in CrOS
€Come bright and we can examin
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their interference colors. Now where we are looking through
both crystal plates, the colors we see will be due to the added
effects of both crystals. If by chance we have placed the “slow
vibration direction” of the test plate over the slow direction of
the unknown, the retardation in the test plate will increase
the retardation that was begun in the unknown, and therefore
the interference colors from the two together will be higher
interference colors, just as they are from a thicker part of a
single crystal plate. However, if by chance we have placed the
slow vibration direction of the test plate over the fast direction
of the unknown, the retardation of the test plate will decrease
the retardation that was begun in the unknown, and therefore
the interference colors from the two together will be lower

interference colors.

G e R S S N TOTAL
RETAR- Commis = J’RETAR-
DATION T } cgr:gérgn I--_- DATION
RETAR-{-‘ =1 e e (et (IR S --}RETAR-
Lo R TEST —-1-Jpartio
DATION } 1 AGIE { £ N
RETAR= (-~~~ " Al 1 ECTET -~} RETAR-
DATION -—f--1 UNKNOWN'| {1 L} oarion

FIG. 11-2

Both cases are shown diagrammatically in Fig. 11-2, where we
are looking normal to the light path. The lengths of the vectors
represent the velocity of the light. The short dashes represent
vibration direction in the plane of the paper: the dots represent
vibration normal to the paper.

Plate I shows two sheets of mica, one partly on top of the other,
in crossed polarized light. The sketch of this photograph given
in Fig. 11-8 is for convenience in discussing it. The vibration
directions of the two mica sheets are parallel to each other. (You
could not tell this from the photograph, but they were tested
as described above.) In Fig. 11-3 we are told which vibration
direction in mica sheet number 2 is that of the slow ray and

_
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which is that of the fast ray. The problem is to determine the
equivalent information for mica sheet number 1.

Notice that although sheet number 1 has been cleaved irregu-
larly so that it exhibits different thicknesses and therefore dif-
ferent interference colors (a, b, and ¢, Fig. 11-8) in different parts,
the square sheet number 2 s uniform in thickness for the most
part, giving a uniform interfence color (b in Fig. 11-3) over most

of %ts surface except for a slightly thicker spot at the lower left
which gives color ¢.

FIG. 11-3

FIG. 11-4

3N

4
P U
%

MICA SHEET NUMBER 2
AT
Where the two sheets are sy
are of course due (o thei
to determine for himse

perposed, the interference go}ofi
I combined effect. The reader is invité
the slow ra d : _lf which is the vibration direction ©
Y and which is that of the fast ray in sheet number :

The answer wil] be piv
The accessory pl B1ven at the end of this chapter.

Plate (markeq Gips in the German micr®”

scopes) a micy e )
B Bac (glimmer) with different amounts of ¢
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tardation, and a quartz wedge, shown in crossed polarized light
in Plate 1V(2). The siot which admits these plates to the barrel
of the microscope is so oriented that when the plates are in
place their vibration directions are at 45° to the customary
orientation of the polarization directions of the Polarizer and
Analyzer. Since this orientation is fixed, one need only rotate
the specimen until its vibration directions are ‘:flso .45° to 'LI}ose
of the polarizers (i.e., rotate it 45° from its extinction position)
to align its vibration directions parallel to those of the accessory
plate.

With certain interference colors, especially the higher-order
ones, it is sometimes difficult to tell whether the color seen with
the accessory plate in place is higher or lower than tha.t without
the plate. In such a situation the quartz wedge comes in handy.
As the quartz wedge is inserted, the interference colors change.
If the quartz retardation is adding to that of the “unknown,”
the colors will progressively rise as the thicker part of the wedge
is inserted. If, on the other hand, the quartz retardation is
subtracting from that of the “unkm_nwn,” the colors will progres-
sively fall. The specimen on the microscope stage can.always be
orfented so that the latter is the case, and it is a satisfying ex-
perience to see the confusing pale pinks and greens of the high
orders give way to the vivid recognizable colors of the lower

orders as the quartz wedge is inserted.
FIG. 11-5 &

(] E

FIG. 11-6

(+) (=)

The observation of an interference figure with an accessory
plate is very informative. Recalling, with the aid of Tig. 11-5,
that there are two kinds of optically uniaxial crystals, “positive”
and “negative,” we see that in order to distinguish bet?vcen the
two possibilities we need to know whether the extraor_dmary ray
is faster or slower than the ordinary ray. Recalling, with the aid
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of F ig. 11-6, the vibration directions of the ordinary and extra-
ordlna}ry rays in the uniaxial interference figure (shown more
fully in Fig. 9-3), we see how beautifully the insertion of an
accessory plate in the path of light giving such a figure will
tell us what we need to know. Fig. 11-7 shows this diagram-

FIG. 11-7

FIG. 11-8 (-

;r;a:ca]lijé. 'If‘h;ei sIov_v direction of the accessory plate is shown
Crystafl;ris (3) Sit.ne lines crossing the interference figure. If the
left uadr];nt i (E-SIOW)’ then in the upper right and lower
e tge bzmdss wlei ;:11] have slow over slow, and the colors of
ST ;:;t edhlgher tl:lan they were without the plate.
have slow li'))ver fa an() Lower gt quadrants, however, we will
S, t}:t (O fast), fmd the colors of all the bands will
crystal is opticall i Wel‘-e without the plate. Of course if B
e ptica _Y negative (E fast, O slow), it will be the upper
an  lower right quadrants that show hi
upper right and lower left that 1
Plate V(2)
viewed with

ik gher colors and the
rhat show lower colors.

,as};‘;:u ;;11 Ulil;:l’(l:-il interference figure of quartz
The plate, viewed by it? lEe i 'Convemiona] T
first-order red. It theref. BpRRe e Tt
would otherwise be ‘te)lori mparts this color to the cross, which
to the center of the cr G Comp%rison piY the coloms gl
in Fig. 11-7, to see whzii n the different pairs of quadrants, 23
order red, will show us th s th.ey are higher or lower than first-
—ie., Whether it is nacirs ,PUC Sign of the crystal photographed
to the interference-c P]OSltlve OF negative. Which is it? Reference
in Plate 1V(2) may be helpm; o OWN by the quartz wedge
of this chapter. ¢Ptul. The answer is given at the end
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an interference figure, the effect is spectacular. As the wedge is
pushed in, the interference colors in two of the quadrants rise.
In these qua'drants the outer, higher-color, paler bands move in-
ward continuously to occupy the positions of the inner, lower-
color bands, which move before them to the center of the
figure and disappear (Fig. 11-8). At the same time, the colors
in the other two quadrants are falling. The inner, lower-color,
brighter bands move outward continuously, following the paler
bands to the rim of the field of view. This phenomenon must be

seen to be appreciated!

* % &

Answer to question in Chapter 11 about Plate I: The vibration direc-
tion of mica sheet number 1 that is parallel to the vibration direction of
the slow ray in mica sheet number 2 is the vibration direction of the
slow ray. “Slow over slow” results in the higher interference colors
where the two sheets are superposed.

&* 3* ¥*

Answer to question in Chapter 11 about Plate ¥(2): This is the inter-
ference figure of a positive uniaxial crystal, quartz.

The interference color of the gypsum plate alone is first-order red.
The retardation in the gypsum plate is added to that of the quartz in
the upper right and lower left quadrants where gypsum slow is parallel
to quartz slow and gypsum fast is parallel to quartz fast. In the other
two quadrants (upper left and lower right) the retardation in the
gypsum plate is subtracted from that caused by the quartz plate.
In these quadrants there is a black band where the retardation in the
quartz is just exactly compensated by the retardation in the gypsum, so
that the sum of the two retardations is zero.

* * ¥

EXPERIMENTS WITH THE POLAROID POLARIZING
SHEET FILM

A 4 x 2 inch sheet of light-polarizing material will be found opposite

. 120; it is Polaroid HN-32, manufactured by the Polaroid Corp.,
Cambridge, Mass. You can perform an infinite number of experiments
with it. Here are suggestions for a few of them.

Since the more fruitful experiments are performed in crossed
polarized light, the first step is to remove the sheet from the book and
cut it into two 2 X 2 inch pieces. Determine the polarization direction
of each (Figs. 8-6 and 8-7) as precisely as possible and indicate it by a
short scratch in the corner of each sheet.
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In the polarizing shect are long molecules which are sufficiently well
oriented parallel to each other to break up light into two rays, vibrating
normal t9 each other, just as an anisotropic crystal does, and one of the
two rays is very strongly absorbed. Therefore the light that gets through
is polarized.

Wli;eln lt‘he o ShE‘.:ts. are superposed with their vibration directions
Far;lll g 'llght transmission is at a maximum. As one is rotated relative
czs;ne Otf]c;, the intensity of the light diminishes with the square of the
Cor:s?dgra:' & an[gle of rotation, falling to zero when the angle is 90°.

ion : :
e LT o Ilhc vec.tor components and the Pythagorean proposi-

ol thgwf x;r]ﬂ the intensity varies with the square of the cosine.

crossed positi oflowing experiments the polarizers should be in the
P on (minimum transmission) with the specimen between

them. For convenience in | i i :
STy e - e RS E e imay. b clipped to PR3

orglt??jugh cellophane is not a crystal,
n e
we wileI bleréiltlh\e-.wi[tzll:)zl;lmo}n of the sheet, and is optically anisotropic, 50
TS PO T{I)P m:m because it is readily available and casy Lo
1. Place the ccllol h,,m “}T‘Ppﬁr from a cigarette package is suitable.
parallel to theirs ml:d(]ncks- ect between the polarizers with its surface
the cellophane around (1}01 l?g thmug_h them toward the light. Rotat¢
positions. Since the vib [F ne of _Slght and determine its C.\'Eit:lC[lOn
cellophane will be 1rm]1lc1m directions of the two rays of light n the
larizers when the S[)CE;ma» A the' pqlarization directions of the P
the cellophane. Later o1 I8 at extinction, these can now be marked on
(See Chapter 11.) we will determine which is fast and which sloW:
2. Cut rectang e '
the vibration di?gifign?sltcjs of cellophane with their edges parallel t0
commonly has a first - A single piece of cigarette-package cc]lophane
storder pale gray interference color. 1f two ar¢

superposed, maintain;

- ' aning thei ) 3 :

polarizers, the retard : w original orientation, between cros.seis
T

ati i
SIoW) SechPlate Tufo)) Wit fae (e interference €575
interference color is l"liS:-EC-l)t rnl‘ three parallel sheets superposed the
S a o first-order red - S arallel sheets
su . I I o are §
llazzrposefl 1t 1s raised to blye (second (:111, ];Id i ol R
one 1s rotate (5% L) i
direction of the fa(:tgro around the line of sight so that the vibratio?
tion of the slow ra o[d){ in one becomes parallel to the vibration direc:
is exactly ““dOneym the other, the retardation caused by the first picce
i [‘}iomPC‘"Sﬂth” by the second, (See Chapter 1
Wway to achieve this js by tfrosla;;}-;e @ though they were not there. & Slmr[J €
: in 3 : ~clg€
at.;)wj\to the vibration (.1ir€3ctimg15:1 cellophane sheet with the folded €95
- A crystal which ; :
Crush anyice cubé:halsdrepeatedly grown in every home today
polarized light. (Caun‘n _ObS‘E“’E some of the clear pieces in
on: Molten ice may damage the polarizers-

it contains long molecules,

is ice.
crossed
) Notice
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the effect of thickness on interference colors near the edge. Rotate the
specimen around the line of sight. If one part is at extinction when
another part is not, then the specimen consists of more than one
crystal. All that part of the specimen that has a continuous, homogene-
ous structure (i.e., that is a single crystal) will be at extinction at the
same time. Better specimens can be produced by freezing a drop of
water on a microscope slide or other plane piece of glass. Since the
glass is optically isotropic, it does not affect the interference colors.
Boiled water makes clearer ice because the gas (which produces bubbles
in the ice) is expelled during boiling.

