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PREFACE TO THE FIRST EDITION

THaIS book, as its name indicates, is meant to be a text-hook

for the Intermediate students, both Arts and Science, of

the Indian Universities, and various Education Boards.

Regarding the subject-matter, we have tried to make the

exposition clear and concise without going into unnecessary

details. Varied types of examples have been worked out
by way of illustrations in each chapter and the examples -
set for exercise have been carefully selected and properly

graded.

Questions of the University of Calcutta and some other
Universities are given at the end, to give the students
an idea of the standard of the examination.

It is hoped that the book will meet the requirements
of those for whom it is intended and we shall deem our
labour amply rewarded if the book is found to be a suitable
text-book both by the teachers and the students.

Any criticism, correction and suggestion towards
improvement from teachers and students %vill be thankfully
received.

CALCUTTA }

B. C. D.
June, 1947 B. N. M.



PREFACE TO THE TWELFTH EDITION

IN the last edition, a set of harder type of examples was

given in the end as Miscellaneous Examples. In this edition
these examples have been inser :

the text. Our hest thanks
Mukherjee of Jadavpur University, to our pupils Sri T. N

Mouli / i
oulik, M. Sec., Mrs, Gouri Dey, M. Se. of Bethune College

and Sri Jadunandan M
1 Jad 1818, M. Se. of Mah; i
for their help in the Preparation i ) L

ted in their proper places in
are due to Dr. Arabinda

of the text.
CALOUTTA
May, 1968 } BN
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Moment of forces, theorems on moments. Couples, General condition
for equilibrium of coplanar forces.

Centro of Gravity : Cenire of a system of parallel forces. Centre
of mass and centre of gravity of a system of particles, of a rigid body,
a thin rod of constant or variable density, uniform wire bent in the
form of an arc of a cirele, a parabola ; homogeneous lamina in the form
of o triangle, a parallelogram, a circle, a quadrant of a circle and of
an ellipse, portion of a parabola bounded by a double ordinate; a
uniform hemispherical and conical surface, a homogencous solid hemi-
sphere and a right circular cone. Simple problems involving the above.
(Use of Calculus advised).

Friction : ILiaws of statical and limiting friction. Fquilibrium of
a particle on a rough plane, angle of friction. Applications to simple
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STATICS

CHAPTER I
INTRODUCTION

1'1. Definitions.
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1°2. Classification of Forces

The forces thas =

” m ith i
May generally be diyide eet with in courge of our subject

d info three b

ture of thrusts
actual materia]

(1) Porces of the na

Or pull applieq
Or sfring ete, Ssngh

(2) Attract;,
ion or :
z_m of the nature o a:g,i?mlszma b_etw
ion etp, on af a disty,

Or iensions, 4.e., push
contact, e.g, hy a rod

Ein two bodies, which
€, .. earth’s gravita-

of passive ;

Decessary, anq 4z
to be of such ad

g m
0 maintgin equi

Xistence

.lves (within a ce only when

rfain range)

Irectig ;
sRORIS " 48 are just required
. On :
i ome Specja] Forc
Weight
at of
tracts the bod hodg 1S the fopeg
o It 15 shoym 3 D © direction of th }:1 Which fhe earth
Veryhod: amjeg e Ce ig wprs
the boayy.to 168elf wity, , for( . 5 and g:g) 4, Vertical,
' 480 the quapy; ¢¢ Which, A% the eargh o4,
Mk it Gaalorn 3l P orortior, iy L attracts
: th
Whereag iy g 358 in By @ body, € mass of
_ sh (f
. Sygﬁe YA
he g 185 op SYstem jq
1 !ammc_ One Do
?;? ﬁs‘one 2 offa': B Xerteq 1, oo Dynamie !Zt:l f:')]’
) 18 usya)y, * “€ the gy, 7, OV th g
of agnityq Y useq i i‘fﬂzgkg of o € earth Rl
.  foroeg + U108 ag th, o Pound (p,.* "0dy of
i lay] InF p s unit lefly, 1 1b
e grq . 5yste Vste 4surement
m, ;
i Striet]y & th uni
: ghtly ¢ & the fq, ed { the weight
ug no ox. &COQ trac h A
11, a 0 on ¢
¥ ere, 13 of thg g0 206 bod
' Wb, arg gly, ¥ ue th hich iY varies
nj 8 nearly
%e ) ®

INTRODUCTION 3

Bub as in this Elementary Statics we shall not have occasions to
compare forces at different places on earth, we shall neglect this small

variation in the units.

In practice, for brevity, we shall speak of a force measur-
ing 20 lbs., or 50 gms., though more accurate expressions
would be a force of 20 lbs. wt., or 50 gms. wk.

(ii) Reaction.

When one body rests in contact with another body,
pressing against it, it experiences a force at the point of
contact which is called the reaction, exerted by the second

. body on the first.™

For example, when a heavy body, (say a hook), rests on a horizontal
table, the weight of the body which would cause it to fall down to the
earth has got its effect nullified due to the presence of the table, which
does not allow the body to penetrate through it. Thus the table exerts
a force on the body neutralising its weight. This is the reaction of the
table. As the weight of the body is vertieally downwards, the reaction
of the table neutralising its effect must be upwards.

As another example, when a ladder standing on a horizontal floor
is leaning against a vertical wall, it experiences forces of reaction at
its points of contact with the floor as well as with the wall. These
two reactions, along with the weight of the ladder, keep the ladder at

rost. 4

Now it is a common experience that if a body be placed
in contact with a very smooth surface (e.g. a highly
polished table), and is urged with any force to slide over it,
it experiences very little resistance tangentially, but the
surface, (assumed rigid), does not allow the body fo pene-
trate normally through it. The reaction on such a body
is therefore normal to the surface.

* From Newton's third law of motion [ Dynamics, § 6'1 & 611 1.
the second body also equricnces an equal and opposite force exerted
by the first on it, which we may call action.
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congidering the equilibrium of the element PR, the fension at P is
equal to that at R. Proceeding in this manner, the tension is the
same throughout the length of the string.

Again, when a portion of the string passes over a smooth pulley
(or a smooth surface), considering an element MN or M'N’ which

A

Z "t

Tig. (i) Fig. (ii)

is in contact with the surface, the reaction of the smooth surface is
along the normal, and this has no effect in the tangential direction.
Hence the only tangential forces, namely the tensions at the extre-
mities M and N must balance one another, and accordingly must be
equal and opposite. Thus the magnitude of the tension continues
to be the same throughout the string even when ‘it passes over smooth
surfaces as in Fig. (i) above.

If however any point C of the string is knotted to other
strings (or to any other body) as in Fig. (ii), we must regard
its continuity as broken, and the tension will not be the
same in the two portions on the two sides of the knot, though
for each separate portion it continues to have a constant
value throughout.

1'4. Geometrical representation of a force by
a straight line.

A force has a given magnitn_lde, ‘and E};Gts ab a particular
point of & body in a definite direction ; in other words, it



6
STATICS

has a definite magnitude

the two latter giving the s eation,

; e line of action of the force
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Thus, P being a force acting at 4 along 4B on a rigid
body, if we introduce two equal and opposite forces at B
each equal to P
along BA and 4B,
and two latter, being
in equilibrium, will
neutralise one
another and will
have no effect on
the original force.
Now P at 4, and
the opposite P at B along the same line, produce equilibrium,
and we are left with a force P at B in the sense 4B which
is thus equivalent to the original force P at A. Hence
follows the principle of transmissibility of a force as enun-
ciated above.




COMPOSITION AND RESOLUTION OF FORCES
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COMPOSITION & RESOLUTION OF FORCES

Also, AE=AB+BE=P-+(Q cos a
[ In Fig. (ii), AE=4B— BE=AB—- BD cos DBE
=P - Q cos (180°—a)= P + @ cos al
Thus, AD*=AE®+ DE*® gives
R2=(P+Q cos a)® +(Q sin a)?
=P%+9PQ cos at+ Q*.

DE__@sina |
Also, tan 6 i P eoat
Hence, ~ R= /PZ+2PQ cos a+Q?

SFERE Qsina
and 6=tan P___#+Q,cosa

giving the magnitude and direction of the resultant.

Cor. 1. If @=0, R=P+Q andif a=m, R=P-Q. (P > Q)

Hence, the resultant of two given forces acting along the same line

-is their algebraic sum.

Cor. 2. Two forces P and @ acting at a point being given in
magnitude, their resultant is greatest when cos is greatest i.e.,
cos a=1 j.e., a=0; and the grealest resultant is P+Q; and the
resultant is least when cos a is least i.¢., cos a= —1i.e., a=7 and the
least resultant is P— Q.

Cor, 3. When P=@Q, it is easily seen thab

R=9P cos }a and 0 =%a. X

Thus, the resultant of two equal forces P, P at an angle o, 13
9P cos ka, in a direction bisecting the angle between them.

If a=120° R=2P cos 60°=P. :

Hence, the resultant of two equal forces acting at an angle 120°, is
equal to each of the forces. [R=P=Q]

Cor'd. If a=00° R= ./Pi+Q® 0=tan™'Q/P.
Cor. 5. If P> (), the resultant is nearer to P.
9'4, Breaking up a given force into two compo-

nents.
A given force -may be resolv
in an infinite number of ways,

ed into two components
for by parallelogram of
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along OX,

Thus, the resoiveq part of P along Ox ig mathematically P cos @,
and perpendicular 4o OX, it is P gin 8, whether g is o

btuse or acute or
of any magnitude,

placed, wheneyer needed, by)
one P cos 0 along
b, and another, P sin 6
le 0 may bhe, This

! its two equivalent

1 bwo Sulfable Perpendicylgy directions is

Particular]y useful ip finding the resultant of several forces
Situltaneoug]y acting gf o

Point, g5 ig shown_ in Article 2'7.

algebrajc S1m of the resolped parts
at a pog,

i, along any direction,

% of thesy resultang, iy the same

04
Damllelot’.r boing e@iﬁi He two forces p and @
agnitudg , d dirgq Presang heire ;Llsafl(zna,i o% ths
an i
Let 0 b
angd 4 BMa,e & lin lrayyy Tl .
d Bang C res?)dcfy : pel’DendiCSirdlre“tlon through O
the Tes0lyeq tsl‘?l ' 80 that 13, drayy,, on it {rom
o3y Sign. ig (0‘) R along oY ONivepregent
M iy Degatiy, o U) all hreg ... ©.9M8 OX ;

it 1 magnitude
) i g -
IOSJtIVe, and ip, Fig. (ii)

|
|

s 0

15
* COMPOSITION & RESOLUTION OF FORCES

. their
. i al and parallel,
» OB and AC heing equ 1 in magnitude.
Drojﬁgs\i\c;nsOOﬂ[ and LN on OX are equal ]n(;n 1':
= + Q1
Hence in Fig. (i), ON= Of}-‘_ ‘E;E_CO)E — 310
el G AN = T T =
TR (O)L- (- 03)= OL + OM.
i ual to the

Thus, resolved part of the resul?ag)ltmfg 15 aﬁ(cl)ng OX.
algebraic sum of the resolved parts o bove theorem, we can

Cor. By a ropeated application of the a

! I8 o . ir
€asily extend the theorem as f011;3“£ a point, the algebraic sum °§ :?m;
\ ‘i a ] part o [l
mber of forces ac e resolved par
ZIfdmly 7;””. . a;; direction is equal to the re
resolved parts ‘i L

Tesultant in the same direction.

rces  simul-
2'7. Resultant of several coplanar for
. S ;
taneously acting at a point.
Y \
: C
B
Ps R
Py P,
3
0240
ag
Yo : i
Gl @i
Py :.
3 v/

te.
Pi, Pg, Ps, @ :
. lanar forces d let their
Let + of given cop mt 0, an

be Simu?t;;tlllenol:i:;y acting at the poin



4 STATICS

directions malea angles ay, q,, e o with any Sui‘ta.hly
chosen direction OX in the plane, 0¥ being perpendicular
to OX,

We can replace the force p, by its resolved parts
1 €08 oy along OX, apnq P31 sin gy along 07,  Similarly,

= M2y be replaced by P, ¢os a2 along 0X, and P, sin aq
*onE O, and o foy each one of the giyey forces.

. Now R (representeq by 00) being the resultant of the
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© resolved paptg of the eom lone the
Same fiwo directions, we gef; Fonens forceg along
R 05 6=P, o ;4P

2 COS ¢, 4-p
Rsino~p, Sin ¢, 4. p

2 8in a, +p
2X)* + ()

3 COS gy ... =3X (say).
a 8in qg ..., =3Y (say).

i or Rn@mY_)z

o, 6=tan~1=Y

Hence, R (

O e
2 X

4 !
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81
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In vector notation, AB+BC = AC.
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tc. be any num
Let P, @, B,..c e

forces acting simultaneously at O.

~ 3 l-y
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P Q, R el
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the components 7.0X and m.0C. Similgrly, the force
represented by n.0B can be replaced by its components
n.0Y and n.0C. ‘

Hence, the two given forces m.04 and %.0B are equiva-
lent to & total component (m +n).00, along OC, & component
m.0X along OX and one n.0Y along QY. DBuf since
m.0X=m.CA=n.CB=n.0Y in magnitude, the last two
components being equal and opposite along the same line,
balance one another.

Hence, the final resultant is the single force represented
by (m + n).0C along OC.

Cor. 1. The resultant of ftwo fprces_ OA and OB is
represented by 200, where C is the mid-point of 4B.

Cor. 2. The resultant of three {orce§ represent:ed by
OA, OB, OC is 30G, where @ is the centroid of the triangle

ABC.

2°10. Illustrative Examples.

Ex. 1. If the resultant of two forces acting on a particle be at right
angles to one of them, and its magnitude be one-third of the magnitude
of the other, show that ihe raiio of the larger force to the smaller is
3:24:2. [T P. 1944 ]

Liet P and @ be the forces, and let the resultant be perpendicular
to P, its magnitude being @, as in the figure, when the diagonal of
the parallelogram with P and @ as adjacent sjdes represents the

resultant.
Q
Q ﬁ“o, \

P

Then, from the figure,
Q2 =(4Q)*+P?, or, §Q*=P*;
S @Q2[P2=9]8,
or, Q:P=3:2,/2
Ex. 2. Two forces acting at a point have got their resultant 10 when
acting at right angles, and their least resultant is 2. Find their greatest
resultant, and also the resultant when they act at an angle 60°.
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Let P ang Q be the

Then, while acting

P-Q=9.
Hence, PQ=4g

forces, P bsing the greater
‘perpendicula.r]y, ]
NPAEQI=10, or, p2
Also their Jeagt resulf

STATICS

ant;,
. Plig

Now the 8reatest resultang,

SP+Q= /Fii 5
= N100+96=14,
atan gn
P+ Qi oz
= J100+g% 4

Al tEx. 3. Foreos p and (,
ransversal oy the lineg

AISO, when thﬁy Aot
R= [t

L, M, N Tespectively,

61_,"'

0

of action

show ¢hat

¢ _ R
M on

their resultant,

+@*=100,

F-2PQ=y,

GE

8x4= J/igs,

whose Tesultant i3 p

y act at a 3
of tha for pownt 0. If
8 forces p, Q, R at the points

[cC.
U. 1947 ; B.H. U. 19044 ]
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!
» Alternative method :

P
P along OL can be written as OEL-OL= m.OL, whete m= Hr*

: Q
Similarly, @ along OM can be written as n.0M where n=0

Now the resultant of the forces represented by m.0L and n.OM is
(m+n).ON along ON, where N is a point oo LM such that LN : NM

= :m. Thus, ON being the direction of the resultant, intersecting

LM at N,

R=(m+n).0N, or, ORN= m +ﬂ=033+00hf

Ex. 4. Two forces P, Q act at a point along two straight lines making
an angle o with each other, and R is their resultant. Two other forces
P, Q acting along the same two lines have a resultant R'. Prove that
if 0 be the angle between the lines of action of the resultants, then

RR cos 0=(PQ +P'Q) cos a+PP'+QQ,
" and RR sin 0=(PQ ~P'Q) sin a.
If ¢ be the angle which the resultant R makes with the line of

action of P, resolving along and perpendicular to this line, and equating
the resolved part of the resultant to the algebraic sum of the resolved

parts of the components,
Rcos ¢=P+@Q cos a, R sin¢=0@ sin a.
Similarly, ¢ being the angle made by R’ with the same line,
R cos ¢'=P'+Q cos «, R sin f@'=Q’ sin a.
. Now, 0=d~¢. .*. cos 0=cos (p~g).
RE' cos 0=RR’ (cos ¢ cos ¢'+sin ¢ sin ¢')
=(P+Q cos a)(P'+ @ cos ¢)+(Q sin a)(Q sin a)
=PP' +(PQ +PQ) cos a+QQ (cos®a+sin®a)
=(PQ +PQ) cos a+PP'+QQ".
Similarly, the second result follows.

Ex. 5. Show that the resultant of two forces sec B and sec C acting
along AB. AC respectivelu of any triangle ABC isa force (tan A+ tan C)
t of the perpendicular from A on BC.
Juangipur College Library Acc Q conssndegspuzsgrasansan



22

STATICS
We nota that
the forces sep and sec @ along AB and AC be
g and / é
A written ag n( 3
Sec B
4B 4B and S—?;;-:CC*'AC
along thega lingg,
Again, QQ:AB cos B
3 | C ACcosC
S —Sec C  sec B
40 ° 4B

Thyg
; » tha tesultang o %?-AB al
Cis (EecB o o
AB‘+BE~E__CCC) 4 g 4C along

S;t!c‘_c . Bee B

408 4B [See§2.g]

4D alon
8 AD, g
Since dividag B0 in the ratio

s

AISo, (38(: B
?E—-i- g%.(%g) 4D =

. (4] o
» CD Wection, thg‘;'admg at a point
' es 4B, 40, AD
heir resultant is
[C. U. 79391
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one another, and as the forces all act at one point, we get by combining

the above,
AB+BC+ CD+ DE+ AC+ CE+ AD+ BE=3AE + BD-

Hence, adding two more forces represented by AE and BD, we geb

AB+AC+ AD+AE+ BC+BD+BE+CD+ CE+ DE
=44F +2BD.

Ex. 7. Forces of magnifude 1, 2, 8, 4, 5 respectively aci at an
angular point of a regular hewagon towards ihe other angular points
taken in order ; find their resultant.

ABCDEF being a regular hexagon, e D
forces 1, 2, 3, 4, 5 act along 4B, AC
AD, AE and AF.

In the regular hexagon, it is easily
seen from Geometry that LBAC=
/. CAD=/DAE=/EAF=30° and
so AB and AH are perpendicular to
one another.

If 1@ be the required resulant and
0 the angle it makes with 4B, we get
by equating the resolved parts of the
resultant along 4B and AE to the algebraic sum of the resolved parts
of the components.

R cos 6=1+2 cos 30°+8 cos 60° -4 cos 90°+5 cos 120°

3 1 1 5
=1+2.i‘é—“+3- 5 +4.0+5(—— 2);,4’5 ;

A (=

and  Rsin §=2 sin 30°+8 sin 60°+-4 sin 90°+5 sin 120°
=2.~;E +3.-"2ﬁ5+4.1+5.%§=5+4 N
R*=(/3)%+(5-+4 N/3)* =T6-+40 /3.
: 54443
Also, tan 6:--.33
Hence, R=2,/19+104/3 and o=mn—1(4+%3)

giving the magnitude and direction of the resultant,
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Examples on Chapter II

1. Show that the greater the angle between the lines
of action of two forces acting at a point, the less will be

their resultant.

2. Two unequal forces inclined at a cerfain angle act
on a particle. Show that the resultant is nearer the greater
force.

3. The greatest and least resultants of two forces of
given magnitudes acting at a point are 16 lbs. wt. and 4 lbs.
wh. respectively. Find their resultant when they are at
an angle of 60° with one another.

4., The resultant of two forces P and 2P, aching ab
a point, is perpendicular to P. Find the angle between the
forces.

5. Find the angle between two equal forces P, when
their resultant is a third equal force P. [P.U. 1950 ]

6. Two equal forces act on a particle ; find the angle
between them when the square of their resulfant is equal to
three times their product. [P. U 1933 ]

7. The resultant of two forces acting at an angle of
45° is /10 lbs. wt. ; one of the components being /2 lbs.
wt., find the other. »

8. Find the components of a force P along two
directions making angles of 45° and 60° with P on opposite
sides. F

9. Two forces of magnitudes 3P, 2P respectively have
a resultant R. If the first force is doubled, the magnitude
of the resultant is doubled. Find the angle between the
forces. [C.U. 1932 ]

10. Two forces given in magnitude and dirvection act
on a particle. Find the direction in which a third force of
given magnitude should act on it, so that the resultant of
the three may be the least possible in magnitude.

. 11. Two forces act at a point and are such that if the
direction of one is reversed, the direction of the resultant
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s turned thy
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Prove thay i e;'(% hen they act
~1) VPt gF

forceg P+ [ B. H. 7. 1946 ]

v and fhes @ P~Q m
gt 1oL 56 g o 206le 94 with

N ang .
P tan 0= o + Shoy tﬁlé’tle 0 with the

[P.U. 7931 ]

Orces P and
] Show thﬂat
2y .“’here

[2. 7. 7909 ]
9 Ce : an ang
akeg Wit} és;ncreased ])éle @ and have

S, (P-_ i 0 an vy Pr
Pty W sin 8le Whog, t;’n;‘;ﬁt“;;“’

Ex. II] COMPOSITION & RESOLUTION OF FORCES o7
- 19. Two forces P and. acting respectively along two
different straight lines 04 and OB hzwe‘ resultant perpendi-
cular to OA4. If two forces P’ and Q' acting respectively
along the same two straight lines have a resultant perpendi-
cular to OB, show that
PP'=QQ'.

20. Two forces P and () acting respectively along the
straight lines OA and OB which are inclined at an angle
a to one another (a # =), have a resultant B making an

angle 0 with OA4. If @ be changed to @', the resultant
changes to R’ making an angle 6’ with 04, Show that

R' _sin (a—0)
R sin(a—6")

21. The resultant of two forces P, @ acting ab a cerfain
angle is X, and that of P, B acting at the same angle is
also X. The resultant of @, B (Q# R) acting at the same
angle is ¥. Show that if P+ Q+ R =0, then X=1Y.

#22. Two forces B and S act at a point along two
straight lines inclined at an angle 0, and F' is their resultant.
Two other forces R’ and S’ acting along the same lines
have a resultant F'. If ¢ be the angle between the lines of
action of ' and I, prove that

(1 - cos ¢)(1 + cos ¢)

= (R%*S'®*—9RR'SS' + EE‘SB)U o)l cado)
f FSFI2 1) e N

[ C:T. 1946 ]

23. (i) Two forces P and @ acting at a point have gob
a resultant B ; if ¢ be doubled, B is doubled. Again, if
) be reversed in direction, then also R is doubled. Show
that PR ER =N A SN O] [ Bombay, 1954 ]

(i) Show that three concurrent forces lying in a plane
cannot produce equilibrium for any arrangement of their
directions, if the sum of the magnitudes of two of them
be less than that of the third.
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at § da.
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2EP cos §+ 90 o0s )2,
[ Delni, 1931 ]
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Doint (up to th ey Intersection Wwith the axis), hoth towards
: € axis, get, Show that the resulfang basses through the
ocus

?‘56. Two forceg are Teépresenteq by two semi-conjugate
dlan?eters 0 ellipse . Prove that bheir rogultant is o
PAXImum whey the lameterg 5. €aual and include an
acute apgle and thejy Tesultang jg Minimum when they
are equal gnq inclyde a1 obtyge angle

e 2 any po;
S LY pPoint

© Lwoe
and Dy qual ¢op

.