The birefringence (see Chapter 12) of ice is low (.004), so that fairly
thick pieces give good interference colors.

4. Salol (phenyl salicylate) melts at 43°C and can therefore be melted
over a match flame on a glass slide. It is obtainable at a moderate price
from most drug stores. Since the melt tends to supercool (not form
crystals, even below the freezing point, 43°C), the addition of solid
particles of salol may be required to cause crystallization. The crystal is
orthorhombic, and its major faces are rhomb-shaped (like the “dia-
mond” on playing cards). Because of high birefringence these crystals
look white in crossed polarized light if they are allowed to grow thick.
If they are grown between two pieces of glass that are held tightly to-
gether while the crystals are growing from the melt, bright first- and
second-order interference colors may be seen. These colors are in
striking contrast to the black that is seen when the isotropic molten
material is viewed in crossed polarized light. Salol can be dissolved in.
alcohol and crystallized from the solution as the alcohol evaporates.

5. Sheets of mica are available from some scientific supply companies.
The investigation of mica in crossed polarized light is discussed in
Chapters 8 and 13. With the mica sheet parallel to the polarizers and
at about 45° to extinction, the various parts of the biaxial interference
figure may be seen if the mica (between polarizers) is held close to the
eye and tilted around the y axis. (See Chapter 12.)

6. Accessory plate. (See Chapter 11.) In all pieces of "“Scotch” tape
tested by the author, the long direction of the tape is the vibration
direction of the slow ray. If this is always true, then the vibration
directions of the fast and slow rays in other substances can be deter-
mined by using a piece of Scotch tape as an accessory plate as described
in Chapter 11. It is more conveniently handled if stuck to a glass slide.
Plate I1V(3) shows a piece of Scotch tape covering half of a quartz
wedge. The slow direction in the quartz wedge is marked with an arrow
which is just visible (it is in the direction of the short dimension of the
quartz plate). By following any given interference color band from
the uncovered area into the tape-covered area, we find that the colors
are lower where the tape lies over the quartz wedge. Therefore the
“fast direction” in the tape must be parallel to the “slow direction” in




D EEE——

112 CRYSTALS AND LIGHT

the quartz—i.e., the width direction of the tape is the fast direction and
the length is the slow direction. Use the tape to determine the fast and
slow directions in cellophane from a cigarette package. First look at the
interference color from the tape alone. That shown in Plate 1V(8) gives
first-order red. Superpose the long direction of the tape over first one
vibration direction in the cellophane and then the other (always be-
tween crossed polarizers, of course). Are their orientations the same
from one package to another? What about plastic film from other
sources? Once the fast and slow directions in a piece of cellophane have
been identified, it in turn can of course be used as an identifying plate.

7. Many substances that are on hand in most homes form good
crystals from water solution, although quite a few of them form very
small crystals that are best observed with a hand lens. Examples are
aspirin, cream of tartar, epsom salts, table salt, and washing soda.

The paperback book, Crystals and Crystal Growing, by Alan Holden
and Phylis Singer (Doubleday-Anchor, 1960), gives instructions for

growing a number of crystals, some of which are of special interest in
polarized light.

12 Refraction of Light in
Crystals

When a ray of light passes from one substance into a different
substance, it usually changes its direction of travel, This fact
is essential to the construction of lenses and so is basically re-
sponsible for much of our knowledge of outer space and of very
small objects and, in fact, for our ability to see at all.

The phenomenon is known as refraction, from the Latin 7€
fmct_us, past participle of the verb refringere, a compound form
coming from the verb frangere, meaning to break. In some of
the (:)lder books the word “refringence" is used instead of “reé
fraction,” and of course “frangible” is a perfectly good English
word meaning “breakable.” The light beam does indeed appear
to be broken, or at least bent, as in Figs. 121 and 12-2. The
amount of bending depends upon the relative velocities of the
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light in the two substances; refraction is therefore closely associ-
ated with matters we have been discussing in the preceding chap-
ters. Figs. 12-1 and 12-2 show light passing from air into two dif-

N FIG. 12-1 N
i=a0°| L s
Gl s st Feass
VACUUM VACUUM
(or air) (or air)
n=1.28 A : n=2.46 B8
o -
) r=30 FIG. 12-2 r=30°

ferent optically isotropic substances. In both cases the light ray
meets the surface at an incident angle, Z, of 40°, as measured be-
tween the light beam and N, the normal to the surface, and some
light is reflected, also at an angle of 40° to N. In both cases the
rest of the light enters the substance, but it is bent more sharply
on entering substance B than it is on entering substance A.
Inside of B, the ray makes an angle of refraction, r, with the
normal N that measures only 15°, whereas in A4 this angle, .r,
is 30°. The severity of bending of the ray as it enters the substance
may be indicated by sin i/sin 7, a ratio which is larger for more
severe bending and smaller for less severe bending. It is an experi-
mental fact (first discovered by Willebrord Snell, a Dutch astrono-
mer, in 1621) that this ratio remains the same with various angles
of incidence and is therefore a constant of the substance. It
is called the index of refraction and is denoted by the letter
n. For A compared to vacuum (Fig. 12-1), n = 1.28. For
B compared to vacuum (Fig. 12-2), n = 2.46. As defined, n refers
to the ratio sin i/sin » when a ray of light passes from vacuum
into the substance in question, but substituting air for vacuum
would only require that n be divided by 1.0002, so for our pur-
poses we can substitute air for vacuum with no change of the
value of the index. The indices of refraction of a few optically
isotropic substances are given in Table 12-1.

Most substances have indices of refraction in the range be-
tween 1.3 and 2.5. This may not seem like much of a spread
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TabLE 12-1 Indices of Refraction of Some Optically Isotropic Substances

Index of
Substance Refraction

Water 1.33
Isopropyl alcohol (the chief.

constituent of rubbing alcohol)! 1.38
Sodium chloride 1.54
Red garnet 1.86
Sphalerite (zinc sulfide) 2.36
Diamond 2.42

-vhen you consider that Figs. 12-1 and 12-2 represent extreme
cases, but small differences in index of refraction give readily
detectable effects. If rubbing alcohol is poured into water, its
course can be followed as it mixes with the water, since the light
is bent at the boundary between the two fluids because of their
small difference in index of refraction. (See Table 12-1.)* In
fact, even the small difference in index of refraction due to
small differences in temperature of neighboring air masses above
a heater, such as a toaster, is readily detectable.

The “brilliance” of a cut diamond is made possible by its high
index of refraction. To understand why, we need to know one
more fact about refraction: the ray would travel the same path
if it were going in the opposite direction. With the light travel-
ing from the high-index substance into air, consider what hap-
pens to the angle labeled i in Fig. 12-2+ as the angle labeled 7
gets larger. As before, although some light is reflected (less than
5 per cent for r small), much crosses the surface and is refracted.

* To determine the effective refractive index for a substance relative tO
some other substance that is not air or vacuum, we must divide the index
by the index of the other substance. What would the angle of refraction be
for a ray going from water into isopropyl alcohol with an angle of incidence

of 40°?
sin 40° 1.38
R
.643
et 624 r =386

1+ With the light traveling the other way, we should properly reverse the
letters for the angles, but it is easier to keep them as they are in the figure-

e
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For some angle of 7, i will equal 90°. As i approaches 90°, the
intensity of the reflected ray suddenly increases at the expense of
the refracted ray. For any angle of r greater than 90° the light
will be totally reflected back into the substance. The angle r
for which the angle i is 90° is called the critical angle. By care-
ful cutting of the facets on® the bottom side of the diamond,
light entering from the top can be made to reflect from the
inside of one surface to another and out the top of the diamond
again. What is the minimum angle between the surface normal
and the ray for total reflection at the inside surface of the
diamond? (The answer is given at the end of this chapter.)

The ratio between the velocities of light in two different sub-
stances, 4 and B, is inversely proportional to the ratio between
the indices of refraction of the light in these two substances.

Va _ 18

VB na
Fast propagation goes with low index, and slow propagation
goes with high index. A mnemonic (memory-aiding) device for
recalling which way a ray of light is bent when it goes from a

low-index medium into a high-index medium is the pair-of-wheels
model in Fig. 12-3. The wheels, joined by an axle, are rolling

Concrete
(low index)

b grass

Q& (high index)
N

FIG. 12-3

down a gentle slope across a concrete pavement. They meet
the boundary between the pavement and some grass at an angle
and turn because the grass slows down one of the wheels be-
fore the other. It is easy to see that the more the first wheel is
retarded by the grass (lower velocity), the greater will be the
turning of the direction of travel (higher index of refraction).
The more algebraically-minded readers will prefer the equation,
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With this relationship between velocity and refractive index
to guide us, let us consider the indices of refraction in uniaxial
crystals. Clearly there must be more than one index of refraction,
since there is more than one velocity of light. Fig. 124 is a

opt. ax.
P % c
<= { —»lc
FIG. 124 FIG. 12-5 FIG. 12-6

cross section through the familiar ray-velocity surface of a nega-
tive uniaxial crystal with the vibration directions shown dia-
grammatically. Those of the ordinary ray are shown as dots
indicating vibration normal to the paper, in this cross section,
and the short dashes tangent to the ellipse show the vibration
directions of the extraordinary ray, always in the plane defined
by the optic axis and the direction of propagation of the ray,
and therefore always normal to the vibration of the ordinary ray-
Light originating at point P and traveling normal to the opti€
axis, in the plane of the paper, will, as we know, have two
velocities and therefore two indices of refraction, one for light
vibrating normal to ¢ (the O ray) and the other for light vibrating
parallel to c. For this negative crystal the light vibrating pﬂf‘i]lel
to c is faster and therefore has the lower index.
1f we want to make a vector surface for the variation of index
of refraction in a uniaxial crystal, it looks as though we should
mak(.edit z:is a fu}rllction of vibration direction. For the case just
considered we have a sh i 3
fraction when the vibrati::;t d\;:ztt:'r for o mde:.c 0§2f§)
and a large vector when the vib: “'m 5 Para!lel '[0 X (Flgi to &
TSR o LD K 12;‘1;.10? direction is no%rrnalg‘4 !
a cross section of a solid ﬁgui i . -h§lnce the l.igure 5 h the
axis of revolution, ¢, are the s A lch‘all g througo the
truth if we draw the seco o, wﬁ.’ Hiligomo vmle{lce t (¢
nd vector lying in the paper, instead
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normal to it, so long as it is normal to ¢ (Fig. 12-6). By this
reasoning the section of our vector surface normal to ¢ must be
circular. This circular section of the ellipsoid indicates that for
any light traveling along ¢, vibrating in any direction normal
to its propagation direction, there will be only one index of
refraction. This is no surprise, since light traveling along the
optic axis has a single velocity. Since the ordinary ray always
vibrates normal to the optic axis, this circular section tells all
there is to know about the index of refraction of the ordinary ray.

The index of refraction of the extraordinary ray varies from its
minimum value for vibration parallel to the optic axis (when
the E ray has maximum velocity, as shown in Fig. 12-4) to its
maximum value ‘for vibration normal to the optic axis (when
the E ray coincides with the O ray). Since the velocity of the
E ray varies ellipsoidally with angle to the optic axis, so also,
inversely, does its index of refraction. We thus have all the
information about the index of refraction of the uniaxial crystal
as a function of angle to the optic axis of the vibration direction
completely expressed in a singlesurfaced ellipsoid of revolu-
tion (Fig. 7-6). - : s T

We need only two dimensions of such a figure to tell us all
about it, once we know that it is an ellipsoid of revolution (as
in the thermal expansion case): the equatorial dimension, which
is the index of refraction of the ordinary ray, n,; and the
axial dimension, which is the extreme index of refraction of the
extraordinary ray, ng, the index for the case when the E ray
is vibrating parallel to ¢ (traveling normal to ¢). These are the
two dimensions shown in Fig. 12-6. Index ny is of course smaller
than n, for the negative crystal just used as an example and
larger than no for a positive crystal. i

If ng — no is (—), the crystal is (—).
If ng — no is (+), the crystal is (+).

This property of having two indices of refraction (which
used to be called “refringence,” you will recall) is known as
birefringence, the prefix bi needing no explanation to a biped
whose grandmother perhaps wears bifocals. The word is also
used in a quantitative sense to-refer to the numerical difference
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between the two indices of refraction, as in Table 12-1, where
the indices of refraction and birefringence of a few familiar
crystals are given. Instead of ny and ng, the Greek letters epsilon
() and omega () are sometimes used. Some authors use small
¢ and o, and some, but not many, use large N.

TasLE 12-2  Indices of Refraction of Some Uniaxial Crystals

Birefringence,
Substance System

e 3 S ng — no
Rl

Beryl Hexagonal — 1.564-1.593  1.568-1.602 (—) very 1o¥

(Aquamarine)
Quartz Trigonal 1.553 0.009
A : 1.544 ¢-H)
Calcite Trigonal 1.486 1658  (—) 0172
R Tetragonal 2,903 2616  (+) 0287

BE_Caus-e of the close relationship between velocity and 1€
fractu_fe index, a crystal in which the extreme velocity of the 2
ray differs only very slightly from that of the O ray has 0%
birefringence, whereas one in which the velocity differences e
greater has high birefringence. Suppose we have two specimens
of such crystals, both of the same thickness, with large surface
parallel to the Optic axis, lying on a ie;:e of glass between
;rossed_ polarizers. The one with the low }l;imfringence will shoW
Iiwt;;cltntigfﬁifnce FOIOTS th-an the one with higher birefringen<®
determi’ned hre th:ckn'ess 15 known, the birefringence .caﬂlz:]'
Thus the diffzg: the interference color, as shown in Fig:
measured with nce between the indices of refraction ma ny

ot knowledge of either jndex. Clearly, if 2

two of these thlee aram be de[CI'
P eters .iS k N 1

1 nov may
mined from 1 ‘ own, the thlrd

Suppose we haye two o o

. ¢ ther slices from the same twoO CI’Y_S[a
‘fc\;};l;:d un;;ke. the ﬁ.l‘St two, are cut normal to the optic axis- ;ﬂ
converge[r)lt 31‘1116(1. hght, both will show zero bireffingence-] Ww-
birefringencgo i light the interference figure of th 00
the high-biy [c?ystal will show fewer colored rings that thatled
angle (Fj eringence crystal, for the same limit of incl g 5
(Fig. 9:2). In Plate V the slice of S Hoseitor (1a) W2

5 m : 5
m thick, whereas the slice of calcite used for (1b) v
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0.13 mm thick, about one third as thick as the quartz. Because
of its very high birefringence it shows more rings than the
quartz does even though it is a much thinner crystal slice. The
fact that even with a small limiting angle (as in viewing without
converging lenses) a thin slice of calcite, viewed along the optic
axis in crossed polarized light, will show several rings made it
suitable for use in the optical ring sight.
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E" 04 S, / rd //
s ot / /// /// b= 060
o / :
Q 02 /////./ ’// .090
5 o }/A/ // L= y72(calcite)
= — 180
= =T —
gray white red blue yellow red greenish
yellow green orange green yellow green
orange pink
| FIRST ORDER | SECOND ORDER | THIRD ORDER
FIG. 12-7

The vector surface that shows the value of the index of re-
fraction for different vibration directions in a crystal is called
the indicatrix (plural: indicatrices), or sometimes the index
ellipsoid. As in the case of the vector surface for linear thermal
expansion, it is a sphere for cubic crystals; an ellipsoid of revolu-
tion for tetragonal, hexagonal, and trigonal crystals; and a
triaxial ellipsoid for orthorhombic, monoclinic, and triclinic
crystals.

Although it would be difficult to measure the velocity of light
in a crystal, it is relatively easy to measure the index of refrac-
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tion. This may be done in several ways, only one of which will
!Je given here. If a small sample of a cubic crystal is immersed
in a drop of liquid on a microscope slide, preferably covered
with a cover glass, its index of refraction can be compared with
that of the liquid. If the two match exactly, it will be impossible
to see the crystal fragment unless it is colored or has some flaw or
inclusion. If the index of one is very much higher or lower
than the other, the crystal will be marked by a very distinct,
da_rk boundary line. If the indices are close to each other, a
bright line, known as the Becke line, will appear all around the

boundar)-/ of the crystal. The origin of this line is shown dia-
grammatically in Fig. 12-8,

lower

S;nce the light rays coming up through the crystal are not
!:[cr"le:lf:)ispzlr‘;1lll§1, l.l‘lﬁ'.i’l will meet the aystal-to-liquid boundary
‘lhe iowcr indgé: ¥ Elb s[ et Fig: 12:8. Suppose the liquid has

R Eteneand crystzl, the higher index.

Then most of the rays originat;
. ginati i
ol e R R bemnii; to the left of the boundary in

on the other side, where some

; of the C :
from the higher-index side v rays meeting the boundary

1l be tomlly reflected. The com-
1€ 4 rays and reflection ‘of the B
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rays will produce a band of greater concentration of light over
the crystal (high index) which slopes downward toward the
boundary between the crystal and the liquid (lower index). This
band can be observed at various levels (1, 2 and 3, in Fig. 12-8)
by focusing' the microscope at various levels. As the focus is
lowered, the bright ‘band moves toward the substance with
lower index; as the focus is raised, the bright band moves to-
ward the substance with higher index. :

Liquids of known refractive index are available commercially
for comparison with crystals in this way. Repeated tests are
made (using a clean bit of crystal and fresh slide each time)
until the index of the crystal has been found to lie between
the indices of two neighboring liquids of the available series of
immersion liquids. If a more accurate determination is required,
liquids may be especially mixed to achieve the best possible
match and ‘the index of refraction of the liquid mixture may
then be measured in a refractometer. .

In cubic crystals, where the indicatrix is a sphere, one such
measurement on a crystal fragment of any orientation in
polarized or unpolarized light gives us the index of refraction of
the crystal. For very precise measurement, monochromatic light
would be used and the temperature of the substances carefully
controlled, since the index of refraction can vary both with
temperature and with wavelength (see Chap_ter 14).

In optically uniaxial crystals the index of the O ray and the
extreme index of the E ray (smallest if the crystal is negative,
largest if it is positive) must be measured separately. A P,iece
of the crystal which can be placed on the stage of the polarizing
microscope oriented so that the observer is looking normal to
the optic axis should be used (like the section of the tetragonal
crystal in Fig. 8-9). Such a piece will show the maximum bire-
fringence, for a given thickness, for light traveling normal to
the optic axis, since in this direction the two rays have maximum
velocity difference. In order to measure the index of refraction of
the O ray, ng, without any contribution from the E ray, we need
only place the vibration direction of the O ray parallel to that
of the polarizer, as in Fig. 8-12. In this position there is no
component of vibration in the E vibration direction.



122 CRYSTALS AND LIGHT

Te ensure that the O vibration direction is properly aligned,
the analyzer is inserted and the crystal rotated (by rotating the
stage) back and forth through a decreasing angular range until
it is precisely at the extinction (darkest) position. Then the
analyzer is removed, and the index of refraction for the O ray
is compared with that of the liquid in which it is immersed. The
process is repeated for the E ray, using fresh crystals and differ-
ent liquids. Which is the O and which the E vibration direction
must be determined from the shape of the crystal (E parallel to
¢ in this section) or from previous determination of the orienta-
tion of the optic axis. If the optic sign of the crystal is known,
then the E ray may be distinguished from the O ray by the
use of accessory plates which will show which vibration direc-
tion is that of the faster and which that of the slower ray. (See
Chapter 11.)

For crystals in which the indicatrix is a triaxial ellipsoid, two
measurements will not suffice. As in the case of the vector surface
for linear thermal expansion, the orientation of the index ellip-
soid is subject to the following restrictions:

Orthorhombic system: Three mutually perpendicular ellipsoid axes

parallel to three crystallographic axes, with no restriction as to
which shall be parallel to which.

Monoclinic system: Any one of the three ellipsoid axes parallel to the

2-fold axis of symmetry (parallel to b) or normal to the symmetry

Plane: No restriction on the orientation of the remaining two axes
in the ac plane,

Triclinic system: No restriction.

One would think that in the triclinic and monoclinic systems
several different slices of known orientation would have to be
fneasured in order to determine how the indicatrix was oriented
in the crystal. However, we can use the interference figure to
tell us the orientation of the indicatrix. The interference figure

fo-r these clrysta]s is not uniaxial, but biaxial, Biaxial crystals are
discussed in the next chapter.

* * *

Answer to question about the critical angle in diamond: (What is the

ace normal and the ray for total
diamond?)

minimum angle between the surf
reflection at the inside surface of a

REFRACTION OF LIGHT IN CRYSTALS 123

nd 12-2 and using 242 for the index of

Referring to Figs. 12-1 a hstal et

H o
refraction of diamond, we need only set i equal to 90

s_,_?'n_:' =242
sinr
sin 90° = 1
sinr = 1/2.42 = 0.413
r = 24.4°

gle of 65.6° or less with the outer surfage
hrough the surface into the air, but is
diamond looks opaque when viewed

Thus a ray that makes an an
of the diamond cannot pass t
totally reflected! A properly cut
from the bottom.

s and Gem Materials, by E. H. Kraus and

FIG. 12.9 (Adapted from Gem el by Inarmissinn)

C. B. Slawson, 1947. - McGraw-Hill Book Co.,

: 2 d

i ine of the cross section of a cut d:amo_n
(r?lliza;;oszlgfvzyzgg g:ill‘: 1cr:fg a ray of monochromatic light suffering
Fig. 12-

total reflection at the lower cut surfaces.

13  Biaxial Crystals

In all orthorhombic, monoclinic, ?md triclinic a':rystal-s tlilfe_re
directions along which the _Ilght.travels V.Vltf:l zero bire-
Rt it does along the optic axis of uniaxial crystals.
gregsznzi;si!:ls are therefore said to be apticallly lbiaxial.d'llge
two optic axes define a plane known as the optic plane, an e
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normal to this plane is called the optic normal (Fig. 13-1).
The angle that the optic axes make with each other may vary
from z‘ero to 90°, but it is constant for any particular substance
at a given temperature. The direction which bisects the acute
angle between the optic axes is called the acute bisectrix (ab-
breviated Bx,) and that which bisects the obtuse angle between
the optic axes is called the obtuse bisectrix (abbreviated Bx,).

ACUTE

o

3

2 BISECTRIX
%
>

OPTIC
oPT\C PLANE
RMAL
B 950456
Cry
oy

FIG. 13-1

- Light traveling in any direction except along an optic axis is
broken up into two rays with different velocities and with
vibration directions normal to each other. As in the uniaxial
case, this retardation, which is zero along an optic axis, increases
with angle from the optic axis. In convergent light we therefore
see an interference figure with two “eyes” marked by bands of
interference colors. In Plate VIII(1) we are looking along the
acute bisectrix in the common mica, muscovite. The acute bi-
sectrix is approximately normal to the cleavage in muscovite,
a[.ld therefore a cleavage flake of the mica will show the acute
bisectrix interference figure when viewed by convergent light in
the polarizing microscope.