D ellipsg of centre C and foci S
stant forces ac

= : 886 C parael tol Sl;
g €n € straight line whic
rePresenty i : . g
oL heir Tesultant lies op & cirelg Passing through
%
. Assuming th
for directioy, on] pe el

; O8ram Jp
Ys Drove 16 fop

W of foreag to be true
mﬂgmtude.
ANSWRpg

3. 14 Ibs, w, 4. 1900

5. 1900,
7 2 1bg, wt,

1ty o p A4 rading equal to

CHAPTER III

CES
ENT FOR
ILIBRIUM OF CONCURR

EQU

i e a point,
If three forces acting ?z‘?‘actim
Tepresented in m-a.rmi-t’t'”?‘;' of a triang
Dosition) by the thnrct‘f il
the forces are in equi Libriumt.

be
be such as can

t on
and sense, (but no 5
; le taken in order, th

R

int O be
point ides

: the
ting ab the
Q B ac&nd BeRES .pyngle AB
ireo Y of the tria
tive

iy 3 m.
I be in equilibriu
ey S]]B.-l [ ] x uﬁ'l
Since BD 18 €4
D.

A
d by C
e&:lb%irechlon

\

Let the three fo?fsge,P'c"l
“®Presented in magni espec
) 04 AR in Gl e
It ig Tequired to prove BOA 2
logram ich is rep
Complete the ‘jf"‘"?ﬁl:force Q wi;c;gnibﬂde &L
‘é:g Dn,mllelll t%eorépfesente LE st
s 48 we TrCce
by B, 5 LD Ui
raeal of fort'.:}iﬁe:3 tion and 8 magnitude,
Now by parallelogr itude, dir esented 10 ¢ P and @
Q, Tebresented in m&g;;ulﬁﬂant rqgf resultant oosite to B
2 BD, have gob &11;. B4. Th ual and oppforce-
direction g9 sense yd being eqs the latter
4¢ts however af O'd 1‘)“; AB, balance
Which ig represente
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ence ¢
n 1 thrce forces A€ in equiljh
Vector p ALl 10r1um
o forces aofing gp r 0% AB+BG+ g7 o
N point, CA=0, when referring
ote. threg fo,

tude ang g .. ces, in thi

s direction 1, the Sitllea thls case,

g e sides of the trigyg i
. Jte.

ng
1 threg force
on g

though Te
gle
It wip

Presented in magni-
» a¢t at a point, and do not

1 X
T be seen In a later chapter
8¢ ﬂ-Itmg the sig

@ es of a triangle.
an the Samg thing 5

as three forces

@ Poing ;
to ¢y, » be sucy, that their

) ! |
. ?n_wfl'rd& i Perpedicyy,, o a triangle and
Quzlzbrium_ CUttwardy e Corresponding sides,

b ken
BE ol also the Jorces shall be in

€ Sideg

€, 1f w
158 oy 6 Totate th
{ Wh . lg, s 8 fipj
TS, ang o Sides g o A0 the 1. 2R€le through one
repreant orde are Per Sense, we get
¢

The e Orpeng; aboyg
Proot ig eXaot ! e With " dlcu]ar to ; cas@, the dirastions
8lmj Gco""sl’ondin : Jo8
the Samgq Wayg 81 ed»
round.

QUi s
n anums thegf
Sense by the

S
G4 ) s

Mbe I equilj-

°f thig g PaTalle] to
i

p "’"di‘m—tTB‘) _
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tRe directions of P and Q, to represent these forces reipect-
ively in magnitude, direction and sense, on any chosen
scale. Compciete the parallelogram BCAD, and join the

diagonal BA.
Then BD being equal and parallel to CA4, represents

Q as well in magnitude, direction and sense. Now, P and
Q being represented by BC and BD, by parallelogram of

G

forces, their resultant is represented by BA. But since
P, @, R are in equilibrium, R is equal and opposite fo the
resultant of P and ), and accordingly I is represented in
magnitude, direction and sense by 4B.

Thus, we get a triangle ABC whose sides BC, C4, 4B
taken in order, represent the forces P, @, R in this case
which proves the theorem.

Note. If we draw any other triangle with the sides parallel to the
lines of action of the given forces, this triangle will evidently be similar
to ABC, and accordingly having the corresponding sides proportiomal,
the three forces in this case may as well be represented in magnitude,
direction and sense by the sides of that triangle ‘takan in order.

Cor. Threo forces acting at a point being such that the sum of
any two is less than the third, they can never he in equilibrium, for
they cannot be represented by the sides of a triangle.
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34, Lami’s Theorem,

7 €8 actl?w ﬂat a i be 7
}7 e arce 01 Lt

eaﬂjl 8 p?'OpOTtmna,l t() U-IB S'L!Ic 0 tlle n
f a

Let the ¢}
i ree forces p :
5% 0% 0%, 07 bo in eqyify et F 26ting a8 0 along ghe

P4

It ; ;
1S requireq to proye thag

P
B e 1
Sin Yoz= %‘Q‘Cﬁg Wi ¥4
On any chog

Tespectival. > SCale cup
=i ol dlre(lﬁio ©sent ¢

nd
Join the © forceg pof along 0 and

. 1 I
Pand § jg yope OV para?fiiﬂgi"gmm 0GB i
Since p ssented by OO,&m of forces, the

um, p
be3 us 0 magnit d Q, amR 1S equal and
i D8 equg] , 2 "¢ alon ~ude Accordingly R

in 7 n € g . Qire
"agnituqq Dg‘ra.ue'l to op oC Straighg ltizzlsn Y CO, so
Irect; ) I‘epreﬂents Q H Also, AC
Qually wel]

qulibrium, then
gle between, the other

CONCURRENT FORCES 37
' But, sin OCA=sin COB=sin (180°~ Y0Z)=sin Y0Z
sin COA4 =sin (180°— Z0X)=sin Z0X
and sin OAC =sin (180°— X0Y)=sin XOY.
Also, 04, AC, CO représent P, @, R respectively.

Bl A s Y I Rt e M T,
Thus, 5 "¥0Z ~sin ZOX sin X0Y
P Q BAE

- §in(Q B) sin (R, P) sin (2 Q)

Alternatively, since the concurrent forces are in equilibrium, the
algebraic sum of their resolved parts in any direction, being equal to
the resolved part of their resultant, is zero. Therefore, resolving per-
pendicular to QX and to OY respectively, @ sin X0Y — R sin X0Z =0,
and P sin YOX—R sin Y0Z=0. Hence, P/[sin YOZ=R [sin XOY
=@ [ sin ZOX.

3'4. (1). Converse of Lami’s Theorem.

If three forces acting at a point be such that each is
proportional to the sine of the angle between the other two
(the semse of the forces being such that any one of them lies
within the angle opposite to that in which the resultant of
the other two lies), then the three forces are o equilibrium.

Let the three forces P, @, R acting at O along OX, 07,
0Z be such that
l _f_."—- = Q = R - ) (i)
gin Y0Z sin ZOX sin X0Y
the sense of the forces being as indicated by the arrow-heads,
[ See fig. of § 8'4 ]

Produce ZO to C such thab OO_ =R in magnitude.
Complete the parallelogram OACB with diagonal OC, the
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sides 04, OB being along OX and (008 respectively. Then
from the triangle 0AC,

_al 4AC 0C

R i

sin 004~ sin 400 sin 040~ i 04C’
also, sin 004 =gin BOC =gin (180° — Y0Z)=sin Y0Z

sin 40C =gin (180° - Z0X)=sin Z0X
and  sin 040 =gip (180°- XO0Y)=gin X07.

04 AC R

Hence, sin Y0Z ™~ sin 205 = sin X0Y
Comparing this with (i), we get

P=‘-OA, Q=AC’-=OB.
Hence,

' by the Parallelogram of forces, the resultant of
and @, which gre "OW Tepresented hy (04 and OB, is OC,
and this hy Construction ig equal angd OPposite to R,
Thus, P, QR are in equilibrium,

3'5. Polygon of forces,

If Qg TR o Lo X
: S AR Qe .
NN s Ny, e 3 e \'\\\?\ Wy Doy pe such that
]mﬂza sides g Closed, ) i, irection, and sensé
8 .
U be i, eQuz'lz‘brmm 10on takon

in order, them they

t&t 0 _bB repregented
he Sides 4B, BO,
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-gon ABCDE.
I taken in order, of the closed poly

CD, DE, ete., ta ;

Join the diagonals AC, AD

B. BC, their
: ented by 4B, result-
A @ being repres Again, the r
The forces P )a-n; rg{)reseﬂteq L7 Aclreprisented y 40,
resultant (say B1), 1 d R, which are ds, AD represents
prci(Bs, say) of | Eene gl O i this manner the
CD, is represented b(g R. I’roceed“’g-l}n31 are represented
el osu tanv ol pr, ces P, Q, B, 5. ‘?hlsepres'ented by AE
resultant of the ?5 BC, CD, DE 1s represedted by E4,
Tespectively by ‘3311;] the last force Tbls resultant of P, @
[ See 4rt. 2°8). nd opposite to b g lance one another.
i b ety \&er acting ab Ob' 'uin
ev : 1ibri X
II?I‘enS‘e tﬁ? t‘:Pivﬁr}:-:rciwfrorces are in equill
C =]

ing at O, (and
forces acting 0
g ill be equally
: ssary here Sy
Note. It is mot nece

coplanar.
accordingly the polygon) should be
true in all cases. t ey
on o T o]
the polyg ; T
: erse of int be in €q
3'6. The conv o acting at @ point b
wt af forees

s direia
o 1 epresw\t\\\.-‘m\ \\\\\\\\\\\\\-\\\‘\
be T b
brium, then they can

losed polygon.

des, taken in order, of @ ¢ B

and sense by the sides, i .
! hc,)w that they can

o d sense by the sides

Let a number of for%a‘? Ps;rg
O be in equilibriugln.itudee R
represented in ma;
of a closed polygon.

DE,
0 AB’ BG. GDn

; ession the lines f the forces
Letjus Grat dm 2};;10161 to, and 1n thahse?]ieas they may
el o) e e1nb’u¥;J one), of such lengt :ny chosen scale.
ROWE S (al rresponding forces gn ‘oin the diagonals
?Iepresj%t tlhoesi;f up the polygon, and ]

i ? c L) . {

A%),JAD. [ See Fig., 4rt. 33 ]

C, their
ented by A—Bg BC,

i diQiaToprobEes . Similarly, 4D
'J_IEent 8(111%180 SP;y?nis represente% L)fy 1;110 S Tt
resultan 15 R,, soy il e
represents thedlzesulﬁantﬁhi(s manner, the 1&% 1511& ﬁaﬁ'u(tl& :
g’ tR'E)P;ggfss;r?fs the resultant of P, @, B,

(0]
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» Damely 7)), A
8 the forceg are i gy e d
e to ¢ n equilibrium, 7' 18

accOrdingly fr 8 result
om above, 7 ig reprzsgngefd&}ljl the others, and
y HA.

Hene
: 8, the f,
side » W18 loreeg g

8 of the clogeq e Y6 Tepresenteq 4

Note, Aq pgy OVE0n ABCD tq) In succession by the

s {€n 1n 1
0% necasgy s YBONS with {0 v order.
Tily gimj eir co £

rOpOrt: ilay, ¢ ITespo .
:)t 3":}0&&1 always, 14 f'lo-lel.' have ot gopt; I:;il;g sides parallel ar®
dra 11} 100 Decesggry) OWS that th, fo {r corresponding sides

0 With jtg Y be Tepresenteq ces in equilibrium acting

sides Ta b i
g7 61 £0 the fopes ¥ tho sides of any polygon
0 alytj [ Cf. 4r¢. 33, Note )

f The tug S B,
Ccoplang Y and g
that th: ] acting :fﬁﬂzeng Conditions that q system
¥ two mut?{an aic SUm, ¢ gl;,zzn: may pe mn GQ'MZ-EL'b."I:?W»
Zero, erpend; oWed p '
5, dicylgy, direction‘i:??’ts of the forces ;n
e may be separately
& Doj SYstem o g
de } 10 thejy 1 Pl’ 12 02 i
o s pla I B ape L Breeeeeenn ach &
Ulbang o 2 &b ¢ 1Y wo perpendicula®

i P
Wit of ¢ 810aius, i 92
h 0, " the syqr ) anglﬁh 0% %8:--.. be the angles
0 - Now, B peing the

tie 6

resuly,, N O algehyys e a ;

Tespe aﬁua in g, 2Curreng a;xc Sum g négle which if make?
Cliyg] bme Oreey g he resolyed parts of

1rect; e
W I‘Bsolv;lnzuglto that of th;_
ong OX and O

be i
Al Y zZerg being zn €Quilibriym, B=0
O difforen, . ‘elce Y0, each of ¥ X and
IR » the cohdib'o E‘ Xﬁ
lons X =
< T -
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and SY=0 are necessary for equilibrium of the given
system.
S X=0 apd S¥=0, then B= J(£X)*+(3¥)*

Again, if 3
=0, and so the force system is in equilibrium. Thus the

conditions are sufficient.

Thus, the two necessary and sufficient analytical condi-
tions of equilibrium of the given system of concurrent
coplanar forces are .

SX =3P, cos a; =0 and >Y=XP, sin a;=0.
3:8.  Illustrative Examples.

Ex.1. Three forces P, @ B acting along 04, OB, 0C are in

equilibrium. If O be the circum-cenire of the triangle ABC, prove that

S D e Q =. L
I ST D
2 bﬁ Gg c‘} a'ﬂ cﬂaﬂ a,’z b'ﬂ a'}b'.\

b c
where a, b, ¢ are the lengths of the sides BC, CA and 4B. [ C. U. 19881

O being the circum-centre of the triangle 4BC, £ BOC at the
centre =27 BAC at the circumference=24, and similarly /. COA=2B

and /£ 40B=2C.
A

2 ©

Now since the forces P, @, R along 04, OB, OC are in equilibrium
>

by Lami's theorem,

) (0 AR B F =
sin BOC sin CO4 sin AOB
P Q R

i ST 04 sin 2B sin 2C
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,_-P_..,,_.—__»_,_,_. R \
2sindcos 4 2sin B 08 B 9 gin C cos C
Now, in the triangle 4RC,

or,

8in 4_sin B_sin ¢ b*+c?—g?
P gl e ' and cos 4= LT ~ efe.

Hence, from abova

— o R
-——,‘-—__A___.__.-———-_’___J_E_______.
ﬂ.(b +c1|_.a=) b(cﬂ ﬂ."'"b’) (ag F52 22

bc CG—‘_ c r_,zb )

Dividing the denominator throughout by abe, the resulf follows.
Exi2 8804 body of mass 10 bs. g Suspended by two strings, 7 and
24 inches long, their other ends being fastenad to the extremities of a rod
of length 25 inches, If the rod be 50 held that the body hangs immediately
below its middis Doint, find the tensions of the strings. [ U. P. 1943 ]

4B is the rod of length 25 inches,
lengths 7 ang 94 inches by which the we
0, where CO is given to he veriical, O bej

O4 and OB the strings ":
ight (10 Ibs.) is suspended &
ng the mid-point of 4B

Agein, since 25°=724940 1qonically, 7O

8et AB%=402+B0? ang g0 £ A0B=1 rt. L
o Thus, 0C=34p~ 12% inches,

Now, if 7, ang T2 be the required tension®
along 04 and OB, since the tHres forosais Tt
T, and the Vertical weight of 10 1bs. acting at

O are in equilibrium, the triangle ODC, “’ho?a
sides are evidently paralle] to the forces, 1
& triangle of foreg anq it sides will accordingly

be proportionaj to the magnitudes of the forces.
Thus,
' ST 10
10 1bs. DR ODE o it e Dat 10 ]
SR RODRIOGAEE s
Hence, 7

1=2% 1bg, wt, and 7', =93 Ibs. Wt
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: Alternatively, t .
by Lami’s theorem in this case,

l 10
T Tt 105

10 MR 10
i TéoB=éE%cﬂt=siu 408" °" sin CBO sin CA0 sin 90
Bln

T, 10
or, ‘7—1=‘2—£'—T’ eto.
25 25

ide fi l a string
Ex. 3. A smooth ring of weight W can sl'%d: fre;l}i c:;:;gés it
a ) d points.
i i attached to two fixe iz e
e fa;i mia “;:is side with a jorce P. Find P, if m;he:;zu‘;hgazw
. a . . a,l,
Jwr,f:?ntapgrt'ions of the string are inclined at angles
posiiaon,
S i me through-
Let T be the tension of the string, whu?h must be sa
out the string, as it passes through a smooth dnn:,;.)m SRR 1
i is 1 ilibrium under 5 .
the ring at O is in equi s
tansifrtx“;" 7 on the two sides along O4 and OB, the weig
]

downyards, and the horizontal force P.

Resolving horizontally and vertically for equi?ibrium_, we get
P+T sin ¢—T sin =0, or, P=T (sin 6 —sin ¢)
d W-1T cos p—T cos §=0, or, W=T (cos ¢+ cos 8).
T P _sinf@—sing_2sin § (0—¢) cos 3 (6 +¢)
o ﬁ'f":cos 0+ cos ¢=2 cos § (0+¢) cos & (6 —g)
‘ =tan § (0—¢).
. P=W tan § (6 —¢).
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Examples on Chapter III

1. Three forces of magnitudes 3, 5 and 7 lbs. wt. acting

on g particle keep it at rest. Find the angle between the
two smaller forces.

I 2. Can a particle be kept at rest by three forces WhOS(‘f
magnitudes are proportional to () 4, 5, 9; (i) 4, 7, 9
(iii) 4, 15,9 2

3. (i) Examine whet
are in the
kept in eq

her three forces whose magnitudes
proportion 3 : 9 : 1, acting on a particle, can be
uilibrium under any circumstances, [ C. U. 1943 ]

(ii) A Light string suspended from a fixed point O has
attached to it three equal masses, one at its lowest pomf (¢
and the other two at A and B, 4 being above B. If T

T2, T's be the tensions of the varts 04, AB, BC, show thab
Tl:Tg:T3=3:2:l.

4. (i) Three equal forces
brium ; show that th
and conversely.

acking at & point are in equili-
ey are equally inclined to one anothers

(ii) Show that three co
cannob produce equilibrium
directions, if the sum of two

neurrent forces lying in a plan®
for any arrangement of their
of them be less than the third:

8. Three forces actin
they are Proportional to

(@)l il b () NB+1, J3-1, /6

find their inclinations to each other,

g at a point are in equilibrium ; if

6. Find a point within (i) & triangle. (3 1atersl
such that the forces repr angle, (ii) a quadri :

. esented by the lines joining i
to the angular points may he in equilibrium.

B, F are the middle point®
Dectively. Show that the force®
epresented by the straight 111165'
equilibrium, [ B.H.U. 1940
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i to
' 8. Three forces in equilibrium act ?ezp?;d?g:il:.rgane
the sides of a triangle through any pomn e s
within the triangle. Show that the foirces ar
’ i ] e.
to the corresponding sides of the triang

jangle ABC,

9. If P be any point in the plane ofsf(lineestgsélfgga, o

and ‘D, B, F' the middle points ofﬁ_gs e e DT,
respectively, show that the forces AL, DL

PF are in equilibrium.

i int O,

iven directions at & poin
gl(:’i?:cle is drawn through_OI{:o
: es in 4, B, C respectively,
tional to the sides of the

10. Three forcgs ach 11;1
and are in equilibrium.
cut the lines of action of the fc:;]c:
Prove that the forces are Prorl
triangle ABC.

11. 04, OB, OC are t
in one plane, and they are nO]E gl Fore
straight line passing lthroug h that
Dectively along these lines, suc

: ines of equal length
hree Stmllgilnﬁ %;EleeZa(:ne side of any
es P, @, B act res-

P B G A S
area OBC area 0CA ar

show that P, @, B are in equilibrium.

I
: IA IB, IC, Wh?re

, B acting along S uilibrium ;
i tho incesuirs of fho tangie 4DC. 0te I e

show that P : @ : B=cos 4 : cos 25+

ong 04, OB, 00, where O

13. Forces P, @, B acting al o ABC, are in equili-

iS the ocircum-centre of the triangl
brium ; gshow that R
= g a3y
AT eT =) B Far b)) ol

a =

3 ABC, and
14. O is the oiroum-centre of the friangle

; from A4, B, C
pendwul&rs )
L, M, N are the feet of the Der Tf forces acting along
Hy M, D osite sides. B3
Sajpeggvegé :r]'le iilh;ee(;)Illjiliibrium. Sh% that they are propo
tional to the sides of the triangle I .
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15. Forces X, Y act along the sideg 4B, AD respectively
of a cyelic quadrilateral 4BCD. If they are balanced by
& force Z which acts along the diagonal 0A from C to 4,
show that X ; ¥ - 4=CD:CB: BD.

16. A transve

rsal cuts the lines of action of three forces
P, Q, B which act at the

point 0, and are in equilibrium,

at the pointg 4, B, C; sh

ow that (with a convention
regarding sign)
AEVE SR O
OA.BC 0B.CA 0C.AB

17. If forces represented in magnitude, direction and
sense by (m — ») 0P, (n—1) 00Q, (1=m) OR e such that they
are in equilibrium, prove that P,

@, E are collinear.
18. Tt four forees acting

. along the sides of g quadri-
lateral are in equilibrium, proye that the quadrilateral is
& plane one, 3

19._(i) It one of the twe intersecting forces he given in
magnitude and direction, anq the other hag itg line of action
only B1ven, Prove thaf the Jeagt foree which will produce
equilibrium ig Perpendicular tq the secong force.

() A particle weighin i

: icle 8 101bs. ig gy orted by two
g%gngs aﬁtached_ o it. Tf the direction of 01211; string be ab
thatt?t :E:n:_ertwal, ﬁll:’.,ld the direction of the other in order

1 100 may hg ag Sma]] i s the
magnitude of the tensions in the ¢ 7o shaie i find also

WO strings in thig case.
.20, op, OE, op are

dra, 4 he
Circum-centyg () of the triunglevji%gerpendlculars from &

oy : ubon the sides BC, C4»
D, op osvpthaﬁ the six foreeg febresented y 40, BO, CO,
21

- Forceg gt :
tude- dit‘éctio '0g af g Polnt gre Te

Presented j agni-
where 4BOD ', 3, Sonse by ‘4 2BC, 90D, D, DB
equilibriyp, duare,  Shoy bhat the forces are in

47
RENT FORCES
Ex. 111 ] CONCUE

: sented in magni-
ing at a point are repre A. CA and DB
22, TForces acting 2 ¢, 20D, DA,

; : r 24B, 3BC, forces are
tu]fe &ZGBO(].ID]:?gtfnqu];firilateml. Show thab t‘%lg. U. 1937 ]
where
in equilibrium.

; three
ve six points in a plane, Do AB
y ¥, Z are BIX DORLE A AB,
23. 4, B, C’ﬁi ear. Show that fih%smecquinbrium with
of ‘.thh ik c%r Z respectively Brow t 4. B, C.
?sflng ;; XXT“’Z VX acting respectively ab 4, 5,
GES 2 ! b

tional
itudes are propor
whose magnl jcularly to those
24, Coplanar ioggflspoly gon act_perpt.ac?dlg: all %utwards.
t?dthe Stldtflie(')f ﬂJx:n;cl“ic'zl)dle points, all inwards
8ldes g 1T : T T !

rove that they are in equilibrium

o act on & particle that the
es 8

. that
25. (i) Five equal forc rder are equal ; show

2 g in o
angles between them !‘; 1.)1 ?:nr? i
e forces are in equilibrl given points of &
4 iven forces ach at two oints in the same
(11) Two gl.veturned round thesglgs show that their
bic;dsrt;. if t&eﬂuﬂ:}}f Sy LWO equglpﬁfyft )
e nr ' .
rosultant will pass through e ines of action 04s, O4e,
lines o P, which are in
... Aq, then

“26. Tt g transversal cuts tlii e
045,...04,, of the forces il! A;: o
€quilibrium, at the points Ai,

2_1;_4._22._*....4-.0_%:0_ °

0 ¢ in the form of a rhorf:c:;}sz:;
two

u :il(lgzozie%hgydiagonals S0

C

5 that if
horizontal ; Shogﬁ =3Q°%.