S%ince mica cleaves so easily, pieces of different thicknesses are
quickly and easily prepared. Observation ‘of the interference
ﬂ.gures from these pieces shows how the bands of equal retarda-
tion change' appearance according to thickness. The same
de_mon.stranon co.uld be done with a single piece peeled to vari-
ous thicknesses, like that in Plate Iv(1). :

o
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The illustration on the cover of this book belongs at this

point in the text. It is the interference figure of muscovite, taken

with sodium light. |
As in the case of the uniaxial figure, we must know the vibra- |

tion directions at various points of the figure in order to under-

stand the black arcas in Plate VIII(I), which are called isogyres.

A plot showing approximately the vibration directions in vari-

ous parts of an acute bisectrix figure like that in Plate VIII(1),

is shown in Fig. 13-2, where the two dark spots represent the

g o+
X ¥4 4+ %
% (e
x x +*xx

Y\x" ¥ttty X

OPTIC x x . _OPTIC
PTG @+ttt +-0-++
PLANE T o

FIG. 13-2

near ends of the two optic axes. As this figure is rotated around
sight (normal to the page in Fig. 13-2) in crossed
which parts will have the vibration directions
parallel to those of the Polarizer and Analyzer? Inspection of Fig.
152 will show that, unlke the case of the unirf\xial crystal
viewed along the optic axis (Fig. 9-3), the an§wer will Fhang? as
the crystal is rotated. The answers for tuio different onentat:oPs
of the crystal (and therefore of the optic plane) are shown in

the line of
polarized light,

P
45°
OPTIC
PLANE—"¢-5
OPTIC
A -
A A & PLANE
45° parallel
position position

FIG. 13-3 FIG. 13-4

13-3 and 13-4. They correspond to the positions of the
ference figures of Plate VIII(1) and VIII(2),
all photographs in crossed polarized light in

Figs. -
mica for the inter
respectively. As 1n



|
i
‘|:
1
!

s CRYSTALS AND LIGHT
this book, the polarization direction of the Polarizer is up-and-

down the page; that of the Analyzer, from left to right. In the
first, the optic plane is at 45°

the Polarizer and Analyzer. In

parallel to the polarization direction of the Analyzer. What
w

ould be the appearance of the interference figure for a position
intermediate between these two? You can determine it with the
aid of Fig. 13-2, (The answer is given at the end of this chapter.)

The color You see in the very center of an interference figure

- - - . i / ll
N convergent polarized light is the color you would see if yo
viewed the crystal in crossed

to the polarization directions 0[
the second, the optic plane is

be looking only along this “cen-
his you can see that the “parallel position
of Fig. 184 is, in fact, an extinction position of the crystal. In
the position shown, if the crystal were viewed in light that wa{s
Nnot convergent, with the Polarizer in and the Analyzer removecl.
all light coming through the crystal would be vibrating Parf’”el
to the optic normal, and the index of refraction of the crysta

. . . . r
for that vibration direction could pe measured in the manné
described in Chapter 12,

(vibration
direction of
slowest ray)

(vibration
X direction of
fastest ray)

R St
(vibration

direction of

a T

:Q:';s (vibration
direction of

slowest ray)

(+) (~)

FIG. 13.5

The two bisectric
and fastest rays in
slowest ray js always designateq
If Z is the acute bisectriy
positive ()i if X ig the ac
optically negative. (See Fi

Cs are the vibr

* ] & ‘.\TCSI
ation directions of the slo
the crystal,

The vibration direction of [h,e
as Z, that of the fastest ray a8 ]‘T
» the crystal is said to be OP“C“bZ
ute bisectrix, the crystal is said to :
8- 135). These two directions are, ©
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rmal to each other and normal to Y, the optic normal,
L direction of a ray of imermedlate.a velocity. i
the vn!)rauon 1 f the uniaxial crystals, the sign of the crysta
As in the cas.e Od with the aid of an accessory plate. Thl.s
clan be' iigg;mlits]emost conveniently made with the acute bi-
determin
sectrix interference jgtlllf:.acute bisectrix, the two rays coming
As we look doﬁl\; the crystal will be vibrating parallel and
R e e iy normal to_the
normal Lol S ragll;al to it, respectively. The vibratlor_n dlre'c-
optic plane and 1pﬂ optic plane is parallel to the obtuse bisectrix
tion parallel to It_le viiljnration direction tests “‘fast” compared t(;
(Fig. lS-l)-t:lfi: I;j)sitive (Fig. 18-5); if it tests “‘slow,” the crysta
Y, the crys
TG I1(3) and VIII(4), the muscovite inte_rference figures
In Plate VI. ( he addition of the gypsum plate in the accessory
are shown, w1.th th e. The plate is in the conventional position
it 03 thimlcro(f;?}:ct‘ion" oriented “NE-SW,” or f’rom UPPCD
Wil SIOwl ftI Remembering that the two “eyes” define th}t;
right to'lower Ie .trace of the optic plane (which passes throug
orientation of the ring the part of the figure be.tween the two
them) gng comP.FIlle %he optic sign of muscovite from Plate
isogyres, determi rer is given at the end of this ?hap‘ter').
VIIL(3). (The answlairect?ons, being the vibration dl'rectl.ons of
e Zmdl Z]o(wes[ rays, respectively, are the (-llrec.uons ;:f
ChepSieon Sk est axes, respectively, of the indlca.trrx: The
R ::md logg indicatrix (which is a triaxial ?lllpsmd for
third axis of1 t i ou will recall from Chapter 12) is, of course,
biaxial crystals, athzr two and is in the Y direction. 3
pormal el ine the indicatrix of biaxial cryst_als we nee
i dewnmcasuremcnts, since we can determine with th;
only make threenle cross-polarized light how the X, Y, and £
aid OE. c‘:n':!reer!friemcd itk coys il liheni Ehy e CaRe e
directions ¢

. measure its
in turn Parallel to the Polarizer, we can me
of these 1n

-fraction as described in Chapter 12. Doing }S]O is z:l(t);
index of re 1‘1 the mica case, for example, whe.re the act
alwnys. eal_sy. n al to the cleavage, we must have light tra.velmg
bisecm)lc is ll"le‘:‘f:ge flake to measure the index of refraction of
along the ¢
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the ray vibrating parallel to the acute bisectrix. Standing the
flake on edge is not the difficulty. The light will be refracted and
reflected at the steep cleavage surfaces which may have caused
partings within the flake, and if the flake is too long in the
direction of light travel, most of the light will be absorbed.
However, few crystals present such grave problems as mica.

The three indices of refraction of a biaxial crystal are known
by various names, as given in Table 13-1.

TasLe 13-1  Indices of Refraction of a Biaxial Crystal

Index of the fastest raif
Index of the intermediate ray
Index of the slowest ray

lowest index =nx =n, = «
middle index = ny = nm, = B
highest index = nz = n, = v

I

The subscripts p, m, and g are usually said to stand for

“petty,” “mean,” and “great,” but they originally stood for the
French “petit,” “moyen,” and “grand.” :

Table 13-2 gives the indices of refraction of some biaxial
crystals.

TaBLE 13-2  Indices of Refraction of Some Biaxial Crystals

Substance Crystal System a B8 Y
Gypsum (CaSos-2H,0)  Monoclinic 1.520 1
/ 1 : 523 1.530
Mlcroclfne (feldspar) Triclinic 1.522 1.526 1.530
Muscovite Monoclinic 1.552 1.582 1.588
Sulfur Orthorhombic 1.950 2.038 2.241

The size of the angle between the two optic axes, which is
f:all_ed the optic angle, can be calculated from the refractive
indices. A formula given by Wahlstrom is as follows:

Al
tansz=m2 ‘?2
By

where V is half the angle which is
out greater than 90°

: bisected by Z. If 2V comes
» Z is the obtuse bisectrix, and the crystal
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is negative. If 2V is less than 90°, Z is the acute bisectrix, and
the crystal is positive. Here, as an example, is the calculation
of the optic angle for muscovite:

Tabied 1
1.5522  1.5822
tan? Vz = STV |

15822~ 1.5882

_0.4152 — 0.3996 _ 0.0156
= 0.3996 — 0.3966 _ 0.0030

tan? Vz = 5.179
tan Vz = 2.2758
Vz = 66°18’
2Vz = 132°3¢’
(—)2V = 47°24’, the optic angle of muscovite.

“(=)2V =" is the conventional way of giving the optic angle
of a negative crystal.

The numerical difference between « and y is called the
birefringence of the crystal. The difference between any other
pair of indices is called the partial birefringence. The bire-
fringence is measured from a section of a crystal containing X
and Z, i.e., from a section parallel to the optic plane. Such a
section will show the highest interference colors for a given
thickness, since the two rays traveling through it have the maxi-
mum velocity difference.

What optical orientations are possible in the various systems?
We have already answered this question for the uniaxial crystals
where the indicatrix and uniaxial figure have the symmetry o /m.

What is the symmetry of the biaxial figure (Fig. 18-1) and the
associated indicatrix which is a triaxial ellipsoid (Fig. 7-7)?
Referring to Fig. 13-1, we see that the optic normal is an axis
of 2-fold symmetry of the figure; so is the acute bisectrix, and
so is the obtuse bisectrix. Normal to each of these three axes
is a symmetry plane. So the whole figure has the point-group
symmetry mmm. Since it has no symmetry axis higher than
9-fold, it is clear that no crystal with more than 2-fold sym-

metry would be biaxial.
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The X, Y, and Z directions (Fig. 13-5) are the three axes of
the index ellipsoid. The summary of the possible orientations
of these axes given at the end of Chapter 12 therefore applies
to these axes of the optic figure.

If a sheet of mica is placed between a pair of crossed polarizers
at roughly 45° to the extinction position, the interference figure
can be observed with the eye very close to the Analyzer. However,
the figure cannot be seen all at once. The polarizer-mica sand-
wich must be tilted back and forth to let the observer look
first along one optic axis and then along the other.

It is in determining the orientation of optically biaxial crystal
that a knowledge of optical properties is most powerful. In
uniaxial crystals one can determine the orientation of the ¢
axis of the crystal by finding the optic axis, but there is no
indication of the orientation of the axes that are normal to c.

A list of sources of information about optical properties of'
crystals is given at the end of this book. For a biaxial crystal
such references tell not only the orientation of the optic plane
relative to the crystallographic axes, but the sign of the crystal,
the size of its optic angle, and the orientation of the acute and
obtuse bisectrices.

For an example of the use of this sort of information in un-
derstanding the interference figure of naphthalene (moth flakes),
see Fig. 13-8 and the accompanying text.

Answers to questions in Chapter 13

]._ _Fig. 13-6 shows the appearance of the interference figure for a
position intermediate between that of Fig. 13-3 and that of Fig. 13-4.

Plate VIII(2) and Fig. 18-6 illustrate a fact which every expt?rimen“’r
should keep in mind: that the symmetry of the results can be no greater
than the symmetry of the whole experimental system, which includes not
only the object investigated but also the means of investigation. The
optical properties of the crystal have a symmetry plane both i)ill‘;illCl and
normal to the optic plane (see Figs. 3-1 and 8-2) and so does Plat€
VITI(2), where these symmetry elements of the optic figure lie parallel t©
the same symmetry elements of the crossed polariz:):rs. (The crossed
group symmetry mm2.) However, when the crystal
, ¥ from that coincident position, the only symmetry
ment which the crystal optics plus the polarizers have left in commo™

polarizers have point-
1s retated a little awa
ele
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is a 2-fold axis along the line of sight. This is the 2-fold axis normal o
the paper exhibited by Fig. 13-6.

FIG. 13-6

FIG. 13-7 l

2. Fig. 13-7 shows an analysis of Plate VIII (3). Since the interference
colors in the center of the figure are lower colors, because of the use of
the accessory plate, “slow” in the plate is over “fast” in the mica crystal.
Since we are looking down the acute bisectrix, the optic normal and the
obtuse bisectrix (lying in the optic plane) are the vibration directions
of the light we are seeing. Since the latter is the slower of the two, it
must be Z (compare Fig. 13-5), and the crystal is therefore optically nega-
tive.

c
A

Cleavage

64° 49' to z

optic axis ’,/\\

’\OOQQOOP
o
X/
zv=33°/ B=122°48"
Optic plane

I (010)

NAPTHALENE

FIG. 13-8 Most flakes of naphthalene (moth flukes) are {001} flakes,

their surfaces making an angle of about 65° with an optic axis. The

angle between the optic axes is 83°. In the polarizing microscope in

convergent light, a flake of naphthalene shows one optic axis close to
the edge of the field of view.




132 CRYSTALS AND LIGHT

When the biaxial figure is in the parallel position with the gypsum
plate superposed (Plate VIII(4)), the various quadrants may be used in
much the same way as in the case of the uniaxial figure. Note that in
this negative biaxial interference figure the black bands indicating exact
compensation occur in the upper right and lower left quadrants, whereas
those in the positive uniaxial figure of quartz occurred in the upper left
and lower right. So the (4) and (—) convention in biaxial crystals is
such as to make it consistent with the convention in uniaxial interfer-
ence figures.

L & @

Problem: Suppose you could look through a biaxial crystal in crossed
polarized light right along one of the two optic axes. As you rotated
the stage of the microscope, what would you see:

(a) With convergent light?

(b) Without convergent light?

14 Duspersion

In most crystals the indices of refraction vary with the wave-
length of light. In diamond, for example, the index of refraction
is appreciably larger for violet (short wavelength) light than it
is for red (long) (Fig. 14-1). White light is therefore broken up
into the whole “rainbow” of colors, “violet, indigo, blue, green,
yellow, orange and red,” which can best be seen when a cut

COLORED
E’éﬂ? LIGHT

Nyiolet =2.465
Nred =2.407

RED

FIG. 14-1 (From Gems and Gem Materials, by E. H. Kraus and C. B.

Slawson, 1947. McGraw-Hill Book Co., Inc. Used by permission.)
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diamond is reflecting sunlight onto a shaded surface. For this
reason, when we wanted to show a single ray through the
diamond in the chapter on refraction, we had to specify that it
was a ray of monochromatic light (Fig. 12-9).

Dispersion is the term applied to the variation of a property
with wavelength. Dispersion of the index of refraction in many
crystals is too small to measure. In only a very few crystals i_s it
large enough to be noticeable in the course of ordinary optical
observation.

The diamond is probably the most striking example of disper-
sion in optically isotropic crystals. In uniaxial crys.tals both the
O-ray sphere and the E-ray ellipsoid can change with the wave-
length of light.

Dispersion in biaxial figures, when large, can produce some
spectacular effects in the interference ﬁgure§. Two exz%mples
which are probably the most extreme cases will be menu.()r.}ed:
the monoclinic crystal titanite (also known as sphene, CaTiSiO;)
and the orthorhombic crystal brookite (TiO,). Their indices of
refraction for various colors of visible light, where known, are

given in Table 14-1.

TasLe 14-1 [Indices of Refraction of Titanite and Brookite for Various Colors of Visible

Light*
g g r 2Et
Titanite i
1.928 1.932 2.064 39953
Grﬁen 1.913 1.921 2.054 45°41’
lylzdow 1.906 1.912 2.041 51°03'
Brookite ’ ey
2.627 ? 7
Grclm[1 2.583 2.586 2.741 0°
Eciiow 2.541 2.542 2.644 30°47"
e

A. N. Winchell, Elements of Optical Mineralogy. o ARl
*'Igﬁtaorﬂ:il: angle in the crysza! is 2V. The angle measured in air will d[ffcr
fr ! thcis Eccausc of refraction at the surface and is called 2E. The relation
om

between the two is given by sin V' = sin E/B.

The interference figure of titanite is shown in Plate VIII(5)
and VIII(6). If titanite were viewed in monochromatic red light,
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the isogyres would be farther apart (larger optic angle) than they
would if the mineral were viewed in monochromatic green
light. Wherever the isogyres for a particular color are located,
light of that color does not get through. Therefore when the
figure is viewed in white light, the place where red doesn’t get
through looks blue. This is on the outside of the isogyres and
farthest from the center, since the optic angle is largest for red.
On the inner boundaries of the isogyres we see an orange band
where no green gets through, since this is where the isogyres
are for green light.

The case of brookite is very special. At room temperature in
blue light, brookite is biaxial, with its optic plane parallel to
(100). With increasing wavelength, the optic angle decreases
until, in yellowish light just a little shorter in wavelength than
sodium light, 2V = 0°. The crystal is uniaxial, with b the optic
axis. With still longer wavelength light the optic angle opens
up again, but in a plane at right angles to its former position;
its optic plane is parallel to (001).

c
1 i i
o—] = a— a—]| 5L
' |
blue yellow red
FIG. 14-2

These changes are suggested diagrammatically in Fig. 14-2.
If white light is used, all these figures with all the gradations
between them combine to give the strange interference figures
shown in l.he photomicrographs, Plate VIII(7) and VIII(8).

The.opucai properties of most crystals vary with temperature,
but this variation has not been widely studied and in most cases
is probably small. As in the case of dispersion there are a few
remarkable exceptions, but they will not be discussed here.

* * *
Answers to question at the end of Chapter 13.

cogz?e:\ihenlyc;]u look right along one optic axis of a biaxial crystal in
gent light, you see essentially what you would if you confined
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your attention to a smali circular area around one “eye” of an acute
bisectrix figure such as those of Plate V. The appearance of such a
figure as the crystal is rotated is shown in Fig. 14-3. Note that the

Opfic plane
parallel fo
analyzer

FIG. 14-3

isogyre is straight in the “parallel” positions and curved in. the “45°
positions.” The amount of the curvature depends on the size of the
optic angle. If the optic angle is very s_mall, the angle b?tween the
“2rms”’ of one isogyre approaches 90° (Fig. 14-4), approaching the ap-

Optlc plana
parallel to
polarizer

FIG. 14-4

f the uniaxial cross {for which the optic angle is zero degrees.

5 i O'te (Plate V) the optic angle is about 47°. In naphthalene,

In muscovl
wit
45° position.

(b) Without conv
crossed po

h an optic angle of 83°, the isogyre is nearly straight, even in the

ergent light the crystal would remain dark in
Jarized light as the stage of the microscope is rotated.
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Some crystals rotate the plane of i i i
. : polarized light. Light polar-
1zed along P-P (Fig. 15-1) enters a crystal. Suppose it travels, for
c¢xample, along the optic axis of 3 hexagonal crystal. If the
crystal rotates the Plane of polarized light, then, when the

2.

angle o. In order to have the Analyzer “crossed” with respect

he angle . Unless the

a screw (Fig. 15-2) shows
axis of a crystal whose

of symmetry if they ar

1s the mirror image of the rotation along the other (Fig. 15-3).
Along one axis the light is acted on in the sense of a right-
handed screw, while along the other it is acted on in the sense
of a lefthanded screw. This whole subject will be discussed
further in Chapter 16.

The phenomenon of the rotation of the vibration direction of
plane polarized light is known as Totatory power or optical
actiwity. Substances that do it are said to be optically actiye
Some isotropic substances, such as some cubic crystals and some.
fluids, do it. In order for a fluid to be optically active its con-

ate the plane of polarized
ange orderly arrangement.
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FIG. 152 FIG. 15-3

FIG. 15-1

of the effect, since the handedness of a screw is not dependent on
orientation. Tables 15-1 and 15-2 give lists of a few optically
active substances and their rotatory power in degrees of rotation

per path distance.

Rotation of the Plane of Polarized Light by Some Optically Active Crystals

TasLe 15-1
Rotation of
Sodium Light
Substance Point Group per Millimeter
Quartz (SiO:) (along the optic axis)* 2 el
MgSO4-7H:O (along an optic axis) 2§§ %n;?
NaClOs

* Although rotation does occur for light not propagated along an optic axis,

the rotation is most easily observed along an optic axis.

Since optical activity is possible in both ﬁ}]ids Zil:ld cubl:c crys-
Is. one cannot truthfully say that all optically isotropic sub-
i look black in crossed polarized light. One can truthfully
R c)21]1 optically isotropic substances affect light the same
:Xy t:«;E:g:;ard]ess of its direction of travel. Regardless of the direc-

tion of propagation of light through an optically active isotropic
i
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the values given are for rotation of sodium light, suggesting that

ft [l TaBLe 15-2  Rotation of the Plane of Polarized Light by Some Optically Active Liquids ‘;

Rotation of

Concentration T Sodium Light *
Liquid (% by wt.) (°C) (Degrees/10 cm path)

Camphor in alcohol 45 20 =2187
Dextrose d-glucose

(CsH1204) in water 10 20 +5.3
Levulose (fruit sugar) L

in water 10 25 —=9.0
LEthyl d-tartrate

(Melting point 17°C) — 20 +7.5
d-Citronellal — 15 +13.1
{-Citronellal — 15 —13.1

* + means right-handed rotation (clockwise as seen by the observer).

substance, the analyzer would have to be rotated a given amount
for a particular thickness to cause extinction of the light,

Like noticeable dispersion of the index of refraction, notice-
able optical activity is rare. Prob
ample of an optically active crystal is quartz, both because it
is a widely occurring mineral and because it has such high
optical activity. The section of quartz used for the uniaxial
figure in Plate V(1) was very thin, only 0.35 mm. thick, as given
in Chapter 12, so that the amount of rotation was barely enough
to be detectable. If it had been thicker, the cross would not have
been as dark in the center,

In most optically active substances, both left-rotating (counter-
clockwise from the observer’s point of view) and right-rotating
types occur and both are always possible since the interatomic
bonding relationships are in no way different in the two. In

ably the most important ex-

‘quartz crystals, for example, the silica groups are joined to each

other in left-handed screw arrangements in some crystals and
right-handed screw arrangements in others, the structures being
just mirror images of each other. The two can occur together in
different regions of a single crystal, and this special kind of
twinning is then readily detected in crossed polarized light by
rotation of the Analyzer. Some microscopes are equipped with a
rotatable Analyzer as described in Chapter 10.

The heading of the third column in Table 15-1 states that

there exists dispersion of the rota_lion of the plzItIr?e :1)'[ p(;ls?;;wic:
light, which is, in fact, so. In so@mm chlorate ;. is xsl?e Rt
particu]arly marked, so that roFauon c_;f the a.na )Eer ext_mft s
one color after another accordfng to its degr c;e' o {ot:;t;c;r.l o
succession of colors with rotation of the ana ')‘zelr 1é51 R b"
color plate in the book “Crystals and glro}stz; : 1;31;1 Sg lhayt
Holden and Singer (Doubleday Anchor, 1960). It is als

i ] ith temperature.
rotatory power varies with p

16 Summary of the Relation
Between Optical Properties

and Symmetry

ve seen that the symmetry of biaxial optica_l pmp?ni?
that of uniaxial properti.es w/m except in opnc:}‘]}
: -ystals, and that of isotropic properties sPherlcal (with
acnv-.re 0-}5 wr 1ber of infinite axes and an infinite number of
LT in optically active crystals. The optically e
PIERTA f‘_fxcel)[ onsidered later in this chapter. Consideration of
crystals VR b,E c[ various systems has shown us which sort of
the symmeLry "JeS must beléng to each and how the optic axes
OPticall P:P;:;t be oriented. This information is summarized
and plan :
i 16.1.1 seen that under special conditions a biaxial
Wl :Lzzome uniaxial. Thus the orthorhombic crystal

?’Stil-tem(a}}ig 14-2 and Plate VIII(7 and 8)) is uniaxial for yel-
rooki 3

the symmetry @/m, the symmetry of an EI]IpSOlS! of_revollgl-
* Of ':zours"{nﬁ“mc number of planes all parallel to the one JEni'iml_e ra.\.:l:;.
i } o : nfini
tion, ]‘II’IS allhas an infinite number of planes parallel to each of its i
The sphere :

d it has an infinite number of such axes.
axes, an

We ha
is mmm,
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TasLE 16-1 Optical Orientation in the Various Crystallographic Systems

Anisotropic Isotropic
Systems Biaxial Uniaxial

Triclinic No orientation

restriction
Monoclinic Either X, Y or Z

parallel to 4
Orthorhombic X,Y,and Z

parallel to the

crystallographic axes
Tetragonal Optic axis
Trigonal parallel
Hexagonal toc
Cubic

Not orientable

Recall that X, Y and Z are the vibration directions of the fast, medium, and

slow rays, respectively; that X and Z are the bisectrices of the axes and Y the
normal to the optic plane,

low light, but this does not mean that it has become a tetragonal
crystal. The structure of the crystal has orthorhombic symmetry,
as its optical properties for al] other colors of light show very
well. The Symmetry of a crystal is the symmetry of its least
symmetrical property. If any property of a crystal lacks a 4-fold
symmetry axis, then this property reveals to us the fact that the
arrangement of atoms in the crystal lacks a 4-fold symmetry axis.