*27. A uniform plane 1{.;1(1)1}19.
One of whose a.ngtles ilnB tl;e G
applied at the centre I

at one side of the rhombubs 1;;1 S
£ and Q be the forces, and P be

i ircular
oth vertical circu
nt]fr;g;rljl the rings hasg tW((i
A third weight 18 a.tta.che'
gs, and the fsystem is
at points distant 30

28. Two light rings slide o
Wire and a thin string passing
Weights tied at its exbremltles.n e
O & point of the string betwee s
In equilibrium with the rings
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*40. A small Bead can slide on a smooth elliptic Wite
being acted on by forces towards the foci which are propor
tlonal bo the corresponding focal distances. Prove that the
only positions of equilibrium are the extremities of the axes:

ANSWERS

1. 60°, 2. (i) Yes. (ii) Yes. (iif) No.
8. (i) Yes, when all

{7
; the thres fo : line, the 108
§%0 being in the samg B o 0l BammakLBe

188, and the first, one opposite.

5, (i) 135°, 135% 90°, (i) 5% 165°, 190°,

6. (i . .
(i) The point of Intersection of the medians,

(if) The mig.ny;
- F S . any
Pair of opposita Sides'Pmllﬁ of tha line joining the middle ]_]Olllts of
19 (i) At i
51bs, we, . ght angles to the first string ; 5 /3 1bs. wh and

28. Ihﬁ wel hl 110 ll)s W t}
g 8 are Equﬂ.] 1 J\!3
3 2 & &

82, i) w 3
N3 on the upper, ang AW (G- A/3) on either of the Jower:

37, i
When th, Inclinatiop 14 30°

CHAPTER IV
PARALLEL FORCES

4°1. In the previous chapters we have considered forces
acting on a particle i.e., forces which pass th_rqugh a point.
We shall now consider forces acting on & rigid body. In
such cases, it is often necessary to find the resultant of two

forces which are parallel.

g i ike when they ach
Two parallel forces are said to be like w
in the same sense and they are said to be unlike when they
act in opposite senses.

4'2. Resultant of two like parallel forces.

i i t points 4, B
Tiet two like parallel forces P, Q) acting a '
respectively of a rigid body be represented by the lines 4X,

BY. Join AB.

=5
Ed

A F

At A g,pply a force of any magniﬁuﬂe F&long AB. { At
B apply an equal and opposite force v along BA. Bince
these two forces balance each other, they will not affect
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b
the required resultant, Let these forces be represented by
4D and BE,

& the
Complete the parallelograms ADLX, BEMY ; Ietgh
diagonals AL, BII be proguced to meet at 0. Throu

: and
draw 00 parallel to AX oy BY to meet 4B in C, 8B
draw HOG paralle] to AB,

Now,

the forces P af A and 0
forces p

J at B are equivalent o the
and Fat 4, ang @ and Fat B, ,

But the forces P ang Fat 4 are equivalent %0 the
cosultant, say R, represented by the diagonal AL. e
168 point of application he fransferred on its line of acti n
b0 0.- Then R, »4 ¢ ¢4n be resolved into wo compone g
forceg, Daralle] tq their origina] directions, one I ﬂ'h.m

o 18 il il gonss 4B, and the other
along C0, ;

Similarly £ @ and 7 o et
: ) ] t B are equiva i
ir rf;sul_tant, say R,, Tepresented hy BA7. TLet its pm:lf
0 &Dphca,txol_l be also transferreq 0 0. Then R, at O BH
e riasolved Infio tvwq component; forces, one 7 along
Paralle] 4, B4, and the other () along co.

P

long gp Are equivalent to fwo forces ’

8 /s a,n_d WO more forces each equal to o

forcey o, OPPOSIte dlt lons 0G anq OF. The ﬁrsob in
Orceg ba,lgna Single force (p + Q) along COU

H €€ one anothey,
en i
Qis g |5 Yesultang p of twe 13 ’ es P aD
R S e e e
Pogiti, T PDiica.bion of P and @
% nsof the poing C througp, which B gots.
® Af40 A 826 sim,
40 AD
A==l 4D
o= (1)
8ain
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BOS DRSS a9
CO .EM @
Dividing (1) by (2) we geb
AC _Q, e (2)
CB P

i i rse rabio
6., C divides the line AB infernally in the inverse
2.8, 1vi
of the forces.

i ai
Note 1. The position of the point C;rqe?m
' W Q.
the common derection of the forces P a.-1 e
Note 2. When P=(Q, C is the mid-point o k

ns unaltered whatever be

forces P, Q (P > Q)
: equal pa}"ﬂ,llel P, L
g el mate DR of o sigid body
Tepresented by the lines 4X, BY. Join 4B.
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At 4 apply a force of lany magnitude ¥ along AB.
At B apply an equal and opposite force F along BA.

Since these two forces halance each other, they will not
affect the resultant. T.et these forces be represented by
AD, BE,

Complete the parallelograms ADL,X, BEMY ; let their
diagonals AT, BM when produced, meet at O. (Since the

given forces are not equal, the diagonals are not parallel,
and hence they always meet.)

Draw OC parallel to AX or BY to meet BA produced
at C, and draw HOG parallel to AR

Now, the forces P at 4 and @ at B are equivalent to
forces P and F ag 4, and Q and F at B.

But the forces P

and 7 at 4 are equivalent to their
resultant, say B, represented by the diagonal AZ. TLet its
point of application be transferred on its line of action to 0.
Then B; at O can he resolved into two component forces
parallel to their original directions, one along O parallel
to and in the sense 4B, and the other P along OC.

Similarly, the forces Q and F at B are equivalent to
their resultant, say Rs, represented by BM. Tet its point
of application he also transferred on its line of action to 0.

hen R; at O can be resolved intio two component forces,

one F along OH, parallel to and in the genge B4, and the
0

other @ along (0,

Thﬁs. the ‘given forces are g uivalent to twaq forces, P
along OC and @ along CO, : i

U an ~U, and two more forces, each equal
to I acting in the opposite directions QG and OH,

The first two forces are equivalent to g gip
‘ gle force
(P -;hQ) acting along 0C, anq the last two forceg balance one
ano er.

Hence, the resultant B of the two unlike unequal parallel

(ZESFDY s parallel foree (p — Q) acting in

he greater force, through i boide
lication of the forces, EOmE Gy outs]

. : L
of forces is said to constitute a coup
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Position of the point C where B acts.
Since A® 004, AXT are similar,
00 S AX S AXERTES
AC XL 4D F a2
P.AC=F.0C. i
Similarly, since A’ 0CB, MEB are similar,

' 0C_ME_BY_Q,
8. OB EBYDIEE

(2)
Q.CB=F.0C. 2
From (1) and (2), P.AC=Q.CB,
4C_Q,
7 il f the

i inverse rafio o
i, O divides AB externally in the In
. d @ are unlike and equal,
Z?IDALﬂl.EBM. Therefore,
ot meet at any finite

Note. When the parallel forces P
A° ADL, BEM being identically equ“}’; (s :
B e e S
i metric nlike
St:it:'z:‘i)is i]ie;jz;; t:ecf:j. Thus, we see.th;l.t t;::czq;ua:nu 2
orees. cannot, bo compond S il Bmi ‘; body will be equivalent
there is no single force of which the L

; os. Such a pair
ike parallel forc : o
80 the joint effect of two equal and mth;g i Gh&p‘ ¥I]. This cas

f twWo
. the resul(:a—nt o
accordingly is called a case of failure for finding

unlike paralle] forces. r. they always have
. 1lel forces however, 2 this case
In case of two like paralle equal, for in

1 or un :
% single resultant whether they fge Zil;: be parallel, as can DoleSaly
AL and BM [ Fig., Art. 2] will B
Seen,

4’4, Summing up-.

If the parallel forces P and Q
have o resultant R, then

(whether like or unlike)
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(2) R is parallel to P and @ in the sense of the greater
force ;

(é) B=P + Q (algebraic sum of P and Q)
(i43) g= .

1

(iv) Again, from the above ratio, we get

DAMOBGID Qi | BT
BC C4A BC+CA_ 4B

Hence it follows that
equilibrium, one ig equal an
other two, and each is prop
the other two,

if three parallel forces are in
d opposite to the resultant of the
ortional to the distance between

- This point ig usually referred to
as the centre of the parallel forces P gng @, whatever be
their common direction.

4'5. Resultant of a system of parallel forces,

(1) When the forces are all Iike.

_ Let Py, P, LD be a system of like parallel forces.
Fn:st find the resultant R, of P, and Ps. Then R, is
& like paralle] force, and ig equal to p, + Ps.  Next obtain

the resultant Bs of B, and Pg; then By=R,+pP,=
P1+P2+P3,andR : dIn tlhis v?ray

2 18 a like Parallel force.
the fing] resultant B woulg be obtained, which will be a like
Paralle] force and

R=P1+P2+P5+' """

(#) When the forces are 1ot all like,

0 i e (RS the Tesultant Paralle] forceg and
obviously qng: esultants of the two
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is the
: Ry—RBa 18 t
It R, # R,, suppose By > Ri" tlot;]];lznsyszem of forces
requiredlresult:;nt, which is paralle

- a1 11m.
and is equal to their algebraic st

If Ri=R., and their 1i11:s§£o§h1:i3
System is in equilibrium ; bl.l‘le 1
coincident, they form a couple.

< ~tion of the Tes
Note. For the point of application ©

tion are coincident, t}?):
r lines of action are

altant see Art. 10°1.

4'6. Illustrative Examples.

Ex. 1. Two men are carrying @ str‘?;f?;;t
and weighing 160 lbs. One man srijJU:m of 8 ft. from th
one end, and the other man at a distar L
What weight does each man bear ? e

Lot AB be the uniform bar 16 ft. long i
80 that its wt. 160 1bs. acts at G- [be‘c;;-
bar acts at its middle point, see Art. 10'5 1.

uniforn bar 16 ft. long

rom

istance of 8 ft. fron

at a dista Kmenial
0. U. 1945 ]

bo its middle point;
cight of a uniform

Br
L D
A ¢ e _ '
Q
o\ 160 lbs. Eatido=akts
; ¢ the bar at C and D, £0 on their
Let the two men suppor

0
the downward pressur

. 0 1bs.
) eight 16
ts o' the W
componen

be
0d BD=3 ft., and lot P and Qﬂm
sshmlldersf,. Then P, @ are the pars

b 42,
°f the bar acting at . Hence by Ar G=Q.DG, " 46y
P+Q=160 - (1) and PO spec
3 5 7 3_ 1bs, e H
Whenge, P =172, Q=8T+T hts of 727t 1bs- andiR
weig 5 i)
Hence the men bear the weight 311 lbs.
ively, ok of stone of wew men
o se to carry @ 2 J so that oneé of the =
;s EX. 2. Two men have ust the block be Eila-f;'; L% [C. U.1935]
n a ligy ;. How mu e other ¢ -
s;ouz;g it pland 7t 205 1bs, mors than th 4B whre the stone is
bear the weight 2 4 0 the point on - hts which the 6W0
i bLets 4B be the ;}ﬂnl;;’}m > T7,) be the weig
© Placed. Tet W,, Wa

6P=5Q wes (2)
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men at 4 and B have to bear. Then the weight of the stone acting at
C is the resultant of the parallel forces W, W,.

A m® j
Wi 311 Ibs. Wa
Wi+W,=311;

(1)
(2)
(3)

and W, AC=w,.BC. .

Also, it is given Wy —W,=205,

From (1) and (g), W,=258, wW,=s58.
'« from (2), _101,‘:{':}-{72 b8

W, 258
Thus, the stone must be

Placed on the plank at a point dividing it
in the ratio 53 : 258,

Exainples on Chapter IV

1. A horizontal rog 4B which ig 4 {4, long (whose
weight is negligihle) Tests

on two props af its extremities ;

& body of magg g0 Ibs. is suspendeq from a point @ such
:Iﬁai AﬁCgl ft. Show that the Pressure at 4 is three times
at at B. f

[ C. U 1941 ]
3. A heavy uniform rgq rests on

: ; W0 Degs in the same

gl?;lizr?tflstl;;al 111{1;_9, ifog{)t SLE U yths Pressureg on the pegs
®ratio 1: 9, fing the distanceg

B o fha e of the pegs from the

4. A uniform See-saw plank, 16 ft. long, weighs 1 cwt,

59
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. aren Weighing
¢ s when two chil
RN o position of the oS EE S 1045 ]
44 1bs. and 68 lbs. respectively L P.

to
the other, have o
o stronger than ith a light po
. % TWIO 1 ?:ﬁnc;f csnt;lone weighing 300 lbs(;;];’:] ot carry more
e;}nove & block 6 it. - the weaker mfmf <toned to the pole
;‘{3 oss:aml(()anlﬁth l%heré ’musb the stone be &
an Y

: f weight.
50 as just to allow him his full share o [B. E. Allahabad ]

ft., on which is
6. A light horizontal plank of length 8 end, rests

i foot from one B
ta pOlnt 1 oved fro 3
E}la%d it (1-{ '3ﬁ23 1:3&1:. If the load tllig ;faTxk. find by how
Posii?gs O;gil 9{)1;‘3@& at the middle of

is altered.
Much the pressure on each support

. 11el
f two like para a
e resultant of tW of P an
i 2 o o L
an =i/,
are interchanged, show thab 4

. ints
t at given point
8. 7 like parallel forces P and @ achhat the line of
i wo lik

2/@, show if the
of a hody ; if @ be changed ﬁtife 1';&1’3’3% as it would be
Action of the resultant is 3 .
OTces were simply inberchang; at the end of ﬂ{;}ftmz]i;i::i]:;ig
ndie . if the
his shoulder ©  “how does

. 9. A man carries a b:l
1S placed horizontally ove er be ¢
8ween hig hand and hés rsillg;xllie solc 6 16
© Pressure on his shoulde he end of & Bilo the
dle ab 6 What should be e
in order t}.lﬂt : f
s the weight o

10. A man carries a bun lder.
long, which is placed on hm;ﬁ&’ ushol:llde."'

Istance between his hand be three time
Dressure on the shoulder may parhs

® bundle 9 f the resolved 11

11 the algebraie S O T couple), St
e Show fsh&tl | forces, (mot fcill'mr osolved part of
a.n;Ll'mm- oihpr_umlleue is equal to the

ne in their pla :

Tesultang along the same line

ike

0 three equal i

12 () Sh that the resultanb f
* \1) show
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parallel forces acting at the angular points of g triangle
passes through the centroid of the triangle,

(ii) Three equal like parallel forces act at the mid-
points of the sides of

a triangle ; show that their resultant
passes through the centroid of the triangle,

13. Three like parallel forces P, (), B act at the angular
Points of briangle. If their resultant passes through the
cenfroid of the triangle, whatever be the common direction
of the forces, then

P=Q=R,.

14. Thres like parallel forces P,

4, B, C of the triangle ABC, and

tional to @, be. Show that their
the in-centre of the triangle,

15. A force P g
centre of the tri
components of p
sin 2B : sin 20,

@, B act at the vertices
are respectively propor-
resulbant passes through

cts along 40, where O is the circum-
angle ABC. Show that the parallel
‘acking at B ang @ are in the ratio

16. Three 1ike barallel forces p, @, R act at the verbices
o_f the triangle ABQC. It eir resultang basses through the
éircum-centre in g]] cases, whatever he the common direc-
tion of the forces, show that

P ="—Q—4_ ?_‘_\—,_R .
8in 24  gig 2B sin 90

171'1 IAfBO ik ,fm“gle’ 22d O any poing within it ; like
barallel forces g at 4, B, C, whi R
the areas Bog, 004, AOB rasriaich aTe proportiona

resultant acts gt (, respectively. Show that the
18. A ].HJ@ A,B 18 dl‘nded in

es P and @ actin
g Passes throye
€ Interchangeq in posit; W

1on, show thag the;
Pass through the mid-point of 4B, et

ultant of fiwo parallel forpag P
: t 4, B,
When like, gngq 8t D when unlike i?Q : t
i ] that if
Dparalle] foreeg Whosge magnitudes gro equal o bhe:: er':séllii?&nt

g through
If P and
resultant

D
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Ex, IV ] |
t C, D, then A, B will be the
& ) 1

, g of
forces, act simultaneously the two cases

5 t in
Points at which their resultant will ac
like and unlike directions.

P,Q
like parallel forces §
gnitudes of two un RO
(Pzg ngbte],l c;nrgizz;g:s& by the same oit-ten?:ﬁ; I;er opbend,
line of :\ction of the resultant will m

i d parallel
21. P, Q are like parallel forces. If P 1s move

JE
resultant of P,
bo itgelf thr;ugh o distance @, show that the

+ Q).
@ moves through a distance Pa/(P Q)

nd @ acting on

G ; Ile]- {Orces P 11:11 e n, Show

2_2.. If the twi Elhlrll‘g %{LE{; interchaﬂged_;zulljgiﬁowill be

?i;glihl‘;()ds;ittt & application Ofc:%f e

displaced along AB through a distan i 20
J=BE= 98 plip=.0) .

"P"'Q aaap 50! .If two

23 There are two like pa.ra.llel fof':;‘iﬂg heir lines of

that
s lane, show
where in_the B S B+Q).

passes
] rallel forces P, @ i

f two like para by B and @ by S,
thii;' 1’.I.‘he rfaséllg‘d?t“flj]en P is mcgeaiffd g,lso e
he rgslulaf‘;agilztill imsses through U, ¢

. v that
Teplace P, () respectively ; show b v
(Q-R)°,
S= R 5 ‘“P ) Q
ANSWERS

ier child.
the heavier o
; 4 inches, 8 inches. 4. 7% ft. from _
. 6501bs, 3, 4 inches,

5. 4 £t from the weaker man.



MOMENT OF A FORCE

51. Fore :
e es acting .
of translati ng on a particle can :
may Drodult?: eoi?l?(; ; but forces acting upgll;()dauc:iﬁa:dm%tlgn
or of : r & mofion of t i B,
of translation and rotation bothrﬂ:n%lﬁglotgsgr (;f rotation
: of rotation

introducEs the id
I ea of th .
which is defined as follovtgt’fw‘”mg effect or moment of a force

Def. Them
om
ent of a force about a point is the product

of the force and
; the perpendicular di
the line of action of the force ular distance of the point from
Thus, if P b :
dicular ON g ¢ a force, and p the 1
action of th?v;n from a point O upo?nng;kll?Of Lo
i8 P X ON i.e., Pporce’ then the moment of E’he&limi og
] ou

MOMENT OF A FORCE 68

of which is tied ab A.
h when produced
that the lamina

11;\1?1:‘3 B!lf) of a string, one extremity
Da.sse:slt; 16 be pulled in a direction whic
- no;rough 0, it is:common experience o lan
different 1m0\'q, 1f however the force be applied in &
the hog direction, say T4, as in the figure, we call see t':hs.t

vy will turn about O in an anti-clockwise direction.

at B in a direction B, a8
arn aboub 0 in a clockwise
d simulmneously. the

It §

in t’i‘ij‘?d, a force @ be applied
Ireci gure, the lamina will ©
ection, Tt hoth the forces be applie

Irect; 5
Wi cbion of rotation about O due to & d]omt; %ﬁechdoé thgz*:
tude O an ehr s

11 _
debend notk Simp[y on the magnl I
f their lines of action

i
fr on the distances 0L and OM o
perimentally observed thab

om | )
it por PoIb 0. It will be ex

h&n('iol_—f = (.0M, the body will nob turn at all. _On the other
» 16 will rotate anti-clockwise OF clockwise according

ag
I;OL or Q.0 is the greaber. A
8 té],;l; » it is experimentally found tha
: m ency of rotation aboub O due 0 G
agnitoment’ of the force about the point, and nob onbt e
Dois ude of the force only. Zhe moment of @ force abob
Totag; 8, therefore, is @ filting Meastre of the tendency of
of o1 of the body about the point caused by the application

i@ force.

t the magnitude of
a, force depends on

5 A
3. Sign of a Moment.

. Ag :
n g boﬁlenﬁloned above, the moment
Vv renracanta the tendency O

of a force aboub & poinb
{ rotation of the body
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about the point due to the application of the forcga On.lb-
Now, ag already pointed out, on account of the situation
of the point with respect to the line of action of the force,
in some cases, the application of the force may cause the
body to rotate anti-clockwise (as in the case of P along LA)
and in other cases (as in the case of ¢ along BM), the rota-
tion may be clockwise. The moments of the {orces' in the
two cases ahout O are to be regarded as of opposite signs.

Although either direc
Positive, the usual cony
case of anti-clockwise te
i case of clockwise te
negaiive.

tion of rotation may be chosen as
ention is to regard the moment in
ndency of rotation as positive, and
ndency of rotation, the moment is

5'4. Graphical representation of a Moment.

(0]

]
[ S

A

T
N

P B N

B A

Let the force P he represented in magnitude, direction
and line of action by AB. Tet O

length of the perpendiculer ON from (O upon AB or AB
pProduced, Join 04, OB.

. he moment of P about O is
Pp ie, ABx QN =2A04B, hus, the magnitude of the
moment of a force about g POt is represented by twice the
area of the triangle form, ]

e . ed by Joining the point to the
exiremities of the line representing the force.

be any point, and p the’

% 65
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: f
; 3 f moments. I
18 defined ag the unit for the n19&5ulemde?1ﬁ:?t of distance be
€ unit of force be a pound e =D atn sound. Similarly, if
fh [oot, the unit of moment is & fo0ts nd unit of distance
€ unit of force be a gramme weight, at is o centimetre-
® one centimetre, the unit of momen
JTmme.

5'6. Varignon’s Theorem.

wo forces”
The algebraic sum of the moments of t“’: ff their resultant
Dot in thesy plane is equal to the momen

Wout 11,44 point.

* about any

idered.
There are two cases to be conside t
Case (i). When the forces meet at a point.

. | as shOWn
Liet the two forces P and @ act &tya .Esoéen;ﬁ‘e[ls’, and leb
I figypeg (i) and (ii) ] along 4X and AYx
Ohe any point in their plane.

Tig. (i)
Tig. (i)

1 tion of @
e line of ac
iiﬁmtﬁhﬁhe length 4AC may

d on the sam

i Draw 0@ parallel to P to m
o C. Now choose scale Sé)) an
dpl‘es@nt the magnitude of & A
Yepresent P, BCD, and join 4D, dOQ’
, ’ nd Q-
ay dgomblete the Damlléloglsénthe resultant B of L
B. Then AD represen
; Whicl do not form & couple.
5
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Now in either figure, the moments of P, Q and R about

O are represented by 2A04B, 2A04C, and 2A0A4D
respechively.

In fig. (i), where O lies outside the /. BAC, the moments
of P and @ about O are both of the same sign, (positive in
this figure), and their algebraic sum is represented by

2A04AB+2A04C=2 ADAB+2A0AC
=2ACAD+2A04C=2/A0AD"
=moment of L.

In fig. (ii), where O lies within the £ BAC, the moment

of P being positive and that of @ being negative, their
algebraic sum is equal to

2A04B-2A40C=2ADAB-2AA0C

=2ACAD-9AA0C
=9A04D
=moment of R.