Notice that the optic plane of brookite did not change from
(100) to (001) in Fig. 142 simply by rotating around the acute
bisectrix (normal to the Paper). In a crystal with an orthorhombic
structure, the optic plane would have to be parallel to the crystal-
lographic axes under all conditions, In monoclinic crystals, the
optic directions can be tilted at different angles around the
b axis for different colors of light, as shown diagrammatically in
Figs. 16-1 and 16-2, and this tilting can result in very strange
interference figures.

In Chapter 15 the rotation of the plane of polarized light was
shown as a phenomenon having the symmetry of a screw. What
is the symmetry of a screw? It lacks a center of symmetry. It has
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mm i i is or normal to it.
ther parallel to its axis o
plane of s etry ei : . A
n]% efore thz rotation of polarized light cannot occur f&-; 5
” h ion rm mirr
light path along any direction parallel or no al to a
]D

plane.

= O
=

=3y | OPTIC PLANE (blue light)

LS
OPTIC PLANE (red lighy,

Acu104:ecrrix
(blue light)
a

i I (Y) par-
i i llel FIG. 16-2 Optic norma
FIG. 16-1 Acute :nseclrlx paralle e, don
to b.

(red light)

. Table 5-2, we see that we have to consider the
Referrlng to ups of one system separately when we are
yarigus g ROl grlc:er?omenon of optical activity. We cannot make
considern?g the }:ement about a whole crystal systcém in the case
: ca[‘?gorlllc;1 laz:?ve crystals as we could for the optical properties
of opnca

discussed above.

le 16-2 shows the point groups in which rotatory polariza-
Table 16-

2 Crystal Classes in which Optical Activity May Occur

TasLE 16-
g Trig- Hexag- p
. Ortho-  Tetrag Cubic
1L lzll?rﬁ?: rhombic onal onal onal
clinic
mm2 3 5 : 4:323
1 2 222 3 3 622
it 422
42m

: i llel or
Although a mirror plane cannot exist para :
tion can occur: f a screw, a mirror plane at some other

normal to the axis o
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ang‘le to the screw axis simply generates a second screw of op-
posite handedness to the first one, as shown in Fig. 15-3. In this
way, optical activity is possible in crystals with the point groups
m and mm2. In m the optic normal must lie in the mirror. In
mm2 the optic normal must lie along the 2-fold axis.

In biaxial crystals whose optic axes are not related by any
symmetry operation of the point group of the crystal, the optical
activity along one optic axis does not bear any necessary relation
to that along the other axis. Sugar (sucrose) is a good‘ example
of such a crystal. Its point group is 2. The optic plane is parallel
to (010). Its only symmetry element, the 2-fold axis, is thus nor-
mal to the optic plane. Its operation on the optic axes simply
-tums each through an angle of 180° so that it coincides with
itself again. Rotation of polarized light traveling along one of
these axes is —22° per cm and rotation along the other is +64°
per cm.

I.n '42m we have a very special situation. The (optically
umaxllal) crystals with this symmetry cannot rotate the plane of
polarized light traveling along the optic axis because two mirror
p_lanes pass through this axis. (See Table 5-2.) However, as men-
tioned briefly in Chapter 15, rotation does occur for light not
propagated along the optic axis, and there is nothing in the
symmetry 42m incompatible with its occurrence provided that it
is of opposite handedness in neighboring direction-quadrants,
since they are mirror-related. The same sort of analysis applies
to the_point group 4, since an inversion axis turns a left-handed
screw into a right-handed one.

Although it might appear that the same sort of analysis
applied to 4mm, 3m, and 6mm would indicate similar off-axis
rotation to be possible in these classes, this is not so. Because of
Fhe symmetry of these classes, the “components” of right rotation
in any direction would be exactly cancelled by “components” of
left rotation in the same direction.*

It may seem surprising that a cubic crystal can rotate the
plane of polarized light, but let us look at the symmetry ele-
ments of point group 23. We see first that if we consider a screw

* In summing the vector components
the squares of the
1 s compon
be used. (See Wooster or Nye, listed among references at the cndpof ft:lelsbzglls‘:

A
‘—‘—
&
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along any 24old axis (recalling that the symmetry of a screw
admits any n-fold symmetry axis along its axis) the point group
generates two more along each of the other 2-fold axes. Similarly,
if we place a screw along any 3-fold axes, three others spring
into existence along the other (111) directions. If a screw is placed
in any general orientation, [uvw] the operations of the 2- and
3-fold axes on it generate 11 other screws, there being 12 such
(uvw) directions in all, as shown in the diagram of normals of
{(hkl} planes in Table 5-2.

Thus screws in all directions are entirely compatible with the
point group 23, and a similar analysis shows them to be com-
patible with 432. Since they are all related to each other by axes
rather than by mirror planes, they are all of the same handed-
ness. Clearly, rotation around a 2-fold axis, regardless of its
orientation, cannot change the handedness of a screw. Other-
wise we would not be able to put a screw into the ceiling with
the same motion we use to put it into the floor!

Notice how very different mirror symmetry and rotational
symmetry are. With a boxful of right-handed screws we can
arrange them so as to demonstrate any n-fold rotational axis of
symmetry (Figs. 16-3 and 16-4). If we want to demonstrate a

§ b

[
FIG. 16-4
FIG. 16-3

plane, however, we have to hold a screw up to a
d use the optical image; or we can try to buy an
left-handed, screw, which would probably

symmetry
mirror an
exactly similar, but

be difficult to find.
Tllis big diﬁerence in kind bEIWEEn the Symme[ry operations

that don’t change the handedness of the object operated on and
o has led some authors to speak of them as symmetry

those that d _
first kind and symmetry operators of the second

operators of the
kind, respectively.

To which classification does a center of symmetry belong:



144 CRYSTALS AND LIGHT

the first kind, which does not change the handedness, or the
second kind, which does? If you hold up your two hands with
palms facing each other but with fingers pointing in opposite
directions and imagine a point in space, centered between them,
you can quickly answer this question. A line from the tip of
your left thumb through the center point meets your right
thumb-tip at the same distance from the center point on the
opposite side. You can repeat the test with various other points
on your hands. A center of symmetry is an operator of the
second kind: with it you can generate your right hand from

your left hand. Inversion axes are also operators of the second
kind.

A screw has no center of symmetry.
by a center of symmetry as they ca
15-3)? Careful three-dimensional thin
handed screw can be related to 3 le

of symmetry if their axes are parallel. (Note how this is unlike
Fig. 16-4.) But if light traveling in a given direction is both
right-rotated and left-rotated by the same amount, then the net

Totation is zero. Crystals with a center of Symmetry cannot rotate
the plane of polarized light,

Could two screws be related
n by a mirror plane (Fig.
king will show that a right-
ft-handed screw by a center

17 Absorption Spectra

Ordinary white light comi
crystal, such as a ruby,
Speciﬁcally, in this cas
wavelengths as to leave
some crystals selectively

We have been speakin
direction as it goes thro
tion, it is an oscillatin

g to your eye through a colored
has lost some of its light in the crystal.
€, the ruby has absorbed light of such
the remaining light colored red. Why do
absorb certain wavelengths of light?

8 of light as “vibrating” in a particular
ugh the crystal. In the vibration direc-
g electric field. If, in the crystal, there
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are some bound charges which can oscillate readily at 'the same
number of oscillations per second as some of the passing hgl.]t,
they will be activated by that electric f.ield anFI will absorb its
energy. How rapidly the charge can oscillate will depend on its
mass (an electron is a lot lighter than a whc?le at(_)m) a.nd the
forces of attraction and repulsion exerted on it by its neighbors
to hold it in place. .
Short-wavelength light acts as a h'ig.her-frequency oscillator
than long-wavelength light, so the physicist has a w.hole spectrum
of frequencies with which to harass Lhe' (.:harges in the. crystal.
In fact, wavelengths longer than the visible red, on into the
infrared, and even microwaves (very-short-wave]er_lgth radio, a
few centimeters long), can be used if the crystal is transparent
to them. On the short-wavelength side, beyond the violet, ultra-
violet “light” and even x-rays can be used. We thus Ie_arn 'aboul:
the electrons in the crystal from a study of the absorption in t‘he
ultraviolet range and aboutfthe i(;ms (charged atoms) from studies
ion in the infrared range.
of ‘;‘I;;eibzslo;}:ysicist passes such radiatiorll through a crystal arfd
finds that, when it comes out the other side, radiation of certain
well defined frequencies has been absorbed, hc: then has 'th(;
problem of making an educated guess, base'd on his knowledge o
the crystal, as to which electrons or ions in the crystal were re-
sponding to that frequency z'md soaking up that energy to snmuci
late their response. Sometimes he can find the answer an
sometimes he can’t, but there are many excelle_nt ]:_vhysmsts
king in this field at the present time who are using light and
:;;}:bfring radiation as a tool for learning more about the
/ in this way.
DaINS ?ftg]ysislf)f”:r;nsmittid light as a function of wavelength
e icular substance is called the absorption spectrum
foreag) partt:m) for that substance. It could as well be called the
(plul‘aI: Sg)eri spectrum, but the more common term emphasizes
:;aT?::ZISe esI;ecially interested in those wavelengths for which
a
e .transxl:ls:;zno]rsxsleo:f the charges in the crystal might be easier
: g t' ; tiOPI"l than in another because of the anisotropy of
Ln O?‘f]gdl;::ces some of these investigators are working with
ondi :
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‘polarized light. They find that the absorption varies with the

direction of polarization.

In some crystals this difference in absorption for different
vibration directions of the light is so marked that it is readily
observable when the crystal is viewed with the Polarizer. The
orthorhombic mineral hypersthene looks pink for light trans-
mitted with its vibration along [100], but green for light trans-
mitted with its vibration direction along [001]. This phenome-
non is called dichroism for two different vibration directions,
pleochroism when each of the three major directions (X, Y, and
Z) shows a different color.

The trigonal mineral tourmaline absorbs most wavelengths
of light very strongly for vibration directions normal to the
optic axis and very weakly for vibration parallel to the optic
axis, so that a slice of tourmaline cut parallel to the optic axis
acts somewhat like a polarizing film. In the early days of crystal-
lography two such crystals were mounted in the *“crossed” posi-

FIG. 17-1 (From Dana’s Texthook of Mineralogy, edited by W. E. Ford,
4th ed., 1932. By permission of John Wiley and Sons, Inc.)

tion in a pair of “tongs,” Fig. 17-1, and one studied crystals in
crossed polarized light with “the tourmaline tongs.”