Case (ii). When the forces are parallel,

2

O
>
Q
w
>
—
(@)

Tig,. (ii)
Let P, Q be two Iik ‘
point in their pla,u‘elv.0 like parallel forces, and Iet 0 he any

Through 0 gy ] 4 ¢
i B forc&ev: 1&3 11;3 prerpendicular to the lines of

re to meet th i
Daigtlal(::ll‘ggizé RT-:hel?+b5 Ar:-' 42, their resultm?t];n isméhglllilg
P.4C=Q.B0. » ACHIg through € on AR gueh that
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In fig. (i), the algebraic sum of the moments of P and Q
about O is
P.0O4A+ Q.0B
= P(0C - AC)+ Q(0C + CB)
=(P+ Q) 0C—P.AC+Q.CB
=(P+ Q) 0C=R.00
= moment of R about 0. s
In fig. (ii), where O is within 45, the algebraic s
the moments of P and @ about O
= — P.0A+ Q.0B
—P(0C+ A0)+ Q(BC— 00)
—(P+ Q) 0OC—P.AC+ @.BC
—(P+Q) 0oC= - R.0C

moment of B about O g ey
(taking into account its sign as

m of

Il

[

Il

figure)

il uneq]]nl the theorem
Note If th ]‘L]IC[ fOICeS 5 . &
. e pa '

31 by Proved exactly in the same % the algebraic sum of the
e that the 4k A
Cor. 1t easily follows from above gline of action of

omMentg of any gwo forces about any Pol
OIr vosultant is zero, and conversely, _

Momenty of any two coplanar forces (whlc' k)

aboyg any point in their plane is o, their res

that point,

nt on th
if the algebraic sum of the

h are not in equilibrium)
passes through

. t b
5'7. Generalized theorem of Moments

) a rigid body
7 rees acting on
If any number of coplanar fo iy Zaspi

1 0
“We o yesultant, the algebraic Sum

ent Gf their
o L e ) ; wal to the mom
e e w of Varignon's Theorem |

Tesuliang, [ Extensio 1 2
: ting in a plane,
Let Py, P,, Ps,... be the forces acs g

hich the momenlt%s are td&k:}ilé
, an
Urther let the resultant of P1 and Pg be L
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: : : t of
resultant of R and Py be By ; then R is the resultan
Pl: Pﬂl 8.

Simil&rly,

: : and
let the resultant of B, and P4y be Rs
50 on, 6ill the fing] resultant R ig obtained.

ts of

Now, by Art. 56, the algebraic sum-of the mo}}mel?b 0.

Py and P, ‘ahoyt Ois equal to the moment of R, abo
Again, the

algebraic supm of the moments of B, m;? 11;:
e, of 2o 2 s about O ig équal fo the moment taken.
about 0:; “and S0 on, ti]] g]] the forces have been. ls 7
If We denote ¢} iculars from O on the Iﬂﬁ: i
v Lg, P;;,... b}" Pu, 732'.7)3"" :1Cti0n
Perpendicylgy distance from O of the line of ¢
» then we have

3Py = Rd.
Cor. 1. I

orces
¢ follows fropm, aliove that if @ system of coplanar ';oiﬂi
be in eguilibrizm;, the algebraie sum of theiy moments about any
in the Plang ig zero,

1
=0 and
Cor. 2. 1f ¢ lies on thg 1ipe of action of the resultant, d

hence IPp=(, Hence,

ﬂf (t.ﬂy
the algeliraie sum of the moments f et
Mmber of oplanar forces about any poing n the line of action of ¥
Tesultany 18 2079,

1 iF v = RﬁO‘
Cuf-. 3 Again, if IPp=y, then Rd=0; henee olthar d = 0oL
Thus, if the algebrai, &,

tm

] of the Momen
Jorees aboug ANY Poing in

t passes
their plan, be ze10, eithor the resulicls
thraugk the Point, o the .

Jorces are 4, equilibriym,. of
The ahovg line
3 DTOPeTtY €nahleg 'mine the
action pf e resultang of hers determ
determming f

by
es
! & Numpey of coplanar forc F
he pointg through Which the resultant passe
5'7(A), Moment of g force ab
Let p be ¢ iv
b B he 8lven fq

of ﬁhe fOl‘ce P
to the aXeg

out the point (x, ¥)- .
ICe acting along AK and D bect;ion
; Wo pe POInG A o tho line gfp:rﬂ,]e
of co-ordinategeépxe’nglfrfﬂB‘r lines 45, 4

|
J

’*1
‘l
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ich the moment is to
. about which t R
Let D be the o %;;?JBN, DL, Diffperpendicu
be taken. Join ;

to AK, AB, AC respectively. % ;
Let £/ KAB=0 and @
/L DAK=a. (
The components of the

AB, AC_I are
flgr;c?s E,Pa‘;?s % respectively.

' BTSX
The sum of the mm}:le?ﬁ: .
of the components‘ Ct’; 3

force P about the poin

- (1)
in 6.DM
.DL— P sin 6.D]
Tl (:J AD sin (6 +a)— P sin 6.4D cos (6+a)
= P cos 0.

K

in 0
P.AD {sin (6 +a) cos 6 —cos (6 + ) sin 6}
=P.AD sin a
=P.DN
= the moment of the force P about D.

A the
oint s equal to
force about a ihat
the moment of a : N AR
Thﬂ? : vm of the moments of its compon
algebraic st dh

point.

: 1lel to
t the force P para b
components o i WYL
Lzt X"Y 1 tEZs and (h, k) be th? tc%(?vr6121) is
the co«ordma}eﬂ:\gfm_w P about the poin 1
The moment o

e
X(y+ =19~ Y5, =h).

a ; tion of the
: ..., if the line of ac T
e th O 7., i i me zero.
o passes ihrough tho oriin, Ju & besomo o
R p?ﬁ:i?wment of the force P a
this case,

LR (3)
Xy =Yx4.

. 36, apply formula
the Fxamples on Chapter V, for Ex P
Note. In the Fx: o
(2) and for Ex. 37, apply formula (3)
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5°8.
Moment of a force about an axig

So far w
e had confined
b 4 ot
two dimensional cases only e catothe consideration of
3

act in one pla where forces g
same Dlane1 &b%%bazgmtehepb.oiy,is capable ofazﬁl.;?;lgnizdt]fg
e more gene oIt in it. Now ] :
about & fired ling g oeyor % S0lid body plie e Consies
the line of hinges ‘] '&n 4XIs (a' door capable (;f tB O. burning
5 oin{;)e'mg an example). A foree u;‘_nmg about
in L acti
1 of the force pausen jh .5 18 Seen that it the Ifil;:
or else is paralle] ¢ sses through the axig of :
o that axis, the body will n 1? & ro&ahc(:)n,
0f turn. n

A

A
A
Ol Cr | P sin @
5 8
Fig. (i)
the ofher hand, Fig, (ii)

Ao if the Ji ;
ntersect the guis line of action of the force d
: oes not

will ty of rotati
rotati 0 about the axis, r_]? I, or is paralle] ¢ 3

100 In  thig ¢gq he measurq £ 0 16, the body
moment of g 25€ necessitates of the tendency of

rce ahout g, line ag follow: : definition of the

.-u10n perpendi-
Intersecting it
AL to 4B, as in
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hout the line AB is
erpendicular distance
the line AB about

Tig. (i), the moment of the force P a
defined to be P.ON, where ON is the p
between the line of action of P and
which the moment is to be talken.

When P acts in any direction (not necessarily peypendi-
cular to AB) as in Fig. (ii), leb ON be the shortest distance
between AB and the line of action of P. If now P, assumed
to be acting at N on ibs line of action, be resolved into two
perpendicular components, one parallel to AB and the_other
perpendicular to it the moment of P about AB 1is the
product of the resolved part of P perpendicular to AB and
the shortest distance ON between AB and the line of action
of P ; in other words, the moment of P aboub AB in this
case is P sin 6.0N.

Note 1. The moment of P about 4B is zero, if either (i) P is
parallel to AB or else (ii) if the line of action of P intersects 4B.

Note 2. It must be borne in mind that when in the two-dimen-
sional case we spealk of a body in the form of a lamina rotating atout
y rotates about an axis perpendicular to the

a point in its plane, it reall
Moment of a force about a point

plane through the point in question.
in its plane in two-dimensions is therefore nothing but the particular

case of the moment about an axis perpendicular to the plane of the

force through the point.
Note 3. Asin case of Varignon's theorem in two dimensions, we

can show in the general case of a solid body acted on by a system of
forces, that if @ system of forces acting on a body have a resultant, the
algebraic sum of their moments about any line incthe body is equal to
that of their resultant.

Hence, if a system of forces, acling on a body generally keeps it at

rest, the algebraic sum of thewr moments about any lne in the body is

2070,
59. Illustrative Examples.
Ex. 1. Three forces Py @ R act along the sides BC, C4, AB of
a triangle ABC. Their resultant lies in the line joining in-cenire
and centroid of the AABC. Show that
P Q R

alb—0) Blc—a) cla-v)
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0 .
8. Moment of a force about an axis

So far we h
ad confined ourselves to the consideration of

two-di .
mensional ¢
act in one 7l ases only, where force

plane, and the body s are confined %o

same i :
the mphme about some point in ’?D&ble of turning in the
ore general case of a so 16. Now let us consider

ab : :

thou’g a fixed line as an axi ( lid body eapable of turning
¢ line of hinges being un exs door capable of turni t
body at any eing an example) of turning ahout

point in any - A force acting on the

of action of manner. it i
t . er, 16 18 : L
or else is p&rl;ﬁ flome passes through tﬁﬁen t_h:Lb if the line
el to that axis, the hody Svi?f i i?i rotation,
not turn. On

A

B8

Fig. (i)
5 er ha,n(] :
mtersect fhe o if the Jj
. e : ne "
Wil bury arbouﬁlﬁ of rObatio,ff action of ghq
;;:tatlon ; ; € axis. Tha 1or 15 para)]e] ﬁo
oment of 4 for: 6ase ng chSi’gﬂeﬁsute of 1]heo
Wi © abouf g, Jip,, a:f}es the
;_31:1&1‘ fo g linzrchP. actg on g | 01:!.0“,8
¢, When p AT in the bodyﬂdslrj n g
in » bufg

a pl&ne Pe

ig. (ii)

rce does not
Et! the body
lendenc f
) deﬁnltion of Ythoe

mc;{;reicbion perpendi-
ok el nfersecting it,

A to 4B, ag in
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Fig: (i), the moment of the force P about the Iine.AB is
defined to be P.ON, where ON is the perpendicular distance
between the line of action of P and the line AB about
which the moment 18 to be tiaken. ;

When P acts in any direction (not necessarily perpendi-

cular to AB) as in Fig. (ii), let ON be the shortest distance

between AB and the line of action of P. If now P, assumed

to be acking at N on its line of action, be resolved into two
perpendicular components, one parallel to AB and tbe‘other
perpendicular to it, the moment of P %bout AB is the
product of the resolved part of P perpendmular to AB aind
the shortest distance ON between 4B and the line of action
of P ; in other words, the moment of P about 4B in this
cage is P sin 6.0N. :

Note 1. The moment of P about AB is zero, if either (i) P is
arallel to AB or else (ii) if theline of action of P intersects 4B.

Note 2. It must be borne in mind that when in the two-dimen-
sional ease we speak of a body in the form of a lamina rotating atout
ne, it really rotates about an axis porpendicular to the

P

a point in its pla
plane through the point in question. Moment of a force about a poink
in its plane in two-dimensions is therefore nothing but the particular
case of the moment ahout an axis perpendicular to the plane of the
force through the point.

Note 3. Asin case of Varignon's theorem in two dimensions, we
can show in the general case of a solid body acted on by & system of
forces, that if @ system of forces acting on a body have a resultant, the
algebraic swin of {heir moments about any line in-the body is agual to
that of their resultant.

THence, if @ systemn of forces, acling on a body generally leeps it at

rest, the algebraic sunt of their moments about any line in the body i3

2670.

5'9. Illustrative Examples.

Ex.1. Three forees Ps Q, R act along the sides BC, C4, AB of
a triangle ABC. Their resultant lies in the line joining in-centre
and centroid of the AABC. Show that

LR ) oy
alb—c)” blc—a) cla-b)
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: Let T ang G be the in-
In-rading, Thep the

(0]

; o BC, C4, 4B ; then GL=}p,, and

‘o Similarly, Gzr_g 5 1

= ilarly, GBI—;,A.B’ GN=%EA-§'

the algebraic sum

ATy it O points is zero ;

Sl Q7+ Rr=0, e, P+Q+R=g
.GL+Q.GJI+R.GN=0 ; .

P3A-L  0an. ]
(A5 o= 2 1
a 3A b+R.ga.E=0’

1
P= gL &
= @.b TR~ =0,ic, py
2 ' =:8etQ.cat B ap=o, (2

(@ b i
Yesult, Y CTOSS-mult.lplicution; We get the ired
require

Wo posts, ong 5
) It from
end of the oy from one end

latter Post towq
Jor i to wayr

4 boy weighing
rds the corresponding

¥ .
oM the starging DPoin Vhat are reactions

1 arting
:}if’; Find poy far it isf::}n i
¢ posts wh, ; g
the plang ¢ ik 5 furthost fy
t without U 3
psetting

[C. U 1933]

t
AC=5 ¢
and pp Aced upon

the mjg_ . =81t oy, tWo posts ¢

Poing of 4B, e i _“’;_-ftOf 10 1bs, of the Plﬂﬂi D, so that
Let p el 20k acts af

h : (s
€ cannoy - € Position of th ’

Lk gaf : © oy bty
ely Withoyt Upsetts Ween D g B, beyongq Rioh
2 whic
»2nd lot, pp
=a.
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In this position as the plank is on the point of being upset about
D, the contact with the support at C is just broken and the reaction
at C is zero then. Now taking moment about D, we have

60.PD=100.GD, i.., 6G0r=100x2, o =233 ft.

For the position, as already remarked, reaction of the post C is
zoro and reaciion of the point D balancing the resultant of the weights
at @ and P (which are like parallel forces) is equal to

100+60=160 lbs. wt.

Ex. 8. One end of a stout rope of length 20 ft. is fived to a vertial
telegraph post standing on the ground, and a man pulls at the other end
with a given force. Find the point of the post at which the rope is to be

fized in order that the man will have the best chance of over-turning

the post. [C. U. 1944 ]

Let AB be the telegraph post, 4 being the base and C the point to
which the rope CD must be fixed where D is the position of the man

on the ground.

Then CD =20 ft. i
From A draw AM perp. to CD and let /£ ADC=0. Tet F be the
force acting along CD,
The moment of ¥ ahout 4
=FxAM=FxAD sin 0=FxCD cos 0 sin #
=Fx4CD sin 20
=10F.sin 20,

This is greatest when sin 28=1, .., 20=90°, i.e., 6=45°,



i STATICS

Then AC=(CD sin 45°=99x L _
J5=1042 £,
Thus,

the rope is to ho fix d i
S ed at a height of 10

/2 ft. from the

Ex. 4 4 round table of weight W
Ubper ends are attached to its rim so q
Show that o body whose weight
where on the table withoyt zhlc 718

stands on three logs, of which the
8 b form an equilateral triangle.
does not exceed T may be placed any-
I of toppling it over,

[C. U 1943 ]

s if §

When if ig o? :L‘:ﬂs
the flogp and th o
Momen g about prev
}.mve the Breatast
%€, When Placed o B

» 84Y in the Portion®
n;B
ase, turn abouy ¢ ¢BEC, and the

he line B'C, and
ert s Wi
Placed anq ¢, un.‘e.d’ 4" Just loses contact with
s 48, abopy Bce vglght Of the tahle have equal
ning effaqg o il the Weight win clearly

hen Placeq
3 a b s f
the Wid-poing of the arg ;Ertg i zc

at all in this o

int of haip
© Weigh g ov
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Since 4 BC is an equilateral triangle, AGDE (D being the mid-point
of B(Q) is perp. to BC. ILiet X be the weight placed. Then taking
moment about BC, !

X.ED=W.GD. s (1)
Join GC, then from AGCD, GD=GC sin 30°=3GC=3GE,
.'. GD=DE.
from (1), X=W,

i.¢., the greatest value of X when the table just not overturns is .

The same value of X would be obtained when placed in the portion
on the side of AB or AC, opposite to the triangle 4BC.

Hence W is the greatest weight that can be placed anywhere on the
table without toppling it over.

It may be noted that if the weight be placed within the triangle
ABQC, its moment about BC or CA or AB being of the same sign as
that of the weight of the table, there is no chance of the table being
overturned whatever the weight may be.

Examples on Chapter V

1. AB is a diameter of a circle and AC, 4D are chords
ab right angles to one another. Show that the moments of
the forces represented by AC, AD about B are equal.

2. Forces 2, 4, 6, 8, 10 and 12 1bs. wt. act respectively
along the sides 4B, BC, CD etc. in order, of a regular
hexagon each of whose sides is /3 feet. O is the centre of
the hexagon and on AB an equilateral triangle O'AB is
drawn on the side opposite to the hexagon. Find the

algebraic sum of the moments of the forces about O,
A and O'.

3. A uniform beam AB is 16 feet long and weighs
50 1bs ; masses of 20 and 50 lbs. are suspended from A, B
respectively. At what point must the beam be supported
so that it may rest horizontally ?

4. A metre rule of negligible weight carries weights
1, 2, 3,...... 100 gms. attached to marks 1, 2, 3,......100 cm.
Find the point about which it will balance.
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5. Masses of 1 Ib. 2 Ibg., 3 lbs., 4 lbs., and 5 lbs. are
suspended from a uniform horizontal rod AB, 10 ft. long,
weighing 3 Ibs. and supported at itg ends, at distances of

1 foot, 2 feef, 3 feet, 4 feet and 5 feet from 4. Find the
Pressure on the supports.

6. The horizonta] roadw

x ay of a bridge 4B is 86 ft.
long, weighs 5 tons and rests

/ on tWo supports af its ends.

l'm.fs 18 the Pressure on each support when g lorry of
weight 3 tong starting from 4 ig two-thirds of the way
&cross the bridge 9

) gl :
. ety Points on the gig B
;r(f;;m:ﬁﬁ g Sush that BD . DG:CEQ?EAQ-_—CjI'F/‘I%Ef
e a 1 . ’
Tepresenteq by- Agg, r%%lsuglpofaﬁgﬁtmoments of the forces
' 5, O are equg), i

each of the points
9. Three forces p, 9, R

respectively of 2 “triangle, eac

acting gt the ver
eep it in €quilibyiyy,

h perp, 4
Erae i D. to th

tices 4, B, ¢
© Opposite side,

the angleg

1l s ;
all frop, féree forqesgactmg. along the

Orees grg proportioﬁ

g

i mediang 4
D quilibyygy, of a triangle,

1 e 1
al to the lengthg of e I;ne g;:nf;hab the
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A the angular points of
12. TForces P, @, R act from ngula ?
a triangle ABC, perpendicular to the oppo§1te sides. Prove
that if their resultant passes through the circum-centre,

P (b cos C—c cos B)+ Q(c cos A—a cos C)
+ R(a cos B— b cos 4)=0.

; the sides of
3. Forces I.BC, m.CA, n.AB act along .

a {}rianglg ABC taken in order ; shc.mr thn_ﬁ their resultant
passes through the centroid of the triangle if Itm+n=0

14. Three forces act along the sides of a triangle
taken in order. If the sum of two of the forces be equal
in magnitude but opposite in sense to the third for(_:e, then
their resultant passes through the in-centre of the triangle.

15. If four forces, each acting along a side of ga cych:c
quadrilateral, be in equilibrium, show that each force is
proportional to the opposite side.

16. Three forces P, Q, R act in the same sense along
the sides BC, CA, AB of a triangle ABC ; show that if their
resultant passes through

(i) the in-cenire, P+ Q+ R =0 :

(ii) the centroid, P cosec 4+ () cosec B+ B cosec 0=0:
(i1i) the circum-centre, P cos A+ Q@cos B+ R cos 0=0 :
(iv) the ortho-centre, P sec A+ Q sec B+ R sec C=0.

17. TForces P, @, R act along the sides BC, CA, 4B of
the triangle ABC. Tf the line of action of their resultant

passes through the in-centre and the circum-centre of the
triangle, prove that )

12 e Q)

as R

— L _____g__'_‘__,
cos B=cos O cos C— cos 4 cos Ad—cos B

P il Q £ R
Ot (b-c)(b+c—a)_(c—a)(c+a—b)—(E:Yyﬂ&+b—c)-
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[Ex. V

=r18 Three forces P, Q,
the sideg BC, C4, 4B of the
ant passes through

R_ act in the same sensge along
triangle 4ABC. 1t their result-

(i) the ortho-centre and the centroid,

: P AL Q
S0 24 sin (B~ )~ gin 2B sin (@= A)
R

sin 90 si_nrr(_A -B) :
the ortho-centre anq the circum-centre,
i P

(55:5'2)7:03 A

(i)

¢ =" 08 B~ (07 =5%) o5 ¢
5 e
8in 24 sin (B - C) sin 2B—§ink(0 —4)
b R
81n 20 sin (4 — B)’

(iii) the in-centre ang the 07tho-cenre
e < LA Q
€08 4 (cog B — €0s C) cog B (cos 0= cos 4)
A R
hogls, ]

€0s C (cog 4 — cos B)
he Ci'rcum-cent?'e,

(iv) the centroid ang ¢
B P | i~ —— s
SIn 24 sin (B @)~ é_iﬁ—T‘ZHBHé-i% (C-4)~ 5 e
| sSin 90 sinm'
ng ang Weighing 60 Ihs.
the engg. Find
n_J?n Weighing
Without ypgef-
ght
200 lbs, Project g:: (t)f Rk 2. :
T the Side of g qun,y' %?r}% End [ dkie
* What Jeggt weight

Ex, V]
n::usb be placed on the end of the plank so that a man

weighing 150 lbs. may be able to walk to the other end
without the plank tilting over ?
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21. A uniform rod of length 6 ft. and weight 2 lbs. rests
horizontally on two props at its extremities, each of which
will bear a maximum weight of 13 lbs. TFind on what part
of the rod a weight of 16 lbs. can be placed without breaking
either support.

22. A non-uniform rod 16 inches long rests on two

~ pegs 9 inches apart, with its centre midway between them.

The greatest masses that can he suspended in succession
from the two ends without disturbing the equilibrium are
4 lbs. and 5 lbs. respectively. Find the weight of the rod
and the position of the point at which its weight acts.

*23. A uniform plank of length 2z and weight W is
supported horizontally on two verbical props at a distance
b apart. The greatest weight that can be placed at the two

ends in succession without upsetting the planlk are W4 and
W respectively. Show that

,_I'?J:ﬁ +_TZB-._. = _ZZ A

W+ Wl W+ T’Vg a
24. A heavy carriage wheel of weight W and r
is to be dragged over an obstacle of length h, by

force P applied in the centre of the wheel.
P must be slightly greater than

adius 7,
& horizontal
Show that

7 N2 —h2
Ry

25. A man tries to uproot a tree with the help of
& rope of lengbh 30 feet, by fastening one extremity at some
point of the vertical stem and pulling at the other end from
the ground. The least moment about the foot of the tree
necessary o uproot it is 1200 ft.-lbs, Hind the least force
that the man hag to apply.
“26. A smooth bamboo pole just stan
ground, and a horizonta] rope which
1ts top has the wo portions at right an

d.s vertically on the
1S once wrapped af
gles to one another.
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[Ex. V
i i 1ti i it with a rope
le is kept in position by pulling i : !
:ft];:cl?sd atb on;-third the height gf i;l_le pole. lf. this I;L:;vgz
rope be inclined at an angle 45° with the horizon, ¥

that the tension in it must be six times that of the rope
at the top.

27. Tf the moments of two given intersecting forces
about a point in their plane he equal and of tb.e same sense,
prove that the point must he on & cerfain straight line. ]

28. The magnitude of a force and also its moments (o
the same sign) abh

about two given points are given. ~Find its
line of action.

29. TForces are represented in magnitude, direction and
line of action and sense by the

the angular points of i
¢ their sum of moment
zero, show that the tir

30.  Tf three forces representeq in magnitude and dir?ﬂ(;
tion by the bisectors of the angles of a triangle, all acting
from the verbices,

be in equilibrium, the triangle must he
~ equilatera],

he opposite sides. If

the angular points is
iangle is equilatera].

31. The sums of the moments of g g
at & point aboyt two given Points are
Show that their reg

ultant ig Parallel tq
through o fixed poing,

yetem of forces :}cting
equal in magnitude.
a fixed line or passes

32. Of fonr coplanar forceg 1
completely, o Sécond and g th
have 'their lingg of action given, while the fourth has its
magnitude only given, Prove that the line of action of the
fourth force must tigueh g fixed cipe

33,

le. LC U 1934 ]
4BC ig 4 right-ang] d tri
4B being 13, 12 anq S

5 units o ngle, the sideg BC, Cﬁ{a
Unitg EhE o, e
TROments of g foree about 4, 0J.';?’, lgtzﬁel? s tel AT
() 0, 95 ang 14

4 unitg of moment Tespectively ;

N | [C U, 1936 ]

} 740 and 144 Unitg of Moment yag ectively ;
888 the magnityge, direction an ling of action
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. ose equ&l
: isosceles right-angled trmﬁ,il;t?%{ a force
TRt o % 8, 8 and 16 units
sides AB, AC are j B, C are respecblvehd the line of action
al)01].1t b pomtsse : i’ind, the magnitude an
in the same sense ;

of the force.

i me sense,
9, 4, 5 1bs. wt. act, ol 'm {)1;?):: that their
35. Forces 1, 2, ‘unl'e taken in Ol'dgl'ﬁna where it cuts]l
along the sides C‘)fﬁ*eiqto a diagonal ﬂt‘;‘ C. U. 1987
E]izuéfg.: ilcl)iglwf\}lzji011 the first force ac

ints (0, O)v
t the poin Find
a force abou -pounds. Tind
36. The monlent§4 0{__“‘4(; and 249 ﬁﬁgti};‘; components
(1% 0), 1&0’{5) Mr?:egt:c, the axis of @ and
Where the force : axes. y
Parallel to the co-ordinate 2 ht lines at right angles,

G and
O has moments N

-0 sbraig
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*39. A square f g
mid-points of itsesidsél;.le fftaé?]ds ol o icEs Dlaced st the

i e fotal weight of the tab] d
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rcular table of Weight W hag
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s 4. 3
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AAB.C'l) é:’;:;i zls;ti:g.nlong the tangent a4
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ol 19. 13 20. 25 1bs.

29, dle point on gither side.
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cular from 4 on B(C.
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distance g ft,

23 1bs, i, along Y-axig,

39. w.

from tha gpio:
€ origin ; 13 lbs, wt, along p.axis and

CHAPTER VI

COUPLES

6'1. We have seen in Chapter IV that the general
method of finding the resultant of two equal and unlike
parallel forces fails, z.e., there is no single force whose effect
is the same as the joint effect ‘of two equal and unlike
parallel forces. Hence such a pair of forces s}cting upon
a rigid body cannot produce a motion of translation.

Two equal and unlike parallel forces (whose lines of
action are not the same) are said to constitute a couple.

The arm of a couple is the
perpendicular distance between P

the lines of action of the two
forces forming fthe couple.

B e
The moment of a couple is 7 A
the product of either of the forces
Jorming the couple, and the Rl,

perpendicular distance between
their lines of action (i.e. the arm).

A couple, each of whose forces is P and whose arm is
p, as in the above figure, is very often denoted by (P, ).

. The whole effect of a couple acting on a rigid body
18 to produce rotation without imparting to it any motion
of translation.

The moment of a couple is considered positive or negative
according as the couple tends to rotate the body in the anti-
clockwise or clockwise direction.

Examples of a couple are the forces applied to the key of
a clock in winding it up, or the forces applied by the hand
to the handle of a door in opening if.

Couple is called by some writers Torque.
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6°2. Theorem.

The algebraic sum

of the moments of the two forces
Jorming g couple about ar

W point in their plane is a non-zero
constant and equal to the moment of the couple.

Let each of the two forces

0 be any point in their plane,
Perpendicular

forming the couple he P and
Through O draw a line 0AB

0 the lines of action of the forces meeting
them in 4 and B.
P
O e AT n st B
P

The algebraic sum of the momentg of the forces about O
=P.OB—-P.04= P(OB- 04)
=P.AB

onstant (i.e., inde
18 equal tg ¢}

which is ¢
and which SEoeite

f the position of 0)
& moment of §},

e couple,
Note. The Moment of

& couple eap never he z he
| iero, for then th
two forces cancel each ofhep, E '

6°2. (A) 17 the algebrq;e S

ch_)rces acting on g rigid body aboy,
8. constamg (< 0), th

of the moments of any two
L any poing in, their plane
en the {uwg forces form q couple.

: O given forceg - th
Point, for then th : » MOV cannot meet af o
two forgeg about the oo TR

: the moments of the
to hypothesis- at Point Would be Zero’ which iS contr&r}r
ike, o unlike and RV iEist, ba Paralle], ow, if they be
nd the gy, of the.unequ L they Will have g resultant
about ANy voint on +the

85
COUPLES |

i ] rpothesis.
esultant will be zero, which is also contmry)i;?nléy pgor g
}I?lfu EMt‘.lhe two forces cannot meet ab a.mge an& R
us’! sarallel and like and parallel, un g
%.ley )etlhé two forces must be parallel, unlik
Tence
and hence they form a couple.

le. We
i son a body form a coup:

Here three forces aching up el
i ?m‘. tHhit the algebraic sum of the moments of the AR
g Seeth lpoinfs A, B, C is equal and equal to the mo J
each of the v By gt

couple (via. twice the area of the triangle).

6°3. Equilibrium of two couples. i
Theorem. If two couples, whose moments are ag-;;:a_l anda
a . (7 d; ance
osite, act in the same plane upon @ rigid body, they ba
opp ’ 4
¢ another. | _
X Tet (P, p) and (@, g) be the given couples, so that r
: P.p=(.q in magnitude. e
Case I. When the forces forming the couples are not a
ase 1.
parallel.

he couples intersect
f the forces P of one of t

onelé‘zttﬁsio:ces 5 o? the other in 4, and let the other two
forces meet in B.
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NOW, the sum of ¢

acting at B=p),— ¢ he moments ahout 4 of p and @

2=0 by (1).

Similarly, the
8 4B, from 4 to B.

¢ e two fo

0 rces

PDosite fo thoge at B and 82; ie&ge respectively equal and
ho

angle, their th pai

Opposite in se;zz‘{ltants must he equa]j[)&ilg act at the same

cancel each gthey. and ag they gt along 4B n;i;l%n%ufeti'md
: A, they

Since th

N the fo
Paralle] Forces f, ormung the couples qre all
Draw 4 :
o straight 1ip ;
he forces, meeting tﬁeﬁrsz Tl((;)ular £ the lines of action
» U, B, D.
N
Q P
Al....
............ i B
c 0 ............................ D
P
Q
P+Q
Since
We hay Homentg of th
€ Coupleg aTe equg]
e e N magnitude
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i Let the resultant (P+@Q) of the like parallel forces
P at B and Q at C act at O ; then
" P.BO=Q.CO. - (92)

Subtracting (2) from (1),
P(4AB - B0O)=Q(CD - CO),
ie., P.A0=Q.DO.

Thus, the resultant (P+ @) of the like parallel forces
P at A and Q at D also acts at O.

Since these two resultants are equal in _magnitude a.n_d
opposite in directions and act ab the same point, they are in
equilibrium, and hence the two couples balance each other.

6'4. Equivalence of two couples.

As a corollary to the above theorem we get the
following :

Two couples in the same plane whose moments are equal
and of the same sign, are equivalent to one another.

For, by reversing the constituent forces of any couple,
all the forces will be in equilibrium,.

It follows therefore, that a couple acting in any manner
in a plane can be replaced by any other couple in the same
plane, provided the moment of the latter is equal to that
of the former, and of the same sign. It is immaterial what
the direction of the constituent forces of the second couple
may be, or their magnitude, or the arm.

Thus, a couple (P, p) may be replaced by a couple
(F, %{3) in the same plane with ifs constituent forces each
equal to 7, the arm being such that the moment remains
unaltered. Also one force F' may be taken to he acting in
any line and sense, the other at the distance % being

on that side so ag to make the sign of the moment same
as that of (P, p).
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Similarly, coﬁple (P, p)

o may be replaced by g o
( = x) with a giy : iy

en a 7 i
M 2 anywhere in the plane.

65, Couples in parallel Plapeg
The effect of a .
10 a parglle] plan,
magnitude an g

couple 4s not aliered

€ Drovided jtg momes
gn.

of it is transferred
W is unchanged in

Leb AB be
: the :
& straight Jine equ:Im:n‘)f the couple

Paralle] to g, (P, p) and let 0D be

d Parall .
@ plane of the couplg.I i E5, lying in a plane

The BG and 1et 0 Al
D Ois the migqye Doing ofbgoggejerp%%F of intersection.

Ab each of the pointg C

and ) introdupe two equal and
ODposite forces, each

eing equal
HETRl (ot e Rl

» like parallel
i(;rces P af Ap:?];;“%
b ?1 May be replaced

1€1r resultant 2P

acting at O
baralle] ¢ .thﬁél[(;)]ng 9

Again lil
_A8an, like parallel
;iugas P af Bland P
3 thrqa.y be replaced

®Ir resultant 9P

acting g4
Para]le] tooéhe:;mg O}

ese t Bei :

S oty 0 sl oo

0 dirgoy, 7% ono D peting

8€nse ang directionat fAI') and the
or £ af B.
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Thus, the given couple (P, p) with the arm AB ‘is
equivalent to the couple (P, p) of the same moment in
a parallel plane, having its arm OD equal and parallel

to AB.

.Now, the couple (P, p) with arm'CD can be replaced in
its plane by any other couple, provided the 'moment 18
unchanged in magnitude and sign, as 1n Art. 6'4. Hence,
a couple in any plane can be replaced by any other couple
in a parallel plane, provided its moment remains unchanged
in magnitude and sign. ‘

Note. TFrom above it is clear, that the effcct of a couple remains

unaltered so long as its moment remains the same in magnitude and

whatever be the magnitude of its constituent forces, the length

gense,
o of a set of parallel planes in

of its arm, and its position in any on
which it may be supposed to act.
A couple is therefore completely specified if we know (i) the direc-

tion of the set of parallel planes, (ii) the magnitude of its moment,

(iii) the sense in which it acts.
Thess three characteristics of a couple can be aptly represented by
a straight line drawn
(i) perpendicular to the set of parallel planes, to indicate the
direction ;
(ii) of a measured length to indicate the magnitude of the
moment ;
and (iii) in a definite sense, to indicate the sense of the moment.
A line so drawn to represent a couple is called the axis of the
Couple.

6°6. Resultant of coplanar couples. -

Any  number of coplanar couples acting on @ body is
equivalent to a single couple whose moment 28 equal to the
algebraic sum of the moments of the couples. :

Let (P, p), (@, q), (R, 7)... be a number of couples acting
in the same plane upon a body.
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“Note. If the moment of any of the couples, say Ir, be negative,
as in the figure, corresponding component along AX will be negative
i.6., opposite to the sense of P there, and similarly for the component
at B. Hence, the resultant single force along 4X or BY is the algebraic

sum of these component forces

6'7. Resultant of a couple and a force.

A force and a couple in the same plane are equivalent lo
a single force, equal and parallel to the given single force.

Let I be the given force acting at O along 04 and (P, p)
the given couple.

Replace the given couple by another couple having its
forces each equal to F. If = be the length of the arm of

this new couple, its moment =2/ = Pp, the moment of the
original couple.

_Pp.
Hence, r="5

Place the couple such that one of its component forces
I acts at O along the line of action of the given force F hut
in the opposite sense 7.e., acts along OB,
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Now the tw
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“Alternative method.

Q and R acting at 4 and represented by C4 and AB are

The forces :
in magnitude and direction

equivalent to a force acting at 4 represented :
by CB, i.., equivalent to a force P acting at 4 parallel and opposite
: the three forces are equivalent to

in sense to the given force P. Hence, :
twice the area of

a couple of moment Px AN, i.c., BOXAN, d.6.,
AABGO, where AN is the perpendicular from 4 on BC.

6'9. Theorem. If a system of coplanar forces act‘ing
upon a rigid body be represented in magnitude, direction,
sense and line of action bY the sides of a polygon ia.];cfn,
in order, they are equivalent to @ couple whose moment s
represented by twice the area of the polygon.

{ s be completely represented by the. sides
AB,L%tG?hOQD,OIB%, EA of the polygon ABCDE. Join AC

and AD.

Tet us introduce in the body two pairs of equal and

opposite forces represented by AC, CA and 4D, DA aching

along these lines. These do not affect the given system.

Now, the forces represented by the sides {4_8‘ BC,
OA of the AABC, actually acting along these lines, are
equivalent fto a couple of
moment 2AABC.

Similarly, the forces repre-
sented by the sides of Az_iGD
and AADE are respectively
equivalent to couples of mo-

ment 2AACD and oNADE.

) e 1]ree p

are equivalent to @ si‘ngle
couple whose moment 18 equal to 2AAABC+ AACD

+ AADE)=twice the area of the polygon ABCDE.
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6°10, Theorem,
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of the couples, is ultimately equal to the algebraic sum of
the moments of the given forces about 0. The concurrent
forces at O must in this case be in equilibrium for other-
wise they would combine into a single resultant force,
which along with the couple would give us a single force
as our resultant, and not a couple.

Thus, when the given system of forces reduces to a
couple, the algebraic sum of the moments of the forces
about O, which is arbitrary, is always the same, namely,
equal to the moment of the resultant couple.

6°12. Illustrative Examples.

Ex. Four forces are completely represented by the sides AB, BC,
CD, DA of a quadrilateral ABCD :
show that they are equivalent to
a couple, consisting of two equal
Jorces through B and D,

Forces 4B and BC are equi-
valent to a force at B represented
in magnitude, direction and sense
by 4AcC.

Similarly, forces CD and DA
are equivalent to a force at D
represented in magnitude, direc-
tion and sense by CA.

A D

Thus, the four forces are equivalent to two equal, parallel and unlike
forces at B and D and hence they are equivalent to a couple,

Examples on Chapter VI

1. Forces equal to 3, 5,8 and 5 lbs. wt. respectively
act along the sides of a square taken in order ; find their
resultant. [C.U. 1932 ]

2. Show that the forces 3, 8, 7, 11 and 5 lbs. wt. acting
respectively along 4B, BC, CD, DA and AC of rectangle
4BCD are equivalent to a couple, if AB=61{t. and
BC=41% ft., and show that the moment of the couple is
79% ft.-1bs.
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3. Forces of magnitudes 1, 9, 3, 4, 2 ./2 act respectively
along the sides 4B, BC, CD, DA and the diagonal 4AC of
the square ABCD. Show that their resultant is a couple,
and find its moment. [C. T. 1947 ]

4. Horces P, 2P, — P, 9P act along the sides 4B, BOC,
0D, DA of the square ABCD, and a force P A2 acts along
each of BD and (A. Show that the forces reduce to
% couple of moment; 2aP, where a is the side of the square.

5. Uglike parallel forces each equal to 4 lbs. wt. ach
%'J-Ong & Pour of opposite sides of length 2 ft. of a rectangle.
Ind the magnitude of the forces which, acting along the

obher sides of length 6 inches, will form <w: i
in equilibrium, » Will form with thege a syste

6. Two couples with forceg g

& parallelogram g cting along the sides of

r ' L I . I =
forces of the coupl ° 10 equilibrium ; find the ratio of the

€8,

7. TFour forces acti
) . ng along the sides of g parallelogram
are equwalgnt to a couple. _Show that the forées along the
* 1D magnitude ang opposite in

In o tet,
the 0011131&: Vgtloas};edmn PABG, shoy that the resultant of
of triangleg PBO, 1?3?3;’38 ATe representeq by .the areas
¢an be representeq by the areq, ;% Ehg?sgip;ggfﬂf%% momenb
© .

: t fore ;
of action by the giqas o JCPTeSented in mpgn; !
round, gre 3iru h::,e gi?.’is of two triangleg, i'.u]ibeggl lgude and hnz
equal greg, Quilibrium, DProvided 4 Dposite way

| he triangles are of
1. Threg §
act Derpendiculgifgs}t ) thoortional to

€Y are in (9

10. Proye tha

equilibpiy ©8, a

O thoy form, g ooy 0 Show tha

these siq 1 f‘e sides of g triangle '
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12. P and @ are like parallel forces. An unlike parallel
force P+ @ acis in the same plane at perpendicular dist&npes
@, b respectively from the forces and between them. Find
the moment of the resultant couple.

13. Find the resultant of a forece of 7 lbs. wt. and a
couple in the same plane whose arm is 3% ft. and whose
forces are each 4 lbs. wt.

*14. Three parallel forces P, @, R acting at the angular
points of a friangle ABC are in equilibrium when tl_ley are
perpendicular o the side BC. If their lines of action are
turned through a given angle in the same sense, show that
they are equivalent to a couple.

15. D, E, F divide the sides BC, C4, AB respectively
of an equilateral triangle ABC of side a in the ratio 5 : 1.
Three forces each equal to P act at D, H, F perpendicular
to the sides and outwards from the friangle. Show that
they are equivalent to a couple of moment Pa.

[C. U 1943 ]

16. ABCD is a rectangle such that AB=(0D=g and
BC=DA=b. Forces P act along AD and CB and forces
Q) act along 4B and COD. Prove that the perpendicular
distance between the resultant of the forces P, Q) at 4 and
the resultant of the forces P, Q at C is

Pa—Qb
NEZERE

*17. If three forces P, @, R acting at the angular points
of a triangle ABC along the tangents to the circum-circle,
the same way round, are equivalent to a couple, show that

P:@Q:R=sin 24 :sin 2B : sin 2C.

[ Moments about the vertices of the triangle formed by three tangents
are equal. ]

7
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*18. P and @ are two like parallel forces. _If a coulpleé
each of whose forces is F, and whose arm is a, in the plan
of P and (), is combined

with them, show that the resultant
is displaced through g distance

Fa ) 7

P+Q
*19. The constituent forceg of g couple of moment G 9-‘“]:
at 4 and B; if their lines of action are turned throug
& Tight angle, they form g couple of moment H., When
they both act at right angles to 4B, show that they form
& couple of moment

VG,
*20. ABoD and 4'B'0'D’

are any two coplanar parallelo-
Brams. If forgeg gef along A4/, B'B, 0¢’, D'D represented
by these Tespective lengths, ghy that they reduce to
& couple.

=212 Forces Ka, Kb, Ko Darallel to the gides of a triangle
ABC: ach ab Il: IQ: 3 the centl‘es of ﬁhe escribed Circles'

how that they are equivalent o g couple of momenb
2KR(a+p+), Where R ig the radius of the eircumairel.

22, x Ve o i : £
* fritngle 4B, su, gy O the sides BO, 04, 4B o
BX_oy 4z H
7B,

Proye that the 8ystem

CZ ig €quivalent
A s the ares of ¢
*23.

i ‘uf i:j the orthocentyg of th
rotateq tin-o, U act; along 45,

of forceg epresented by 4X, BY,

uple of moment 24, 9/, where
he trianglq, ATl

toa.co

C f the forces are
u Trce
bively, show a}fg}i tﬁe E{?me angle q, ghoy 4, B? 8 respec-
Womeng j¢ EYAYD sinY €¢ome €quivalent,

e
430, % Where i & couplo whos

is the

€ triang] three
BRI H.g ® ABC and

area of the triangle
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:*24. If three forces completelylrepres_?‘rll)te;dmbzv fin}f :]iiee:

f a triangle taken in order, are in equili riu e
2 1 f rcgs acting ab the corners of the triang e
iggaen!; to the circumcircle'the same way round, p
tha,hg the triangle must be equilateral.

ANSWERS

1. A couple of moment 8a, where a is a side of the square.
3. 5a, where g is the side of the square,

5,

6. Proportional to the sides of the parallelogram.

12.
13.

1 1b. wt.

Pa~Qb.
(R faoingivam S frokt e givenioron 7ilbs. twt. /and ab

a distance 2 ft. from it.



CHAPTER VII
REDUCTION OF COPLANAR FORCES

71. Theorem I, Any system of coplanar forces acting
on a 7igid body can be reduced ultimately to either a single
Joree, or q single couple, unless it 18 am equilibrium.

em—m——
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———

““ ——— -
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WO, if they 4Te equal g ek
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line will produce equilibrium. Otherwise, if they are equal
and unlike parallel forees, they form a coul_)le. In case
they do nof form a couple, we can finally combine them into
a single resultant. -

7°2. Theorem II. Any system of coplanar forces acting
on a rigid body can wlitmately be veduced to a single force
acting at any arbitrarily chosen point in the plane, together
with a couple.

" Also, the resolved part in any direction of the single force
obtained above, 1s equal io the algebraic sum of the resolved
parts of the given forces in that divection, and the moment of
the coupie 15 equal to the algebraic sum of the moments of the
given foreces about the chosen point.

Let P, @, R, 8,... be a system of coplanar forces acting

at 4, B, O, D,... ete. of a rigid body, and let O he any
arbitrary point in the plane.

Consider a force P of the system. If we introduce at
0, two equal and opposite forces, each equal and parallel
to P, these tiwo forces, balancing one another, will not affect
the given system. Now the given force P, along with the
equal and unlike parallel force P at O, form & couple whoge
moment is equal to Pp, where P 18 the perpendicular
dstance from O on the line of action of P, and we get in

addition a force P acting at O, which is equal and parallel
(]
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to the original force
the foree Q at B is eq
@ at O in the sa

Pat 4. Exactly in the same manner
uivalent to an equal and parallel force
me sense, together with = couple of
moment Qg, which is equal to the moment of the given
force @ at B about O : and similarly for every force of the
system.

Thus, the given system of forces ig ultimately reduced to
a system of concurrent; forces actin

) Algo, the resolved part of the single resultant in any
direction, ig equal to the algebr

¢ ! alc sum of the resolved parts
in th_e same direction of the consti
the given forceg which

¢ €qual to the algebraje
the given forces ahout 0.

Hence the theorem,

are (mll

Lif‘: tyh: %i;ifémr:e s?flPld make an angle a1 with OX, and
respectively, 80 that Xolv: ?&:cE: aolf afzjc:l aI'}'mE{ A

At 0, infrodueg ;
Xl:

?]1), (-’Bg, yz)a (373, 'U;;),... efic.