The interaction of crystals and light has attracted the atten-
tion of students for 300 years. It is a subject being actively in-

vestigated today, and it does not appear that we will understand
it fully for some time to come.

Appendix I  How They
Got Rid of the Black Cross
in the Optical Ring Sight”

The optical ring sight, Plate VII, has, in addition to the thin plate of
calcite and two sheets of polarizing film, described in Chapter 9, two
quarter-wave plates, the whole sandwich being arranged as shown in

Fig. I-1.
f P

e polarizing film
———————-3 1/3 X plate
T caleite
———— Va A plate
s polarizing film

}

FIG. I-1

FIG. I-2
P

arter-wave plate can be mad_e of any optically anisotropic s.ub-
stance (mica is often used) whose th'n:kncss is such that the retardation
of one ray with respect to the olh‘er is a quarter of a wztvelcn.gth for the
particular color or light in question—for exa!'nple. .sodlum light,. which
is yellow. A quarter-wave .plate for _yellow light gives a pale gray in-
terference color in white light for either crossed or parallel polarizers.

In the ring sight (Fig. I-l.) the quarter-wave pla.te next to the first

olarizer is attached to it with the fu‘brauc.m dlr'ECth'ﬂS in Ehe Plat_e at
3}350 to that of the polarizer, the fe_armlxar orientation shown in Fig. 8-13.
Now what has this done to the light which is about to go through the

calcite plate?

A qu

® This appendix was critically read by A. Makas and E. Emerson of the
laroid Corporation, manufacturers of the optical ring sight. Their coopera-.
:’iﬂn in suggesting improvements is gratefully acknowledged.
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148 CRYSTALS AND LIGHT

In the quarter-wave plate the light is broken up into two vibration
directions, which we can represent by two vectors of equal length be-
cause the plate is at 45° to the polarization direction (P-P) of the first
polarizer (Fig. I-2). The combined effect of these two motions as the
light emerges from the plate, with one of the rays a quarter wavelength
behind the other, can be determined in the following way.
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FIG. I-3 FIG. 14

We can read the contribution of each ray throughout a complete
cycle from Fig. I.3. Plotting the oscillation of the E ray along the y axis
of Fig. 1-4 and that of the O ray along the x axis, we get the co-
ordinates of a set of points representing the combined motion.

These points lie on a circle, and the light is therefore called circularly
polarized light. It has lost any record of the polarization direction of the
first polarizer.

From Fig. 9-3 we recall that the black cross resulted where vibration
directions within the crystal were parallel to either the polarization
direction of the Polarizer or that of the Analyzer. We have seen how the
polarization direction of the Polarizer got lost before the light entered
the calcite crystal. In the calcite crystal the light will be broken up as
always into the ordinary and extraordinary rays, and these will have the
vibration directions familiar to us. In the case of convergent light, the
pattern of vibration directions will be as shown in Fig. 9-3. The retarda-
tion of one ray with respect to the other will result in concentric bands
of retardation increasing outward from the center as before.

Following the calcite is a second quarter-wave plate with the vibration
directions of its slow and fast rays parallel to those of the first, It can-
not give circularly polarized light everywhere because, in order to do so,
it must receive plane polarized light vibrating at 45° to its vibration
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directions (Fig. I-2). What it does do is analyze each different vibration
direction of Fig. 9-3 into two components parallel to the two (mutually
perpendicular) vibration directions of this second quarter-wave plate.
Following this second plate is the sccond polarizer, or Analyzer,
crossed with respect to the first, the Polarizer. Since this is at 45° to
the two components it now receives, light gets Lhrou_gh this Analyzer.
In the center of the interference figure, where the light L_ravels along
or nearly along the optic axis, it is. unaffected by the calcite, and the
result is just the combined retardation of the two quarter-wave plates.
Each one alone gives a gray interference color (see Plate 1V(2), a quarter
of the way along the First-Order sequencF). '_The two retardations 'udd
up to a half-wave retardation, giving white in the center of the rings
(sce Plate 1V (2), half way along the First-Order sequence). :
Had the second quarter-wave plate been rotated 90° itround the llgh’l’:
path relative to the first, giving “s[oz.v over fast” and “fast over s]ox-v,
the retardation in the second would just have cancelled the retardation
in the first. The center of the figure would hfive appeared black—that
is, no light would get through—and the device would be useless as a
“sight.” A . :
It is the two parallel quarter-wave plates at either side of the calcite
that cause the disappearance of the black cross. \ .
Since the quarter-wave plates cause A retardation dbnly for one partic-
ular wavelength, one wonders how t‘hey can work for white light, since
for other wavelengths the retardation will not be exactly a quarter

* wavelength.*

Actually they don’t work perfectly throughout the whole range of
wavelengths of visible light, so the colored rings are a bit fu-zzy. In
order to sharpen the rings, thc_: makers ha_ve mcluc%ed a ﬁl‘ter disc (the
dark disc in Plate VII(1)) which can be msgrted in the light Path SO
t!it;t only that narrow band of wavelengths is observed for which the

quarter-wave plate is made. This filter disc greatly sharpens the rings.

on is just half a wavelength, the result is plane

d light—that is, the figure derived in the same way as that in Fig.
e raight line with a 45° slope. For any intermediate frac-

# When the retardati
polarize:
9.10 would be a st )
tion the figure is an ellipse.




Appendix IT ~ Space Groups

When we consider in detail the symmetry of the arrangement of
atoms in a crystal, we find that the position of any particular symmetry
clement in space becomes important. In the calcite-structure pattern on
the inside of the front cover, for example, the 3-fold axis normal to
the paper cannot be placed at random and still be valid. Only certain
points have 3-fold symmetry. Similarly, in the sodium chloride structure
in Fig. 4-28, every row of atoms has a 4-fold axis along it, but there are
no 4-fold axes between the rows. Such an array of symmetry elements in
space which is self-consistent in its symmetry operations is called a
space group.

In some space groups additional symmetry elements are used to
describe the relations among the atom positions, These elements com-
bine translation with the Symmetry operations we already know. Reflec-
tion across a plane, combined with a translation of half a unit length
along an axis parallel to that reflection plane, is the operation of a
glide plane (Fig. 1I-1). Translation combined with rotation gives us a

o Cé oS
, &
) ple
? P

0. 32 3f 61 63 42
FIG. 1i-1 FIG. 1I-2

screw axis. Several screw axes are shown in Fig. II-2. The total number
of possible self-consistent arrays of symmetry elements in space, in-
cluding glide planes and screw axes, is 230.

In the symbol of the Space group a letter a, b, or ¢ tells the direction
of glide of the glide plane, while the position of the letter in the symbol
tells which axis the plane is normal to. For example, if an orthorhombic
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crystal of point group mmm had the glide' plane -shown in Figurf:- lI-lci
i.e., normal to b with glide in the c.(hrect:on-.—thls :would be lpdlcatfe
by mem. The letter n indicates a dl;}gonal glide, with trapslnuon (;.d{;
the cell length in each of two dll’CCt'lons: the letter d a d.lamond glide
with translation of } the cell length in each_ of' two (.ilrecuons (three in
the cubic system). It is also customary to r‘ndlcgte_ in the sp_ace-]g'ropp
symbol whether the space lattice (Fig..2-25) is primitive, P (v_vlth .amge
points only at the corners); face-_center?d, F (with lattice points in tI e
centers of all faces), B (with lattice points in the cem?r .°f. {3}0} c(;lnby,
etc.); or body-centered, / (Germa.n, I.Hnere). A screw axis is in lCﬂtC] y
a numerical subscript, s, which indicates that the next atom ug falong
the n-fold screw is s/n of the tota! ler}gth of the ccll,.mensure dfol’:ﬁ'
the screw axis (see Fig. II-2). Rotation is counterclockwise, as seen fro
Lhi‘_ -mep.t in discussing the arrangement of atoms in the structure or
the ;fr.fy reflections resulting from this arrangemenﬁt, we fro alz?;nr:le(;::l:l :g
concern ourselves with space groups and can confine o
the POim Bl -group symbol of a crystal, one can determine the
Glvepiin: gRaGtRrL all the glide planes to regular mirror planes
BoinC Erovpivy coz::;ntggregular rotation axes. The space-lattice letter
Eamdl n“nt(:;e::és‘ior the point group. Table II-1 gives a few examples.
is also

TapLe 11-1 Space Group and Point Group of Selected Substances
A =

Substance Space Group Point Group
u

3 m3m
Aluminum (Al) i;z}: mdm
Diamond (C) i mdm
Molybdenum (Mo) I am
Calcite (CaCOs) Ko i
Cesium chloride (CsCl) 58 i
Beryl (BésAl:SisOs) e, i
) P3,21 or P3:21 32
Quartz (5i0s) B =

Barite (BaSOx)

* R indicates a rhombohedral lattice, see Fig. 2-24(9).
in



Appendix III  Constructive
Proof that a Two-

Dumensional Lattice Can
Have Only 1-, 2-, 3-, 4- and
6-Fold Symmetry Axes

rigor. For some readers this may be. unsatisfactory. The following con-
structive proof, originated by H. L. Frisch of the Department of Chemical
Physics Research of the Bell Telephone Laboratories, is presented here with
the author’s permission.

Consider any two-dimensional lattice characterized by the primitive

vectors a and b (see Figure II1-1), that is, the lattice points are invariant
under any lattice translation

Tm, m = na - n,b
where 7 and 7, are integers.
Choose a parallel to the x axis of a rectangular coordinate system. Let a
rotation by ¢ be a symmetry (group) operation of the lattice (that is, the

operation must carry lattice points into lattice boints). Hence a rotation by

—¢ .is also a Symmetry operation since it is the inverse of the original
rotation (see Figure III-1) which is the generator of the group.

Applying the rotation ¢ to the VECtor a, we obtain the vector a’ with
rectangular components

@z = acos @
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L ity

Similarly, the rotation by — ¢ carries the point 2 into the lattice point a”
(obtained b’y mirror reflection of a’ through the x axis) where

FIG. 1l1I-1

a’; = acos (—¢) = acos ¢

|

a'’y = asin (—¢) = —asinp

3 0 - (A TN L
Thus. there also exists a lattice translation carrying a into a’’; a a
; :
10 e a'ha + n’’sb where n”'y and 2" are integers.
nilnmilie s
Consider
a’ + = Tn’,. n's + Tn"l. n's -+ 2a
" A
(14 21+ 2)a + (02 + n"2)b = (2 cos p)a

I

BLUCE (2 cos ¢)a

(.‘.i'z _|_ a”:
ﬂ’y + ﬂ”y = 0
is i 1 a. " ) :
snd t!je iy C'hoien—?z’?-?%vhich imposes no restriction. It also implies
/ i Jmph;sjg cos @. But, n'y + n'1 + 2, being the sum of three
e S all it m. Then 2 cos ¢ = m. But |cos ¢| < 1s0 thafr.
< 2 since 2|cos ¢| = |m| or m = £2, &1, 0. Hence, cos ¢ = :b_l,zi/‘.-:
Lml Eg; si 1;-/5 3m/2; /3, 21/3, 5m/3, 4w/3; 0 = 2w, w. Hence, ¢ = 27/n
an = ’ ?
: nly. {
wn]i; nf= t}]’ef,ri;tiic(t’ignsyfrom the rotation group are possible. We have
o fur

i i enerator, and its inverse. All other
for the identity, the g
Bt ? cczl:lrtt;cgre powers of the generator and replace ¢ = 2m/n by
group clem

p2m/n, where p is any integer.

integers, is an integer. C
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Index