P; sin a;.
ing in g DAr of equal ;
e 3 ﬂ.Ill’l es
Dppositlé fc?rtlng m the lipg OX, o d g miroplzomte florc :
COSYI T acting in the TS Ol equal an

O Y R e alforoan,

parts X, ¥: parallel to the axes, i
components X; and ¥; alon

a single couple of moment (2, ¥y — 4, X,).
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bﬂ:lilncing one another, will have no effect on the given
system.

d the equal and
Now, the component force X; at 44, an

unlike parallel force X5 at O, form a couple whose moment
is clearly equal to —w,X,, since its tendency of rotation

Y
P
Ay
"!"1/
X -;‘1““6: o5 #
A4
Ey"

is clockwise. Similarly, the component Y, at 44, and the
equal and unlike force ¥y at O form a cou
Z,Y, as is easily seen. Also there are left
OX and a force ¥, along OY at O,

ple of moment
a force X, along

Thus, the force P at 4, (i.e., 24, y,), having the resolved

8 equivalent to the
g the axes at O, together with

Exactly in the same manner, the force Py at A, can be

replaced by the resolved components X, and Y, along the
axes at O, together with a coupl

and similarly for every force of the system.

e of moment (2, ¥, — 92 X,) ;
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s,
Combining all the components along OX and toll
separately, and combining all the couples, we ultimabely
get the given system of forces reduced to
a component force X=3X(=ZP, cos a,) along 0X,
a component force ¥=3V,(=3P, sin a,) along 0Y,
and a single couple of moment G=3(x1Y,~y1X1).

The two components X = 32X, and Y=37, along 0X

and OY will give rise to a single resultant force B acting
ab O in a direction 6 with OX, where

Ecos 0=X=3X, and R sin 0= Y=3Y,
B= JEX )P +(312)% = JXo+ 7.
Thus, the given system of coplanar forces is reduced to
2 single regul

tant force R at the origin O (which may be

chosen arbitrarily in the plane), together with a single
couple G.

so that

Note 1. The moment of the forco P
being equal to the algebraic sum of the
about the point ig easily seen to be

1 about any point D( k)
moments of its component®

Y, (@, —-n)-x, (y:—1)

by (0.7, ~y, X)) -7, 417, - (1)
.". if -G’ be the algebraic gum of the moments of the system of
forees (i.c., it @ o the moment of the resultant R) about D, then

G'=2($1Y1‘H;X;)—hEY1+kEX.L ae (2)
1.8, G'=G—hY+kX. «s (8)
It thc.a resultant R Passes through D, then @ =g, - hY —kX—G
fO. This shows that (7, 7) any p 2

line oint on the resultant R, lies on the
. e (4)
3 on o the ling of action of
gain, it U=mz+c be ¢y, i
ok € equation
ultant ang R b the Magnitudae cq)f the re:;)él:al}xftl
]
@ ="?’:73:E.1‘?.
WLy B

ine of action of the

e

Lol ()
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2 = o u-pZ
Note | = iv tem of forces reduces to @& co 5]
. f R=0, the given LV ; i .
ich in this case will be the same, whatever PO]!lt is chosen as
01115 ) whic
. |f. G=0, the given Sy ingle 'asulmnﬁ force B
i rstem reduces to a sing
y g la 7 (s)
.f R;ﬁ" G e rce nd sin le COLI[}IB can
= i fo a o
;—0 then ﬂvlSO, the sing ; a‘ :
b i d’ into ,G. S‘f?lﬂl& rcsultant force, same 1n magn tude and
e combine / ¢ " 1)
direction as R at O, but Shlftﬂd m pOSll’:lOI!

R=0, G=0, the system will be in equilibriwn.
If =4, Pgiiand)

4. Equation to the line of action of the resultant.
7'4. E

: ;stem of forces can be

sen that the given sys A e

We& htﬂa"‘z S;i?]ile force R acting at_ the tgrﬁlﬁe?, il i

reduced to S X and SY along the axes, tog PG e
couple G=2T1 L1 ™!

Y
A7
SYA
;9/%
o
Q /EX X

: magnitude and dire_ci':lon
intp > _single hl esigtnzsfi?lllgié EI;QR ab gO Tg get_i its 1;0511;1122,
Gt Eiorc'limtes of any point on ifs IIHE‘: 0 af meé
o v ‘EO :e sum of the moments of the gwex::3 0 o2
o tbe‘ g ];ulbeinﬂ equal to that of the resultan ,mut;s
A pm{ﬁlér ﬁor?’is, the algebraic sum of the rr(xio?fe{?he
o goto. (R0 ents SX along OX, Y along oY, e;n Lot
o thf; 2211)3%?11; the point &, ¥ must also be zero,
coup

set is equivalent to the given system.
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¥ Thus, -yVX s
06, TV — X — & XY+ G=0
=0, i » O, o35V, —ySX, — G=
;Ohy bhe co-ordinates mlijthfe relation which lmuz‘f;ﬁ:l : G_O'
8 resultant, » ¥ ol any point on the line ci? m{,t'mﬁec}
action o

H
ence, the equation ¢, the line

XY-yX=G= 0. Sgction of the resultant is
7-
5. Mustrative Examples

: orces 8, 9
BC, v 2, 4,57
iheerth; D4 of o sQua,re,. Izr::n:: e respectively along the sid.
N8 where ity line of action the magnitude of their 1 Sl; 7 AJZ
meeis AB and 4 resultant an
D,

Y

desemcsnnnn.

4B, but nearer to

Para]le) CD ang e
to ¢ 3 1bs S, Simj t
al alon - W, ilar]
N8 OF anq 11 € some ling z along 4 have ay;ethu resultant of
8I¥e & resyyy, ¢ long 7 ‘.Wh oW, the resulf;:ultant 1 1b, wt.
ich ap nt of 3 1b
along . ! N i e mutun.ny 8. Wb
A Omg Jing +1= 75 Perpendicular
*Speotively, .- Deeting Bz 1bs. wt
t and

he Bl () D ]
of s lef; u
the BQug, ; SUppose, at X and
» and Jeg AX =
=x.

about X to the moment of the resul
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uating the algebraic sum of the moments of the given forces

Then eq
tant, we get
9(a +x)+4a—52=0,

x=2a, %6, AX=24B.

or,
and considering moment about ¥,

Similarly, assuming AY =y,
8y+2a—4y—a)=0,
whence y=6a, .0, AY=064D.
Thus the line of action of the resultant is obtained.
Ex. 2. Forces of magnitude 3, 4,5 6 7,8 act in order along the
sides AB, BC, CD, DE, EF, FA of a reqular hexagon. Find their

resultant completely.

0 be the centre of the regular hexagon. It is known from
des 4B, ED and the diagonal FOC are
Also the angles A0B, BOC, ete.

Let
Geometry that the opposite si
parallel, and cimilarly for other sets.
are each equal to 60°

Now, reducing each force to a parallel force at 0, together with

a couple, we get the given system of forces equivalent to forces 3, 4, 5,
6, 7, 8, along OC, oD, OB, OF, 04, OB respectively together with
a couple of moment p(3+4+5+6+'7+8) =33p, where p is the perpendi-
cular from O on any side of the hexagon. 3

Combining the forces at O in pairs we get the forces 3 along OF,
3 along 04 and 8 along OB. Now 8 along OF and 3 along OB give
9% 8xcos 60°=3 along OA as resultant, Hence, we ultimately get
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& singly resultant g along O
@ single forga and the o
:Elml and paralle] tq 6 alon
rough a distance Z, where
’

4, together wi B
v 1th a couple of mo 3
ouple combing i P ment 33p.

s
onsidering moment about O,

6><:r_—¢331), )

H or, p=21
ence) OM being

r "
Produceqd a4 N, where ON=11 our » the resultant meets O

Thus,

the maon;
are complo gnitude,

directi :
tely obtaineg, o1 and ling of agtion of the resultant

Ex,

3. Ty
by the 1; Tees I, M,

' N act q1
T - ong ¢ .
#ety—1=p, —y+10, y!7= ﬁhe sides of the triangle formed

80 it ig a:
“AXIS ang gt 4 dist 1t is Situated on the y-axis

(the gnx; m of the
B) is rcsolved
. X denoteq by Parts of ty4 forces along OX,
=L Ccos o
iy B e O
(tho gty 10 sum’of ¢ Wl A ()
Y-axig) § he regol
denoteq 1, ved partg of the 1
f Orces along O
Y=1ra
3 8in 45°_ 7, sin 450 1 i
% £ bo the r N3 = 1)
Sultan . (g
AN - vy foraeg, @

Hg) G= 1
Ll—v—z.-..M._! e 2'\/2
2T N2 = N—-L__M
Wiyt
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Bi’ Art. 7°4, the equation of the line of action of the resultant R is
¥ —yX—-G=0.
here the equation of the line of action of the resultant

M-L (L'*‘M‘, NN _2WN2N—-L—M_
(¥5) N2 '

a(M— L) —y(L+M— W2N) —2 N2N+ L+ M=0.

LT
Ex. 4. If a system of coplanar forces reduces to a couple whose
moment is G, and when each force is turned round its point of applica-
v @ right angle, it reduces to a couple H ; prove that when

tion throug _ ;
turned through an angle o, the system 18 equivalent to

each foree is
a couple whose moment is

G cos a+ H sin a.

Let P, acting at the point
Ny (x,» .) at an angle 6, to the
z-axis be any one force of the
i Py system, The components parallel
CEY to the axes are P, cos 8, and
i X1 P, sin 8,, and the algebraic
éy; sum of their moments about

:: 0 is

z,P, sin 8, —y, P, cos 0,.

Hence, since the system
roduces to a couple G, we must havye, 2P, cos §,=0, =P, sin 6,=0,
and G=3(x,P, sin 0, —4,P; cos 0,).
When ecach force is turned through an angle a, the system reduces
to a force component ZP, cos (0,+a)
=cog aZP, cos 8, —sin a=P, sin 8, =0 along O,
a force component =P, sin (6,+a)
=cos a3P, sin 8, +sin a2P, cos 8, =0 along Oy,
and a couple &' =Z={z, P, sin (0,+a) =y, P, cos (8, +a)}
=cos a3(x, P, sin 0, =4, Py cos 6,)

+sin aZ(x, P, cos 6,+9,P, sin 0,).
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In other words, the system in this cas

G'=@ cos a+sin aZ(x, P
- Now, when a=90°

e reduces to a couple
1008 0,4y, P, sin 6,).
» We are given @'= f7,

H=3(z,P, cos 0,+y, P, sin 0,).
Thus, &'=Gcosat sin a,
Examples on Chapter VII
1. Prove that a foree acting in the plane of !;he
triangle 4B can be replaced uniquely by three forces acting
along the sides of the triangle,
2. Sho

W that o system of coplanar forces can be
Teduced to

) » 0ne of which getg through a given
Pomnt, and the other along g giyen straight line ;
(ii) three force

) S acting along ghe sides of a given
rlangle, in the 8ame plane,

3. (i.) If two coplanar Systems of forces have equal
algel;ra.m SUm of momentg ab
Dointg,

oub each of
each ofher,

they are

: three non-collinear
€quivalent tq

(i) A system, of force :
. 8 .P, 3 1 des
of th‘? triang]g 4BC ig equiva.lencg tf jlare Siong Shio s
8 sldes of ¢

ng
he peda] triangle, L Syssfjem X, Y, Z alo |
2X'=Qlcos B+ Bleos g,

The s:;::ho fzfﬁe Momentg of 4 Sysbem of coplanar
e Ehe Sree non-_collinaa.r Dointg in the plane
TOVe that th, System 10 ° (Witho i

: : ub being o u ero).
P18 equivaang ¢, 3 cmgzpl a al to z
Hence ghg th X
: a6 threg g
directioy, Position hy 1, o rooS Tep
n ordey

Y the three rcilted in magnitude,
€quivalent to g couple, TS tflgn%le;ﬁ{ﬁ
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Ex. :

rstem o

. lgebraic sum of “_19 mo.meitrso O;bﬁui} each of
5. The alg not in equilibrium, s o

coplanar fogces d B. Show that the a bgirection et

% 1)01({1&8 Itsn‘:;f the force system in the

resolved part:

cular to 4B 1s zero. ides BC, C4, AB of

P, @, B act along the s e ey
6. ForCBASBG’ I'f I be the magnitude o
the triangle :

B-2PQ cos C.
then 2+ R2—90R cos A—9RP cos

a_ p3 +R*-2Q

F2=P*+Q

7 T'h men 17
f 00]_3]&3]&1' forces (no

mo ts of a SYStGII‘l (o] 1 L ) ’ ;
n (.[ll. -I)G.IJDZI) :bofﬂ: three collinear '_EO(ID?E A Brecarn
i joagon e G’ Gs, G5 ; prove that (with due reg d
their 1)1&]]6 ar 1 2

| C; + 4 = . U. 1939 ]
t t i ) BC Gﬂ.CA Gs-AB 0. [ P

1. =

ing in the plane of the
f a force lying 1n b g ()
& Tﬁ%’(}msli?éﬁs&o B, C ar}e; L, Jflgl,_cl’gs r;;spea Ul o
brRaee i ltant of three p, i
i hforce r:ssgl}nlsee raeist))llllg BC, CA, AB respectively,
in the sam

= : bM : cN.
P:Q:R=al: i
{7 of forces acts in the_plane offaérill :q;](.} Iz; :Irlts
i | Afszisdslg units. The algebraic sum o
triangle o 9

i tS are Gl, Gg, Gs.
the three angular points ¢
Ofus Ei;?;e:hng)zla?gnitude of their resultant is
Prove

%
[J(G 2+G°2+Gag—‘G2G3—G3G1_G1G2)1 .
8 1 =

ts of a system of
ic sum of the momen ; ASBRC

*10. The &Igeb;'ﬁ;t three non-collinear jggégzsthat T

coplanar f‘lﬂces B,al'-e L, M, N reSP(ectw-?})%b—ll\‘T)/4Az. where

in their plane a ¢ R*=3a*(L—1 : ea.

lresulta.nt lt?lles :a«gildv:s'lj1 o};ythe triangle 4BC, and A its ar

a, b, ¢ are th

', @, R’ act
es P, @, B and P., Q,
s TW?& Sygcemézloiigrgf a triangle ABC ; prove that
es BC, 04, _
?llnc:e?f :ehs?lﬁ;la.nts will be parallel 1f : B
'~ Q'R) sin 4+(BRP'—R'P) sin | L
W +(PQ' - P'Q)sin 6=0. [ Lucknow, 1
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*12. Three forces each equal to P act along the sides
of & triangle ABC in order. Prove that t]?e resultant B 18
given by B=P (1-8 sin 34 sin 3B sin 30)*
and find the distance of its line
the case when the triangle is equilateral.

*18. Forces l.BC, m.CA, n.4B, where I, m, n are positive,
act along the sides B, C4, 4B respectively of a triangle
ABC, in the senses indicated by the order of the letters.
Show that the line of

action of their resultant divides BC,
CA, AB externally in the rabios mim, n i 1, 12 om.
What happens if l=m=n9

14. 4BOis an o
11b. wt. act

of action from 4. Fxamine

» BC respectively, in

[P. T.1932]

15. The algebraic sum of the moments of a system of

fo?ces about the threa vertices 4, B, 0 of an equilateral

triangle whose sides are 2 ff, long are +10, +20 and — 10

f00t~pqunds. qu the magnitude of the resultant force, and
the points where its line of action intersects 4B and AC.
16. Forces broportional to 1, 9, 3 4 i

' 9, 4 ach along the sides

f{B\; }igé ;1_16). Dp étafipecgvelsf of & square ABCD, the length

i 16es 18 2 ft.  Find t) i i f

action of the resultant, o e yaosend bpdline o

[ Bombay, 1934 ]

4B oo 0 % 3, 4,5, 6 act along

ord;rccﬁ’t}?Dl! ED, BF, Ap In the sengeg indicated by the
© letters. Redyee the system to g force at O and

& couple, ang find the Point in 43 thr

resultant DPasses,

ough which the single
[I.C. 8. 19381

18, 1f g .
6 alongni forces of relative magnifudeg 1,2 8, 4,5 and

i gw ghat 1_Jhe«:’s'slélea of a regulay hEX_ﬂ-gon
ude 6 g 5 Ge i of
ab a distaﬁ:e%%ﬁnl };l : tsez‘tljgng ff’» line paralle) to the force 5
18tance of 5 side from, the c:nzm’?he exagon[.?,l% t}m;z Otél‘i%‘

o] LV 1 S 113
x, V i (Jlj A \| A.R I O CE

3 the sides
: ¢t on a hody along T
‘.'iB. BC, Cgts oné foot long ; t}aen- msE%mdl}’ W0
P, w%m]]; 5 11(;) Ibs. wt. respectively. Xin [P, U. 1950 ]
: , P and § . i
El?é i\'stem reduces to a couple.

i , B, I are
#90. ABC is an equilateral triangle and D

9P
AB. TForces P, 2

i ides BO, 04, g long
o midipomtlgcdci]fe 4B and forces 4P, 5P, 6P act a

3P act along : ;

: resultant.
: tion of the res
; ind the line of ac
FE, BED, DF. Finc

i AB
long the sides )
lbs. wt. act a ts at the
921. Forces 1, 2: 39’,1'2 ABCD and & forcéefqﬁfv:ient to
eoiva i, sgnares (It {ho fve forcss sk
: g ; ir .
centlelof ;ﬂ? thcé, magnitude and direct10 fap e
a couple, 4. 5, 6 1bs. wt. act along o
992, Forces 1, 2'1-,3,1'e.1,1 i,n order, and 2 forc? a: uivalent
nvon. i the several forcles el magni-
centre of the h%mﬁloe .moment of the G%UPCED%TB
i couc%ﬂte;:’leﬁ(ﬁrecﬁiorl of thé force bt f,a ides BC and
e a.n. 0D is a quadrilateral in ‘gé‘c}; %15 s;_DA acting
23. (i) 4B 1. If forces p.4B, @ %o a couple, show
AD are lﬂlg%leép DA are eqm""éent 4
-AB! i P = = )B o
that p=7 and (p—3) AD=('=0) AB, BO, CD, D4 of
;i) Torces act along the S]désana their magnitudes
1 (utluaé)rilﬂﬁefalv s tlk? orfdﬁae sides in which they
a plane : the lengths o le, th
. g times ivalent to a couple, then
are p, ¢, s $ - are equivalen
t if they
act. Prove tha

(n—g) 0B=(r—5) OD, and (g=7) 0C=(s—p) O4.
-

i3l ite i gth.
; de is 2 units in leng
is a square whose sid : CD. DA,
L 24;,3 iB%D;S d act along },féhe sllgiiti?c;nfi,c and BD
ore ' e (2]
: d forces p /2, 4 & T
talken in order, an that if p+q=c—a, and p—g ;
i +c+d.
rgspfe ctc::: la?l:e e%lla?:a.lent to a couple of moment a+b+ ¢
the for

a regular hexagon,

its, — 26 units and 36 units,
oments 6 units, — 26 g
25, A o b point (8, ) and the point (0, e &
aboub th%‘ 9];(110 t};le magnitude and the line of acti
ively. X1 _

{orce.

8
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5 i 0
26. Find the intercepts made on the rectangular axes

?X » OY by the line of action of the resulfant of a force of
units along OP, where the co-ordinates of P are (3, 4) and
& counter-clockwise couple of moment 21 units, '

27. Forces 92

] 41 6, 8, 8 2 3 T
GO DA i N2 act along the sides 4B, BC,

e diagonal BD of g squar i its i

d tk quare of side 2 units in

ﬂ:}_g Z%xse 1n'dlcated by the order of the letters. Taking

~ t'h aslmes of z and 5 respectively, find the magnitude
e resultant force, and the equation of its line of tBaci;ion-

*
28. A system of coplanar forces P, Pq, Pg,... acting at

the points (x4, 7,), (

T Vi) @2, U,), (4, 1,)... ; !
& couple. The components o[ﬂP:)Pn i i yalent 11'0
axes are (X, ¥,), (X2 1 Lg,... parallel to the

o) t q 1
s : 21 La2)... ebc.  Prove that by ¢
th]?o i(g)i:lczsceaﬁz?ri: eot;;?;r respective points of a%ﬂﬁ:ﬁiigg
e on angle, the system can be reduced

*29 Moment
. 8 of the resulty:
f : ant R of g :
ti??:r:g;o::eﬁgreg f?}nbs 0, 4 and B lyﬁgzt?;n t}?xfecl?ll;l;; Hn;lf
s k] 1 and G+.7, -
2.(1)1(? a5 origin the polar co-ordina%ezestffefitlvely. o goioried
Ts, 0.), show that i and B he (7‘11 01)

ol 2
B sin® 0, - 02)= T2, 4 To2_ o2, cos (0, ~0,)
1 Ta™ G
= 7'17’2
i [C. A 1954]
30. The gl s
gebraical sumg
o of th
(SPS‘I;M('] f(%rces about pointg Who:emoment.s of a system of
+ 2) and (2, 3) roferrod g pagprr 00 CO-Ordinates are (1, 0),

reéspectively. Wing thi gular axes, ay G
e e tangent s L Ga, G
rection of the resultant foreq mﬂl?efs ‘I;?bhﬂ»;l}fle which the
, € axis of g,

S i [C. 7. 1956 ]

axes ()

forces g apd 23; "*I g rectangular

magnitude of along the lines op espectively, If

achion, of the resultant anq the éqg:tj{i;d ‘iﬁ’h find the
of the line of

[C. &' 1955 ]
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*82. (i) A plane system of forces is equivalent to a couple
of moment M, and if the forces are turned through a right
angle, about the respective points of application in the same
sense, they are equivalent to a couple N. Prove that when
each force is turned about its point of application through
an angle a in the same sense, the system will be in equili-
brium if tan « = — M/N. [C. H 1949 ]

Show that if the forces be turned through an angle

1%\} » the system is equivalent to a couple of moment M.

2 tan~

(ii) A system of coplanar forces reduces fo a couple
whose moment is G and when each force is furned round
its point of application in the plane of the forces through
a right angle, the system reduces to a couple of moment
G /8. Prove that when each force is turned through 60°
in the same plane, the system is also equivalent to a couple.
Find its moment. [C. H 1962 ]

*88. The moments of a system of coplanar forces aching
in the (z, y)-plane about (0, 0), (a, 0), (0, @) are a TV, 2 W,
3aW respectively. Find the components parallel to the
co-ordinate axes and the line of action of the single foree to
which the system is equivalent. [ C. H. 1960, 0id ]

“34. A system of coplanar forces has the total moments
H, 2H respectively about points whose co-ordinates are
(2a, 0), (0, a), referred to fixed rectangular axes. The total
resolved parts of the forces along the line y =2 vanishes.
Find the points in which the line of action of the resultant
meets the co-ordinate axes. [ C. H. 1961 ]

*35. Forces P, Q, R act along the lines 2=0, ¥y=0 and
@ cos 0+y sin f=p. Find the magnitude of the resultant
and the equation of ifis line of action.

*86. A system of forces acting in the plane of the
rectangular axes Oz, Oy is equivalent to a force (X, ¥) and
a couple G ab the origin. Show that the locus of points
at which the couple constituents of the resultant éystem is;
@, is the straight line 2Y —yX =G - @, [ 0. 7 1963 ]
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*37. M., M .
A iﬂlfléhifz- M3 are the moments of a system of forces,
BRIE B LS TU-Plane about three non-collinear points
bt s[; 2, Y2 ._(-'Ifs. Ys) respectively. If the resultant of
Y8tem 1s a single force at the origin, shew that

M (z,9q —
1(55.,’."]5 wa?jﬁ)'i-Mﬂ(a:a‘yl_mlya)-’-ﬂf:s(xl?jz_x2y1)$0.

Find the magnitude and direction of the resultant.
Jiln [ C. H. 1963 ]

plate ABchEem of forces in the plane of a rectangular
; as moments G,, G,, G4 about the points

4; B, C respecti
th ) ch
resultant ig pectively. Show that the magnitude of the

VG- @) 4By +{(@, - @,)/BC}?]

and find the distan
e mE e AB?B from 4 of the point where its line of

Discuss the case when G, =@, =@
B 8-

SR T s
ant -mom en::rgblzlsystem of coplanar forces have const-
Dlane of the forcés shjwbog}ia{;‘gg fixed points 0, O in the
anoth ol : e result sses thy

s er fixed point and 1ts least value ig ??T't_pg?)}%of,&hlough
40, Tet 4 and B 1 g : i
syst e 6wo points
pie o forcea! Sup.bose that izllnleth:y?tl;z‘;e c;ir]a,ucgg htlga;
o wit > Ci
16 reduces to g force a‘tilé1 taog(;gggle qflmoment Goiend they

T with a couple of moment

midway between 4 and BStem is reduced bo a force at Cs

4'1- The 8,1
ahout points

ge] raic Sllnl ()I mor ]e]lts Oi Q@
)
ﬂ-'na (5 4

whose co-grds
Co-ordinates aye (@1, y,)
1

) system of forces
U4) Teferred tq OX A0V ias
: r

(@, 75), (
2 2y Ya), \Tg, Us
ectangular axes are G

B Y Uy respectively, Show that
1 &Tq Uy G]_ =0.
18w, Ya @G,
1 Ts 9, G,
i Lo

4
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o ANSWERS
12. 2PA[aR.
14. 8 ./3 1bs. wh. in a direction perpendicular to B0, dividing BC
internally in the ratio 1 : 2.
15. 2221 lbs. wt. through the mid.-pt. of 04, intersecting BA
produced 2 ft. from 4.
16. 5 »/2 parallel to AC dividing AD internally in the ratio 2 : 3.

17. Torces at O is 2 /3 perpendicular to BF ; couple is —3p, where
p is the perpendicular distance from O on a side. The final single
resultant passes through the middle point of AB.

19. = —10 lbs. wt., ¢ =060 1bs. wt.

20, Parallel to OB, dividing D4 in the ratio 1: 5.

21, 3 4/2 lbs. wt. along 4C.

22, Eﬂ‘;’s a, where a is a side of the hexagon ; 6 parallel to the

force 2. -

25. 5, in a direction joining the points (0, —2) to (&, 0).

26. 3%, 5. 27. 4,10 ; =+3y=9.

30. (3G,—2G,—G,)(Ga+G;—2G).

3. NJPPHQP+RP+EPR—EQR;
z(5P+4R) - y(5Q—8R)—5R=0.

32. (ii) 2G. 33. (i) 2W, —W; x+2y+a=0.

34. (3a,0) and (0, 3a).

85, WAP?+Q®+R*—2QR sin 0+2RP cos 6},
Pz —Qy+ Rz cos 0+ sin 0—p)=0.

g7, 0Lz, —Mz,)* (.= My) 0= mu_l{M 19la = Mo,
Tollyr —%1Ya ¢ Mlmu—M,xl}
38. GGE‘G— where AB=a ; the magnitude of the resultant vanishes.
1 2
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EQUILIBRIUM OF COPLANAR FORCES
81. ilibri
Equilibrium of three coplanar* forces

Theorem. 77 :
: . three coplang .
be in equilibrium, 1, nar forces acting on a rigid body

Y must either qll thy )
or else all muysg be paralle] to one auotherwee G T

Let the th .
coplanayr forceg r;a

' B acting op

8 rigid hody, be ;

Sl P
Let

meet af o‘and Q

Then

> into
single regy]t &
ince P, 2 ()

» B are

I equilihy;
mus SR

alance the resultant of p and

% @, and thus must be
qual and opposite to i,

acting along the same

line. us R

must pass
through g, Hencep P,
_______ ; @ R all meet at 0.

If p and @ b

g e

I’&;';lrllel (like op unlike),

resultant g a
paralle] for

alﬁ»hcing thecier a:l]d Rl

T regultant, .
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? Note 1. - P and Q can never form a couple in this case, for then
P, Q, R (i.e., a couple and a force) can never be in equilibrium.

Note 2. The above theorem gives a mecessary condition of equili-
brium of three coplanar forces, but nof sufficient. For sufficient condi-
tions, (i) when the three forces meet, they must also satisfy Lami’s
theorem, or the converse of the triangle of forces, (ii) when they are
all parallel, one being equal and opposite to the resultant of the other
two, their algebraic sum must be zero, and the moments of any two
about a point on the third must be equal and opposite.

Note 8.* If three forces acting on a rigid body be in equilibrium,
Uwy maust automatically be coplanar; for in this case the algebraic
sum of their moments about any line in space must be zero. We can
first of all consider lines drawn through any point of P intersecting
@, whereby it will be shown that each of them intersects R, so that
Q and R are coplanar. Then P, balancing tho resultant of Q@ and R,
must be in that plane.

8'2. Illustrative Examples.

Ex.1. A heavy uniform rod of lengih a rests with one end against
a smooth vertical wall, the other end being
tied to a point of the wall by a string of
length 1. Prove that the rod may remain in
equilibrium at an angle 0 to the wall, given by

ln_aﬂ
cos"’B=T‘,—- [C. T. 19411

AB is the rod of length a, BC is the
string of length I, The three forces which
Ikeep the rod in equilibrium are the weight
of the rod acting vertically downwards
through the middle point @, the tension
along the string BC, and the reaction of the
smooth wall at 4 which must be normal to
the wall and therefore horizontal. The three
forees in equilibrium, not being all parallel,
must meet at a point O, as shown in the figure. /

B

*For a note on the method of proof see Appendiz B.
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Now 6 being the inclination to the vertical at which the rod rests,
from the figure,

A0=46G sin 0= 2 6in9, GO=AQ cos 5 @0 0.

&

parallel to AC through the mid-point G of 4B,
CO0=3CB=3}1 ang 4C=2@0=¢ cos ¢,

from the triangle AC0, co? =AG’+AO”,

1.6 (E)2=(acos B}*-i—(a ing)
a5 (B ¢ ine)

Also, @O being

Hence,

or, 1*=4a" cos? 442 8In*0 =847 cos? g+ 42,
12 —a? {
cos%0 = o
da*
Note. Tor

the above equilibrigm Position to be possible, cos?0
must be positive apq nob greater than unity,

Hence, I* > g* and
Therefore, [ > @ but > 94,

Show that the angle 0

the square with g, I W a non-symmetrical

orizonial
W is given by

Position of equilipy

i
5

[ C. U. 1946 ]

n perpendi-
» 80 that &AT=NG=G. PQ is

inclinatioy of the side 4B of
Then

“4P=, cos g, OP=AQ==
Now from the Geometry of the

12158
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i istance of O
1 distance of G from A=the horizontal dista
horizental dis
from 4,

[~

F i 8,
AJ\" cos 0— GI\ sin Q—AI cos .6 OI sin
T a (GOS 0 —sin B)—C (005 g —sin 6),
or,

in 8)=a. 3 = = ives
sich c oot fHc;sssibili)ty, cos 0—sin =0, i.e., tan 0=1, or, 0=3r g
The other p

.84y

gHeleym neuciool pOSitiO':I_"f ;‘::;;;:: l;:];iinatioaa to the horizon at whic;;;
R tha: .niftlﬂ inside and partly ou-tsq':.je-fa ﬁxfzcz smooth
S un_fiform -md m": 7‘8; , d with its rim horisontal, is sin~2(} .J.S). A
B e d, G its middle point. The reaction o
CHE R, th‘e ro,h-_l‘oﬂa the normal AOD passes t".hl:OUBh :hi
R R hf‘“i};e r:ncbiou at C where the rod is 1? conTa;
centre O of. tht? bolw . the normal CD to the rod and the rim. : e
with the rim is a otl,]'gall downwards through G and the {wp reactions
weight of the rod V..er wtheyroﬂ in equilibrium, must meet at a common
&t.Af; :;]d E;tk;eglgiduced meet the bowl at I § Bluedil,
point D.
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Now 40 being along a diameter, and ACD a right angle, the:point

D must be the extremity of the diameter. Hence ARD is also a right
angle and so A7 is horizontal,

Thus 6 being the inclination of the rod to the horizon,
0=/LEAB=/4C0=/ 04cC. [ 04=0C]

T . F
‘ hus, if 4 be the radius of the bowl, and 7 the length of the rod

%0 €08 20= AB= 4G cos 9= é C08 0, or, §= 2800820

But part of the rod being out, 1 4 AC i
4a cos 929 :

cos 0 % 2a cos g, or, 2 cos 20 & cog2p,
<o 2Al-2sin?p) & (1~sin?g)

.

v Bin%g ;.

or,

. 1 1
<. singp = .
N3’
Y& NB).
eights P
and P are attached 4o two strings ACP and
4B is q heavy beam of weight W,

Al and b feet from B ; show that
gle

in other words, @b gin-
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gravity G. These three forces then must meet at a common point C.
The tensions in the strings, supporting the equal weights P, P at the
other ends, are equal. The resultant
of the two equal tensions balancing
the weight along C@, CG must
bisect the angle ACB. Thus,
£ ACG=/ BCGE=90"—a (say).
Then,
W=2P cos (90° —a)=2P sin a,
or, a=sin~?! 7
4 2P
Again, 8 being the required inelination of the rod to the shorizon,
£ CGB = 90°—0. Hence, /. CAG = (90°—8) — (90°—a) = ¢ — @ and
/. CBGE=(90°+0)—(90°— a) = a 0.
Now, AG_AG, GO _sin ACG, sin CBG
' BG& GO~ BG sin CAG sin BCG

__cosa’ _sin(a+0)_sin (a+0)
sin (a — 0) cosa  sin (a —86)
and as AG=a and GB=1 (given),
a _sin (a+0) . a—b_cosasin @
we get, b sin (a—0) "' a+b sinacosd fariiico e

: —tan-1 (32D e (S0 ( LW ]
il (a+bt“n “)“m“ {wbt““ S 121))

Examples on Chapter VIII(a)
( Three forces in equilibrium )

1. A heavy rod is suspended from a point O by two
strings O4 and OB. Show that the plane OAB is vertical.
[C.T. 1925 ]

2. If a uniform heavy rod be supported by a string
fastened at its ends and passing over a smooth peg, show
that it can only rest in a horizontal or vertical position.

3. Show that it is impossible for a heavy rod to rest
in equilibrium with its ends on two smooth planes, one of
which is horizontal and the other inclined to the horizontal
at any angle.
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4. Prove that a uni

form rod cannot rest entirely within
& smooth spherical howl|

» éxceph in a horizontal position.

9. A uniform rod has its lower end fixed to a hinge, and
its other end atbached to g string which is tied to a point

vertically above the hinge ; show that the direction of the
ackion at the hinge bisects the string,

6. A uniform rod ecan tur
and is pulled aside fro
acting at the other

Prove that the rod
vertical.

n freely about one of its ends.
m the vertica] by a horizontal force
end of the rod, equal to half its weight.
will rest ab an inclination of 45° to the

[C. U 1951]

7. 'A_ uniform rod AB ig suspended with its end in

conbach with g, smooth vertical wal] AC by 4 string CH ; if

AB=34B, show that OB wil] e horizontal. [ p. 77, 7928 ]

8. A uniform rod of weight T ang length 21 has one
epd against a smopth verfical w

LAl ¢ all and rests af an inclina-
tlon of 45° with the vertical upon g

. smooth rail parallel to

the walI.‘ Find the distance of the rail from the wall, and

the reactiong, [C. U, 1914 ]
9.

_ equilibrium with one end
Smooth vertjen] Wall, and the ofhey against
at an angle ¢, Prove

. Whigh running perpendicul

; S 125
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. Prove
frc.)m a fixed point by two strings of leﬁ’g%ifgnd b
that the inclination of the r(?‘d to the hor
a2 bl
1J2a®+b%)—1°
Find also the tensions of the strings. e
13. A uniform beam is hinged ab 4, ¢

2 rizontal plane
equilibrium at an angle of 60" to the hor

: to a point C
through A by a string BC which connects B

the direction of
in this plane behind 4. If 4C=4B, find 0.0 194

the reaction at A. h
14. A uniform rod 4B of ‘(‘{E.E?gis
& hinge at 4, and to the en o
Passes over a small smooth .pl; fgeely.
2] (i weight w hanging
Position of equilibrium \
y BC:AC=2w: W.l of weight 40 lbs. ig
a uniform rod ; ing attache
mﬁ'}]ef 1]5];.3 mel?gnggf and it is S‘fpporteghgysi;glleiel as the
: nd to o point ab 278 B the same
? the other end gnthe string being 1D Hi]oﬁ in the string,
an%%:ég};z Orgg e a]’fori sontal. Find the tens

s inge. m i
a1d the action at the hinge ng, is free to turn in
ate o

. lo SRk To
iform rod 4 inches ich is hinged.
- 16 A umfom;houi; its upper end Whils attached a string
Verfical plane abo hes from the hinge ver o pulley
3 boint of the rod 3 inch ar to the rod passe?l_? rium at an
od is in equilib e

ioht P. The rod is P is one-thir
z;ndlsumaorgs 2 ‘tv}iglllntorizontﬂl- 0 thaattthe hinge makes
D?fle of 60 f;of the rod, and the rgacﬁloq [ Allahabad ]
= al:g‘i:e;igfif(g JS) with the hormonﬁf}? . t long and weighs
: i ee S to

::: Wk am AB which 18 R atmchqd‘
4017. A 1.11:11f0‘1n:1f 13;:}';1 about its end .xJ- W Ei.;-izont“l position
1bs. can turn é the beam is kept 1n &beam 1% feet from
5 Yerblca.l vkl Emd to a point of .the above 4. If the
N a.drope &ttﬂ-_chte f the wall vertlc&yg lbs. wt., show that
tenm'] tof a;hpom )g is not to exceed ldhme;nﬁ‘ of the string

es}lfé?glft bove 4 of the point of attac
abo

% ft.
0 the wall must not be less than 1%

so—1
sin

r abouf
¥ can turn frge]y abe
:LTtPi'Jached a string which
at O, vertically ahg\'e A,
Prove that in the
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18. A uniform rod 4B is in equilibrium at an angle a
with the horizontal, with its upper end 4 resting against
& smooth peg, and itg lower end R at

which is_fagten_ed o a point C on the same level as 4, If
the cord is inclined to the horizontal at an angle g, then
tan =29 tan a+ cot q.

19. A uniform roq
- conbach with

2 cot 8=cof B

— cot q.
Also find the reactiong

at the endg of the rod.

[P. U 1933]
21 rests with its lower end
smooth vertieg] wall. Tt ig supported
which is fastened to
at & distance b £ d to a point in the rod

the string to the vertical be 6, ghoyw f;ha};f P R o

bE(EE __bg) \
cosfg=-0 —b7)
a®l (26— 1) [C. U 1940 ]

e d, which, after
.2 Tespectively nt ¢}, }F ulleyga carég weights Wi
: . ow that the

sin~* H‘—-—_W{?— o
R (s 2 S
uniform hg, of ]
sl;rmgs of lengths ; and ;Hgghta g Sispended R
T and o fywe fiy : b i ol EhENRas (o the

0 the same hq

. . e rizontal line at
meet at right angles, ang dilfm“ﬁlons of the e

8trings produced

® Strings, ] T1 and 7, be the tensiong of
T1 QM’ E
2 all 4+
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23. A picture of weight 5 lbs. is hung from a nail by
a cord 5 feet long fastened to two rings 3 feet apart. Find
the tension in the cord.

24. A heavy equilateral triangle hung .upon a smooth
beg by a string, the ends of which are nttmqhed to tv;to of
its angular points, rests with onme of its sides vertical.
Show that the length of the string is twice the altitude of
the triangle.

25. A square of side 2a is placed with its plane vertical
between two smooth pegs which are in the same horizontal
line and at a distance d. Show that it will be in equili-
brium when the inclination of one of its edges to the horizon,
is either

2 a
% ordsint? d),
& 2 3
4 iz d

26. A uniform square lamina of side 2a rests in a vertical
plane on two smooth pegs in a horizontal line. Show that
if the sum of the distances of the pegs from the lowest corner
is equal to @, there is equilibrium.

*27. A beam whose centre of gravity divides i info two
portions @ and b is placed inside a smooth sphere. Show
thaf if 6 be its inclination to the horizon in the position of
equilibrium, and 2a be the angle subtended by the beam af
the centre of the sphere,

b—a
tan 0=7" tan a. [C. U. 1924

[ The centre of gravity of a body is the point af which ifs weight
may be assumed to act. ]

“28. A rod of length I rests wholly inside a fixed smooth
hemispherical bowl of radius @ placed with its axis vertical.
The centre of gravity of the rod divides its length in the
ratio m : n. Show that the inclination of the rod o the
horizon is

1 (n—m)

o 2 J(m+n)2a® — mni®
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! 29.a A‘ ﬁxe:cl smooth hgn&ispherical bowl of radius a is
I age with ifs ax1s verfical, and a uniform rod of length 1
rests with one end inside the bowl, and the other projecting

o = T :
bz::I ?::e 1m.  Prove that the length of the rod outside the

§(Tl = JE+19847)
and hence dedy

in this manner. ¢e the shortest length of a rod that can rest

30. A smooth hemijg

on the ground with SRS o of pading)y is placee

its rim in contact i ical
wall. Ay ¢ with a smooth vertica
all. A hegy uniform roqd ig Placed with one end inside

th %
the 1':1(:?;;:1;::;:{1 Eﬁih"e“ﬁe”-m contact with the wall. If 0 be
- that the length of the rc?él?: 0 at which the rod rests, prove

7 sec B{l ] 7_ﬁ}_

e N1+4 tan2g
placed xéiff“-)f th bow] in the form of g part of a sphere is
iRt aﬂl1 S axis Vel:tlcal, and a rod restg with one end
a be the au(la o otyt Projecting out oyer the rim. If
Vertical a.!cisg :nr?ade by any ragius to the rim with the
radius o th;a Io(we'i, :il&f;r;r}a;ﬁe fWith 0 LI

T o 10y of ¢ 2 J5e
of equilibrium, prove that the Iengtlljifrf?lclle ;']:)d til;e R o

4a 8in g sec 1 (g ~f)
32, ASOl' ) ) i

is placed wi;g f&n? of helg}lt h and Semi-vertical angle a
18 supporteq P 285 against g smooth vertical wall and
& Point in the L Stéi}fg attached o the vertex and to
of the string ig OW that the greatogt possible length

L MU
h 137 tan2q,
[ The centre

of gravi Sl
al @ distance 2th "W of a solig 71

ht cir, . o
Jrom the Vertex, & i cons Sionithe G

: Smoof J
cylinder of Which the c:::tltlar etiow vertical right cireular

nal radius i5 and the internal
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radius is r, two spheres whose radii are @ and b rest, If
the sphere of radius b is upper and if w be its weight,
show that the cylinder will not overturn if its weight
exceeds w (2r—a —b)/R.

ANSWERS

8. 3l .2; Wand WA,
Wa Wb

12, ——

N2 (@ +0%) =1 WB(a+07) =15
13. Afian angle tan-*(Z /3) to the horizon.
15. 20 1bs. wt.; 20 &/B 1bs. wt. at an angle 60° with the horizon.

Wsin a ?Vﬂin__,B_. 2
19, m)l Sma"‘ﬁ) 23. 3‘% 1bs. wt. 29, 2a ,Jg.
8'3. General conditions of Equilibrium of any system

of coplanar forces.

(A) The necessary and sufficient conditions that a system
of coplanar forces acting on a rigid body may be in equili-
brium are that

(i) & (ii) the algebraic sum of the resolved parts of

the forces in any two mutually perpendicular® directions
should be separately zero,

and (iii) the algebraic sum of the moments of the
forces about any point in their plane should also be
Zero.

To prove that the conditions are sufficient :

Let Py, Pg, Pg,-.. be a system of coplanar forces acting
on a rigid body, and O any point in their plane.

By introducing at O two equal and opposite forces each
equal and parallel to P, (which neutralise each other) the
given force P; may be taken as equivalent to an equal and

* or any two different directions in the plane,

9
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parallel force P, at O together with a cou i

_ : v ple. Dealiag
with e&.c]i} of the oth_er forces in a similar manner, and then
rec_ombmmg, thg glven system of forces can be reduced
ultimately to g single resultant force R at O together with

& couple G (See Ayt, 7 y
in any direction, say %)X Moleover, B molyed et d

the resolved parts of the g" 1S equal to the algebraic sum of

the moment; of the couple G i
of the moments of the given for

given forces in any ¢ i )
Y, namely »x éyndvg?) e eioular directions OX and

al » DB separately z i
e B e iy e
Sum of the momentg ) =0 .1 1n addition, the algebraic
nts of the given forceg about O be zero,
svstem is in equilibrigm, G being sero, the force

Thus, the aboye th
: ; Tee conditj i :
Ssi%ge’fﬂ will be in equilibriym, 10%9 e S -tl-le iptoe
cient, ence the conditions are

To prove that the condi
Let the g
glven foreg 8

?g‘fg;e% a.al;ov(t)a, the given %Zﬁiﬁ lij: r

i » together With the i .

St couple @, Tp this ¢

tions are necessary :
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foree can never produce equilibrium. Now the algebraic
sum of the moments of the given forces about O, being
equal to the moment of &, must therefore be zero. Again,
the algebraic sum of the resolved partis of the given forces
in any two perpendicular directions, being equal to the
resolved parts of R in those directions, must be separately
zero, since R is zero here. ‘

Thus, the force system being in equilibrium, the three
above conditions follow as a necessary consequence.

Note. Analytically, if OX and OY be any two perpendicular
directions in the plane of a system of coplanar forces, and =X, =Y, the
algebraic sum of the resolved parts of the given forces along OX and
OY respectively, and G=Z(xY—yX) be the algebraic sum of the
moments of the given forces about O, the conditions of equilibrium are

ZX=0, ZY=0, G==(xY—yX)=0.

(B) Another set of necessary and sufficient conditions of
equilibrium of a given system of coplanar forces is that

(i), (ii) & (iii) the algebraic sum of the moments of
the given forces about any three non-collinear points in
their plane should separately vanish.

Let a given system of coplanar forces acting on a8 rigid
body be such that the algebraic sum of the moments of
the forces about three non-collinear points 4, B, C in their
plane are separately zero.

Now, we know that a given system of coplanar forces
can always be reduced either to a single force, or to g single
couple. In this case, the force system cannot reduce to
a couple, for then the moment of this couple, being equal to
the algebraic sum of the moments of the given forces about
any\point 4, is zero, and so the couple vanishes. Again,
if the force system reduces to a single resultant force R,
its moment about 4, being equal to the algebraic sum of
the moments of the given forces about that point, is ZEro,
Thus the resultant, if it be not zero, must pass through 4.
Similarly, it will pass through B and C. Now, 4, B, ¢
being not in the same straight line, the resultant, which ig
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in a definite direction, cannot pass through all three simul-
taneously. Thus the resultant must vanish. THence the
given system of forces, being neither reducible to a single
resultant, nor to a couple, must he in equilibrium.

Thus the three con_ditions above being given, they are
sufficient to ensure equilibrium of the given system.

L ?tozxversgly,l if the given system be in equilibrium, reduc-
ey lo a 511111'13 e force af any arbitrary point 4 together with
2 113 e, which must both be zero, we can conclude that

e algebraic sum of the moments of the given forces abouf

4 must vanish ; and simila :
o 3 <r1 f . B R
§1ons follow necessarily. v ior Band C. Thus the condi

8'4. Illustrative Examples.

t Ex.‘l. For-ces P, Q, R, S act along the sides 4B, BC, CD, DA of
he cyclic quadrilateral ABCD, taken in order, where A and B are the

extremities of a diameter, I f they are in equilibrium, prove that
R*=P?+Q*+ 82+ 9PQS|R. [C.U.1945]

. 12 Zﬂfl Q acting at B g an angle 180°—B
) 4 and S at D acting at an angle 180° — D= B.