Absorption spectra, 144
Accessory plate, in polarizing mi-
croscope, 103, 104, 107
“Scotch” tape as, 111
use of, 104 ff, 122, 127, 131
Analyzer, definition, 86
rotating, 102, 158
Angles, interfacial, 15, 42-43, 70
Angstrom, Anders Jonas, 21
Angstrom unit, 21
Anisotropic, 76, 80
Atoms, in planes in NaCl, 53
positions, 36, 52
shape, 11
Axes, crystallographic, 14, 30-32
35.37 '
optic, 81, 86-87, 123-132, 135
stercographic projection, 45-46
(see also Symmetry)

Barns, R. L., v
Barrett, C. S., 85, 40
Becke line, 120
Bertrand lens, 102
Beryl,.indices of refraction, 118
optical orientation of, 98
S F i
pz;gf_i group and point group,
Birefringence, definition, 117-118
o£ bla‘xial crystals, 129
of uniaxial cryst
partal 199 | 1O
Bisectrix, 124
Bond, W. L., v
Boys, C. V., 92
Bragg equation, 20
Bragg, Sir Lawrence, 20
Bravais, Auguste, 25
Bravais indices, 84
Bravais lattices, 26
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Buerger, M. J., 66

Calcite, cleavage, 62, 69-71

indices of refraction, 118
interference figure, 95, 119
Imi I%pticul ring sight, 99, 119,
point group, 62, 70, 151
space group, 151
structure, 1, 62, 71
Cellophane, between crossed po-
larizers, 110
optical properties, 90
Cesuég] chloride, atoms per cc, 21,

SP?%(:I group and point group,

Structure, 11, 24
Circularly polarized light, 148
Cleavage, of calcite, 69, 71, 92, 100
definition, 69, 71
of mica, 70-72, 88
Compensation, 110
Compton, V. B., v
Copdon, E.U.,v
(5r1t|cnl angle, definition, 115
Crystal, classes, 59-60
definition, 1, 62, 66, 90
drawing, 48
growing, 68, 110-112
homogeneity, 52-53
imperfections, 11
shape, 42
single, 66
sources of, 68, 112
Cube, Miller indices, 33
symmetry of, 28

Dz_ma, J. D., 146
Diamond, critical angle, 115, 123
dispersion in, 132

INDEX

index of refraction, 114
space group and point group.
151
Dichroism, 146
Diffraction (see X-rays)
Directions (see Miller indices)
relation to planes, 37
Dislocation, 65
Dispersion, 132 ff, 139
Donnay, J. D. H,, vi

Elastic constants, 73-74
Ellipsoid, index, 119
of indices of refraction, 116-117
of revolution, 74-75
symmetry of, 75-80
triaxial, 75
Emerson, E., 147
Extinction position, direction, 86,
89, 126
Ewald, Paul P., 22, 27
Extraordinary ray, component of
light, 85
definition, 81
refractive index, 116-118
vibration direction, 81-82, 84 .

Fankuchen, 1., v
Fast ray, 81
in biaxial crystals, 126
determination by accessory plate,
104 ff
in “Scotch” tape, 111-112
Ford, W. E., 146
Torm, definition, 38
of directions, 38
general, 47-48, 50, 51, b4
open, 38 .
Frankenheim, Moritz L., 25
Frisch, H. L., 152

Gadolin, Axel, 54

Garnet, crystal of, 48
index of refraction, 11

Glide plane, 150

Grain boundaries, 63, 66
low-angle, 66

Gypsum, 60, 64
accessory plate, 10

151
indices of refraction, 128

6, 108-109, 127,
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Haiiy, Abbé, 17, 82, 54, 69

(see also Law of Rational In-

dices)

Hermann, C., 54
Hermann-Mauguin symbols, 58
Hessel, J. F. C., 54, 61
Holden, A. N., v, 68, 112, 139
Hooke, Robert, 92

Ice, 110-111
Indicatrix, 119
orientation in various systems,
122
relation to X, Y and Z, 127
Interference colors, between un-
crossed polarizers, 9091
in biaxial crystals, 129
cause of, 87, 88
of cellophane, 110
definition, 87
dependence on birefringence,
118-119
dependence on direction, 89, 98
dependence on thickness, 87-89,
118-119
of ice, 110
orders of, 88
sequence of, 88
from thin films, 91-92
Interference figure, with accessory
plate, 108-109, 127, 131
of biaxial crystals 122, 125, 131
black cross in, 95-97, 103, 147 ft
color bands, uniaxial, 95
color of center, 126
definition, 95
flash figure, 97
in monochromatic light, 100,
103, 125
with polarizing microscope, 102
with unaided eye, 98
of uniaxial crystals, 95
vibration directions in, biaxial,
125
uniaxial, 95-97
Tsogyres, curvature of, 135
definition, 125
Isotropic, 76

Jorgensen, 8. 0., v
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Lattice, space, 24, 26

Lattice point, 24, 41

Lattice symbols, 151

Laue, Max von, 24, 26-27

Laue photograph, 22

Law of Rational Indices, 82, 54

Leitz, E., Company, v

Light, convergent polarized, 95
“crossed polarized,” 86
electric vector of, 79
interference, 87
monochromatic, 79
polarized, 79, 83 ff
refraction, 112 ff
velocity in crystals, 80 ff, 87
vibration direction of, 79
wavelength, 17, 79
white, 79

Lineage, 66

Makas, A, 147

Marble, Carrara, 1, 62-63
Mauguin, Ch., 54

Mauguin symbols (see Hermann)

Mica, muscovite, as accessory plate

106, 109
cleavage, 71-72, 127

between crossed polarizers, 88

106, 111
indices of refraction, 127-129

Enterfercnce colors, 88, 106, 109
interference figure, 125, 127, 150

point group, 71-72
Microscope, polarizing, 101 ff
Miller, William H., 32
Miller indices, of directions, $1

hexagonal, 34, 41

of planes, $2-33

rhombohedral, 34-35

Naphthalene, optical orientation,

131
Newton's rings, 92
Nicol, William, 102-108
Nicol prism, 102

Octahedron, 33, 40, 42

Ogilvie, Ida H., vi

Optical activity, 186 ff
crystal classes showing, 141
definition, 136

INDEX

measurement, 136
rellalt[ilon to symmetry, 137, 140-
sense of, 138
(see also Rotatory power)
Optical properties, of biaxial crys-
tals, 123 ff
of uniaxial crystals, 94 ff
symmetry, 78
use for orienting crystals, 78, 08
Optical ring sight, 1, 99, 147 ff
Optic angle, calculation, 128
definition, 128
effect on isogyre curvature, 135
in muscovite mica, 129
2V vs. 2E, 188
Optic axis, in biaxial crystals, 128-
132, 135
in uniaxial crystals, 81, 89-90
usggin crystal orientation, 90, 98-
Optic normal, Y, 124
Optic plane, definition, 123
in interference figure, 125
in naphthalene, 131
Opulcss;gn, in biaxial crystals, 126-
in uniaxial crystals, 107-108
Orchélrary ray, component of light,
J
definition, 81
refractive index, 116-118
vibration direction, 81-82, 84

Payne, . D,, v
Phillips, F. C., 82
Phillips, M., v
Plane, crystallographic, $2
(see (;lfo SProjection,
graphic; Symmetr
Ple_ochrgism. 1?16 Y
Point groups, crystals exemplify-
ing, 60
definition, 9
rclatgon to classes, 59, 61
relation to space groups, 151
of_ selected substances and ob-
} jects, 60-16I. 66-67, 151
stereographic projecti <
o gﬁ{% projection of, 47
32 crystallographic, 9, 53 ff

sterco-

e —

ey ——

INDEX

Polarizer, crossed, 86

definition, 86

Polarizing filth, determination of

polarization, 83
experiments with, 109 ff
Polaroid, 102, 109-110

Polycrystalline, 62

compared to single crystal, 66

Projection, gnomonic, 45

spherical, 43-44
stereographic, 45-47
of center of symmetry, 49
of inversion axis, 51
net or grid, 46
of normals to planes, 44-45
of point groups, 56, 57
of symmetry axes, 45-46
of symmetry planes, 46
use of, 47-51

Proof, symmetry restrictions, 152-

153

Quartz, crystal, 60

elasticity, 73-74

interference figure, 95, 109, 119
optical activity, 137-138

point group, 73, 151

space group, 151

twinning, 138

wedge, 88, 107-109, 111

Quarter-wave plate, 147-149

Refraction, in alcohol and water,

114

in biaxial crystals, 126, 128

in diamond, 114

in heated air, 114

index of, 113 ff

of light, 112 { I

in optically isotropic substances,
114

measurement of, 119-122, 127

in uniaxial crystals, 118

relation to velocity of light,
119

115-

Ray-velocity surface, 80
Romé de I'Isle, 16
Rontgen, Wilhelm, 22, 27

Rotation of plane of polarization
(see Optical activity)

Rotatory power, definition, 136
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dispersion of, 139
(see also Optical activity)
Rutile, 60, 64, 84-87, 118

Salol, 111
Scheelite, 49
Schoenflies, Arthur M., 54
Schoenflies symbols, 54, 56-58
“Scotch” tape, 111-112
Screw axis, 150
Singer, Phylis, vi, 68, 112, 139
Slow ray, 81
in biaxial crystals, 126
determination by accessory plate,
104 fE
in “Scotch” tape, 111-112
Sodium chloride, elasticity, 73
index of refraction, 114
structure, 37, 41, 52-53
Sodium light, interference figure,
100, 103, 125
Sohncke, Leonhard, 54
Space groups, definition, 150
discussion of, 150 ff
number of, 150
relation to point groups, 151
of selected substances, 151
symbols, 151
use of, 151
Sphenoid, 7-8, 61, 67
Steno, Nicolaus, 2
Strain and stress, 73
inhomogeneous, optical effects,
90
Structure of crystals, analysis, 23
definition, 23, 26
description, 36, 41, 52
Symmetry, axis, inversion, 8
rotation, 1
center, 6, 49, 51, 143-144
of crystal, definition, 140
crystallographic restrictions on,
9,11 ff, 152
elements, 8
of first kind, 143
implied, 50
mirror plane of, 4, 143
operation, 1,8 3
relation to optical properties,
129 fE, 139 f
of screw, 137, 143
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of second kind, 143
of vector surface (physical prop-
erties), 74

primitive, 12, 24, 25, 40
rhombohedral, 14, 34
size, 17-22, 37
of sodium chloride, 52
Thayer, F. M., v
Thermal expansion, in crystal sys-
tems, 74-77

measurements, 78, 92.93
Titanite (sphene), 183
Tourmaline, absorption in, 146

crystal, 60

tongs, 146
Tutton, A. E. H., 43
Twinning, 63-65

in barium titanate, 89

crystals exemplifying, 64

on (111) model, 64

optical effects, 89

in quartz, 138

Vibration direction, 79
in biaxial crystals, 124-125
in uniakial crystals, 82, 84

Weiss, C. S., 52
Weiss, Ruth A., 75
Whewell, W., 51
Wood, Ira E., vi
Wyckoff, Dorothy, vi

X direction, biaxial crystals, 126
X-rays, definition, 20
diffraction, 17, 24, 27
intensity (use of), 23
use in orienting crystals, 78

Unit cell, 14 wavelength, 18, 22

body-centered, 24, 25

of cesium chloride, 11, 24
face-centered, 25, 28, 40, 52
nu5n21ber of atoms in, 11, 36, 41,

orthohexagonal, 85

Y direction, biaxial crystals, 127
Young's modulus, 78

Z direction, biaxial crystals, 126
Zone, 39
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ABOUT THIS BOOK: This is a richly illustrated study of
crystals and their appearance in cross-polarized light. The
book begins with the symmetry of familiar objects and pro-
ceeds to the symmetry of crystals and their physical prop-
erties. It then discusses the power of X-ray and optical
techniques in investigating the orderly structure of solids.
The use of polarizing microscopes is discussed, and the
author also describes optical experiments that can be per-
formed by the reader without a microscope.