[*.* the quadrilatera] ig cyelic ]

} “H y = .
ence P"i"Q “EPQ cos B 13 +S +2RS cos B (l)
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o
Again, for equilibrium of the whole system, taking moment
about B,
A 4 BC S
R.BC sin C+S.4B sin A=0, or, B AT

[.- 4=180°-C]
Thus, since ACB is a right angle for AB is diameter,

2 OO
(eH B—AB*— B
Now from (i),
P

Pa+Q?+2 %§=R"+S"—23”

7 ¥
4.8+ R*=P3+(Q*+ 8 +2PQS|R.

Ex. 2. A gate 6 feet high and 8 feet wide weights 112 lbs. and is
supported by two hinges, one foot from the bottom and top respectively.
The lower hinge can only exert a horizontal reaction. Find the reactions
at both hinges, if a boy of weight 52 lbs. is sitting on the end of theigate

[C. U.1942 ]

A y B
N/

X Y 52 lbs.

G
—> kL 112 1bs.
X

D 2

Let X, ¥ be the horizontal and vertical components of reaction at
the upper hinge U, and X’ the reaction of the lower hinge I, which is
given to be horizontal only., These reactions at the hinges, together
with the weight of the gate at its centre &, and the weight of the oy at
the end B of the gate, keep it in equilibrium.
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For equilibrium, resolving horizontally and vertically, we get
X' —-X=0, ()9 =0T
Y—-112-59= 0, or, ¥=164 1bs. wt.
s =&;s;:£ tz:lliz;:g moment about the lower hinge, (since UL=6—-2=4 ft.,
43 ance of G from the ling 4D ig 4 ft.)
X4-119.4—50.8= 0, -
~ Whence X=216 1bs. wt,.

Thus total reaction af the upper hinge

= /Xy yi= ~/2167 41642 =271'2 1bs. wt. nearly.
The reaction at the lower hinge =X’

Ex, 3. Aladder of
Ieﬂ?‘ling aﬁ'ﬂ’i?lsﬁ a

=X=216 1bs. wt.

L :;)Et('rht.iii Ws. rests on a smooth horizontal ground

3 7,0. v vertical wall at qn inclination tan-* 2 with

» and to mz; Ji::::-cd Jrom slipping by a string attached at its

T2 1bs. begins ¢o v 101 of the wall and the floor. A boy of weight

30 1bs. wt, ho e ladder. If the string cam bear a tension of
» 0w far along the ladder can the boy rise with safety ?
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-]

Now for equilibrium, resolving horizontally, and taking moment
about 4, we get
R—-T=0, i.6., R=T,

and R.a sin 0 —24- %cos 0—T72.x cos =0,
Qe T 1 Do ol i L
whence, Ty tan @ 6 =7g 2 6-366

Now maximum value of T that the string can bear is 36 lbs. wt.
Hence the greatest possible value of zfa consistent with equilibrium is
38 —3%=4%. or the greatest value of z possible is 3a.

Thus the boy can rise a distance 3 of the ladder with safety.

Ex. 4. A triangle formed of three rods is fived in a horizontal
position, and a homogeneous smooth sphere rests on it ; show that the
reaction of each rod is proportional to its length.

Let D, I, I' be the points where
the sphere touches the rods BC, CA4,
AB. The reactions of the rods on
the sphere being along the normals,
must pass through the centre O of
the sphere.

Let R,, R,, R, be these reactions,
The section of the sphere by the plane
of the triangle is a circle which
touches the sides of the triangle 4 BC
at D, B, I, and is accordingly the
in-circle of the triangle. Its centre T
is at the foot of the perpendicular
from the centre O of the sphere on
the plane; thus OI is vertical, and
along this line the weight of the sphere acts.

0OI 0I O ..
Now, DI=EI=FI, and so DI BI FI which represent the tan-

gents of the angles ODI, OEI, OFI are also equal. Thus DO, EO, FO
are inclined at the same angle (8 say) to the horizon.
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The reactions E,, R,, R, alo ‘

. Ity ng DO, EOQ and i ol |

s T ,-; equilibrium.o and FO, together with the and the rope be inclined at angles 0 and ¢ respectively fo

4 Hence resolving horizon- th 5 i f th is
tall ing horizon e horizon, show that the tension o e rope
¥, the horizontal components of R,, R,, R, which are evidently i

along DI, BT, and FI are in equilibrium, B L 0‘(35 Q_).
m+mn sin (0—¢
where TV is the weight of the ladder.

Thus, by Lami’s theorem,

R'l cos # 12,1 cos @ R o
eyl Lo 0 i
Sin BTF sin FID ‘5;‘1)13‘@ . 4. A heavy rod of weight W is hung from & pomft Ey
Now,  sin BIp=g o two equal strings, one attached to each exfremity o t. e
_ o BIF=sin (180° - 4) =sin 4. ['.* ARIF is oyclic ] rod, A weight w is suspended half-way between the mid-
Similarly, sin FID=sin B « f point and one end of the rod. If 7'y and T2 be the tensions
i in the strings, show that
Thus, R, : B. : B —a: 5 !
2 By=sin 4 :sin B ; sin a, ! Ty _2W+3w,
i.e., th " R Ta 2W+w
"¢+ V1€ reaction of the roq
908 8% Proportlonal to ther lengths 5. A uniform beam of length 2a and weight W restg
E with its ends on two smooth planes inclined at m?gles L?%V
Xamples on and 60° respectively to the horizon. A ring of weight
1. A unjt st VIII(b) ‘ can slide along its length. Find the posifion of the ring
i i aliorm beam w i : the beam rests in a horizontal position.
18 12 ft, long g hingeqd ¢ hose weight is 900 1bs, and which Tl

to the ofher 0 a vertical wa]].

end keepg A string attached - | 6. A square lamina ABCD of weight W is hinged to

& the b : - : ; : .
tg?gwag 9 fegt above i, A w?igﬁsh"“zonfsml and is fixed to | a vertical wall at 4 with its plane vertical. A weight W is
o tﬁ:b. Ind the tension of th of 30-0 lbs. is hung from | suspended from its corner C and it is supported with AC
eam, e string and the thrust horizontal by means of a horizontal string joining B to the
2 [0 on ; wall. Tind the tension of the string and the reaction at
of length :
% Smo ; gth 9] g : the hinge.
the ﬁgg? Eﬂﬁ” wall. - Tgg lovggr ‘:}V:(:[lg[;h WV vosts against 7. A door 7% ft. high is hung from two hinges placed
: 1S smooth g S In contact with . . oor (% 1b. ng 1ir ng
Y a string of length g 0% ang I8 Drevented from 01‘ v a 9 inches from the top and the bottom. If the weight of the
?me tﬁ?&ll RngFuid ﬂoor’ Tt cing it with the junztliggmfl;f door be 36 lbs. wt., and its C. G. is at & distance 2% {t. from
Est;errel;i]r;um?h0E the ladqer gisgzrioi of weight 21 stands ) the line of hinges, show that the total force on each hinge
e bensisn o? ﬁfactiqns 6 the fi‘::ro ei dfrom its lower end, is 29% lbs. wt., it being' assumed that the weight of the dcor
i e string, s of tsh[e ladder, and is supported by each hinge.
a, sm:)ot;ﬁL ladfiel' resting on 4 C.U. 1941 ] 8. A gate is supported by two hinges in such a way
tied to av;(f'tlcal wall ig Dreventgén?“h floor ang against that the action of the upper hinge is entirely horizontal.
Junction of t”;tﬂon 1 with jtg othermn?g slipping by g rope The distance between the hinges is 3 ft., and the weight of
of the ladgey di‘g?f and the vy, Ife }; remity fived at the the gate, 60 Ibs., acts along a Vertical line 3% ff. from the
8 16 in the pati, P ° eentre of gravity line of the hinges. Find the force exerted by each hinge

‘% and the ladder [C.U. 1944 ]

‘-_‘
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9. Forces P, Q,

of & quadrilatera) ABG% § acting along AB, BC; CD, DA

are in equilibrium ; show that
S BRI S
o 4B x QD BCxDy4
. Forces p.
N y & B ach 1
E‘f ‘*: tggréfie éBG and forces P%,IO(S'g ;Eh:ea.i;:de? L
Orces are in 18 bhe centroid of the tyignal © ik
equilibrium, ghow that R
Pp’ Q0'
T —— =y -RR’
1. g 46.80" BG.04* o ip=0-
the tria,ngf:ezgé @ B act along the gides B
By - and forces p’ e !3, CAbeOEO’f
e ci ! g 93 Jpcs ]
rev e senses inﬁicated by
X lorces are in equilibrium,

and BE,’.;. QQ 4 BR

12. Force
BER IDN
of 4 regular hexalgond:ﬁai;

2 P4l P ' P ).
© 10 equilibrium, i o0 et along the sides

o
10 order. Show that they will

Ip-
13. Th, e S -P
5 2.
» BC, ¢p whose weights
C are jointed at B
16ion on two smooth

HATEA
Iength 1 W?]ghb W is
. ' which attacheq
10 8 horizonty) 1'11&]:1*3’S OVer two s © 8n endlegg string of
8- Prove that the c;)th Pegs distant ¢ apart
re

s { i S8Ure on each peg is
TW=gq)
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15. A uniform rod of weight W is supported in equili-
brium by a string of length I, attached to its ends and
passing over a smooth peg. If now a weight W’ be sus- .
pended from one end of the rod, prove that the system

; fs W’
may be placed in equilibrium by sliding a length E(“TV’_-P-T?)

of the string over the peg.

*16. Two uniform rods 4B, AC, each of length 2a, are
smoothly jointed at 4 and rest symmetrically in a vertical
plane on two smooth pegs in the same horizontal level ab
a distance 2¢ apart. Show that they are in equilibrium if
each rod makes with the vertical an angle sin™*%/(z/a).

17. Two equal uniform heavy rods are connected ab
one extremity by a thin string, and the system is placed
symmetrically in a vertical plane with the rods resting on
two smooth pegs in the same horizontal line. If a he the
length of each rod, b the distance between the pegs and
I (< b) is the length of the connecting string, show that in
equilibrium position, the inclination of each rod to the

horizon is
8 )5
et (\/LZ)
! a

*18. A triangular lamina of weight T is supported by
three vertical strings attached to its angular points, so that
the plane of the triangle is horizontal. A particle of weight
T 1is placed on the triangle at its ortho-cenfre. Prove that
if Ty, Ts, Ts be the tensions in the three strings, then

T1 (=5 Tz e Ts 5
1+8cot Beot C 1+3cot Ccot A4 1+38 cot 4 cot B

%19, A circular lamina is hung up from three points
A, B, C on its rim by equal strings attached o a fixed
point. If Ty, T2, T's be the tensions in the strings, then

i ey N T
sin 24 sin 2B sin 2C
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20. A p
| L o :
plane horizon angular Ja :
: £ mina, . A
2! from a fixed poing bl}si :E;I;J?gzdi%tf:zlwhl lf'sﬁz
achec

1fig Corner

. §; show

tional to it Iengﬁh.ﬁba’t the tension of each string is propor
g s

Prove thag
&
Oif-he triangle ig
21
- A sphe
o b plre rests on threg Smooth pegs, which lie i
, . ich lie In

he Same resu

It ig ty :
not horizonta] '8 true even if the plane

.

anof; g i
fher,  Proye that the py 26 distances a, b, ¢ from one

a® (52"5-03_ 2 o

22. Aj %) : b (c®+q2—p2

: light tab] b%) : ¢2 (a® +p2 — ¢®
2 wWeight is place eaztiﬁigi{)n three o b c?).

IEngﬁhs Pressureg
of the to oD bhe lg
23. Obposite sides of thegs s 1131‘01)0rtional BOeS

b ao €qual smoph S
,/» are plg e :

of madins g (< sed within g iy oy o Weieht 7 and
orizontal . oPen at hoth endg :ﬁw&l cylinder

- ! resfing on

eylinder . Prove
%0 $h6 i6 may nop o prgll® 1098t weight of bhe
y 18

Pheres, egg

2 ( s U )
24, “
at 4 WO equal yp;
a SI-‘E!D[gt?h Connecteg Il)fOI‘m ladders of length 7, ¢
a distangs houzont;a,l 1 Orizontg] rope P’Q fﬁ?ﬁgg;’ ted
on

m'up [0} y & :
each laqq , 9b e of the la.(:lder::l anIf Oqfv V:;a]ght W climbs

that ¢ 2b=lengt
he tension of thge Eogit‘he Tope, and 4 PB tgeo weight of
is = =
-E’-@E_th o a, ShOW
®5. 4B, Be, op o T
T he e s are t
horizong fods 4B, ¢ reélbl‘ee ¢qual rodg jo
inclinggien. 108 50 that  poR EW0 smooth penc 46 B and
G i ﬁ]ot s Borigonga] ;" o £8mE
at of - If a be the

Orizop, Prove thay PA
1€ Tenction ot p to the

3t‘mﬂtang._=1
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26. A solid hemisphere of weight W and radius @ is
placed with its curved surface on & smooth horizontal table
and a string of length ! ( < a ) is atbached to a point on
its rim and to a point on the table ; show that the tension

of the string is

8T/ .__a',-fl--- .
W J2al—1?

97. Two smooth balls of the same material of radii a
and b are placed inside & hemispherical bowl of radius R,
prove that the line joining the centres of the halls will be

horizontal, if
5o+
a®—ab+0b®

98. Inside a fixed vertical ring of radius R, there are
placed symmetrically two equal small rings of radius 7, and
a third equal ring is placed symmetrically on them. Prove
that the rings will remain in contact, provided

R < r(1+2J7).

99, Two uniform spheres of equal weight but unequal
b are connected by a cord of length [ atbached to
They rest in contact, the string

Show that the two portions of

radii a,
a point on each surface.

hanging over a smooth peg.
the string make equal angles

atb

-1 Y L T

B at+b+l

with the vertical.

#30. Two smooth spheres of radii a and b, of equal
density, are connected by a light string of length [, the ends
of the string being attached to points on the surface of the
spheres. The string is slung over a smooth fixed peg and
the spheres hang freely in contact with one another. Show
that in the position of equilibrium, the peg divides the

length of the string n the ratio
® (b+1)—a*:a’ (a+1)—d%
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*33.

4BC ig ;
smoothly jointeda: _‘;‘Jmla.bem]

e midd] ! :
and O he t?aep?ggvi of the rod ABe av(;hf of weight w. If D be

e 86 vertex 2
Cand a eqch of 4 aer e briangle, find the action

3k
34, Too rods 04, Op

with O ,
Ppe
the Verticsru)l.rmOSt’ each rog

€an slide op

connected hy light inex-
rd smooth ring of

ring to the 1o ratio of g}, diestsymmetri“ﬁl position of

18 (sec o + Cos ¢) om O of e{aé?]ce from 0 of the third
’ r of the ofher strings

s 8frq
of W'e]ght w::-lt:f :'I‘(:l t?.iﬁﬁa,ched to two
2 and the ggyrip i
g carries

0L wejg]
Inclj 1, W, ght whi
ned af g, 2 AT freq ¢ Slidahmh can slide upon

d B tq th on fy
i i 0 fixed rods
en in equijip e b of the gpp o 'oFtical. Tf
oty o, show gl ek witl:?:feﬂ:iri?cille

cob y . ¢
O R
ci { w
edges, are p] czf]ul& CS, each 5 W+2wl
t ﬁ&tc of ragdiyg P with
i * With smooth
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two . smooth vertical planes, which are inclined at an
angle 20. The discs touch each other in the line bisecting
the angle 20. Show that the radius of the smaller disc
that can be pressed between them without causing them
to separate is p (sec 60— 1). ‘

*37. Tour equal uniform rods jointed together form
a square figure LAMNP and the system is suspended from
the joint L, and kept in the form of a square by a string
connecting L and N. If 7' be the tension of the string,
and T, the sum of-the weights of the four rods, show that
T=31W: and if R be the reaction at either of the joints
B or D, find the magnitude and direction of R.

*38. ABCD is a square board, which is hung flat against
a smooth vertical wall by means of a string 4PB, which is
fastened to the two extremities 4 and B of the upper edge
AB and which passes over a smooth nail at 2. When the
string APB is less than the diagonal AC of the board, show
that there are three positions of equilibrium.

#39. A right circular cone of height % and vertical angle
9a is placed with its vertex in contact with a smooth
vertical wall and its slant side resting against a smooth
horizontal rail fixed parallel to the wall and at a distance C
from it. Show that if in the position of equilibrium, the
axis makes an angle § with the horizon, then

3h=4c sec?(0— a) sec 0.

ANSWERS

1. 6668 lbs. wt. 5 232 ,/265 lbs. Wt
; : R,

9. Tension=reaction of the wall= :/lil?—__a" ;

reaction of the floor=38W.

}q from the end on 30° plane.

87 ; W /I3 making an angle tan—* § with the horizon.

70 1bs. wt., and 10 /85 lbs. wt.
33. 40, "ég' wt: at each of 4 and B ,\/1—3 W

37. R=1W and acts in the horizontal direction.

ORI



CHAPTER IX
FRICTION

9°1. Hitherto we have considered examples of bodies
acted on by forces, which in some cases had been in contact
with other smoot), bodies or surfaces, Such a surface, from
the very definition, can exert a reaction in the normal

direction only, and is inca i i
n only, pable of exerting g -ce in the
tengential direction. A perfectly Aol

1s however an ideal one,

more or less rough.

When a body is in contact - with ¢ rough swurface (or

" ré}:sg }?nh1ili1;stration, let us consider a hpolc resting on
table, which Jio picovablel Bvidently, the reaction of the
the hod s verbically UPWards, balances the wejght of

Y- Now, suppose we appl unle

body by sbri i
. ng ; fo R
extrgmlty of the hool};, lgfstb:rnc;;,:' o ttinhed ation

odv), exers a hori-
i . ~eeps the hook In
Anging weight is, increasedorc?' e, ction, 1 oy U

810 limit, the ot Lo1% Drovided if does mof
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force also diminishes or disappears simultaneously, or
otherwise the body would move in the opposite direction.
The direction of the horizontal pull may be altered and the
experiments repeated. The results in all cases will indicate
that the force of friction is a self-adjusting force, of the
nature of a passive resistance, appearing only when neces-
sary and being always (up to a certain limit) just sufficient
to prevent motion, and in the requisite direction.

Now suppose the external force urging the body to slide
over the rough surface (the tension in the above case)
be gradually increased. A time comes when the urging
force is sufficiently large, and friction is no longer able
to keep the body in equilibrium, and the body begins to
move. There is thus a limit to which friction can rise.
The value of this limiting friction depends on the weight
of the body on the table, (or more generally, on the normal
reaction between the body and the rough surface), as can
be verified by placing different additional weights on the
book, and finding the limiting friction in each case by
increasing the tension and seeing when the body just
begins to move.

All these experiments performed suitably and repeated
under different circumstances ultimately lead to certain
laws satisfied by the force of friction which are given below.
For experiments, the students are referred to any hook on
General Physies.

As we have already mentioned, verfectly smooth bodies
are never to be met with in nature. In fact friction plays
& very important part in our everyday life. If there were no
friction of the ground, walking would have been impossible.
Screws or nails would not stick to wood. Nothing would
rest on any slope, and would slide down, Ladders would
not rest on the ground leaning against a wall. Wheels anqd
carriages would not roll. No heat could be generated without
friction, and our everyday life practically would be upset.

9'2. The laws of Statical Friction.

When a body rests in contact with a rough surface (or
another rough body), and is acted on by forceg urging it
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to slide on the surface, th J
) f i i i
. contact satisfies the follo;iugrffwzi e oy o

Law I. rects
y : I The' direction of the Jorce of friction is always
Dposite to that in which the pownt of :
to slide,

Law II. )
s hi’fe mag_nmade of the force of friction is such
M g suﬂi.czenb to prevent the sliding motion of the
contact, subject to certain mazimum limit

When the force i
motion are suffici ® Acting on the body urging the sliding

contact has the tendency

sliding, th :
follons . 18 satisfied by this limi

nature of roug
ghmess of the maters )
composed, but not on the 3 aterials of which the bodies are

I :
contact. 1ape or extent of the surfaces in

The law of Dynamieal Friction.
When g body in cq
such that it actually
Point of contact ig i
8 1n a directi i
i : ~°Y10n Opposite to that ¢ i i
o » and itg magnitude begyg a e ot
Ween the hodjeg in contaet i i

ntact wi :
o Z:tfh"' rough surface is acted on by forces
© Surface, the force of friction at the

In fact in thig
case the s
called into Maximum amey foti
Play between the bodies ig exerted -'::.tt;zf R
€ point of conf

De'f‘initions.
leiting Equilibrinm an

When ¢ body iy, ¢
Tough body) 4 acted o

act.

9°3.
d Limiting Friction,

ontact witp, a
-
A 0Ugh surface (or another

Y forces 4 s
s ANd Gg iy, SUCh a condition

.
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that it is about to slide on the swrface, the force of friction
at the point of contact having reached a mazimum limit, the
body is said to be in limiting equilibrium, and the force of
friction then called into play is known as limiting friction.

Coefficient of friction.

When a body in contact with amother rough body or
surface is about to slide on it, the comstant ratio which the
limiting friction bears to the mormal reaction between the
two bodies in contact is defined as the coefficient of friction
between the bodies.

Thus, in case of limiting equilibrium of & ho@y on
a rough surface, if # be the limiting friction ab f::he point of
contact, R the normal reaction between the bodies, then

F
R =W on F=uR,
where u is a constant which represents the coefficient of
friction in this case.

Note. The value of u is different for different pairs of bodies in
contact. Kven if one of the pair of bodies in contact has got its rough-

ness altered, say by rubbing or otherwise, the value of x alters.

As far as is known, in no case p has been found to be greater
than unity.

The coefficient of dynamical friction, though very nearly equal to
the coefficient of statical friction, is strictly speaking, between the same
pair of bodies, slightly less than it, for experiments show that the
least tangential force necessary to start into motion a body, resting
on a rough surface, is slightly greater than that required to continue
the motion once started, though the normal pressure between the
Lodies is the same in the two cases.

Angle of friction.

In case of limiting equilibrium of a body on a rough
surface, the angle made by the resultant of the forces of
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limiting friction and the normal reaction (i.e., the resultant
reaction of the roUqh surface) with the normal to the surface
at the point of contgcg 15 defined as the angle of friction.

N ; Thus R being the
normal  reaction, the
limiting frietion 18

F'=uR, where p is the
coefficient of friction, and
their resultant S making
an  angle 2 with the
Dormal, 1 is defined as
the angle of friction.

Now from the figure
16 is clear that

WRHINNTR
tan 7= E,:‘El?:ﬂ_

L may give anothe
friction ag follows :

The angle of friction
s equal to the coefficient

Thus we r definition for the angle of

1S that angle of which the tangent
of friction,.

It may be noteq tha
a rough surface, if ON re

in contact with
of contact, and if 0L

rmal at the point
drawn on either side of
ON, then in the case of
the direction of total
. \resultant  of normal reaction,
according ag the body ismltmg) Wil be along 07, or OM

or the other, 0 the point of sliding one way

In ¢ G
orece of a}sr?ct?inn%-{]:?;é”lm eq&ilibrium of the hody, the
Bormal reaction the g o “E, where R is the
B ? n }_ .
With the normay] ig givei?)g made by the resultant reaction

tan 9= & _ uR
s R & < tapj,
Thus ¢ < ;.
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]

Hence, in any case of equilibrium of the body on. ti‘w
rough surface, the total reaction of the surface must be within
the angle LOM.

] 1 forces
-dingly, if the resultant of the e:_tberna .

acﬁiﬁgcgtll th% Sbody be outside fi)he {mgi&; zfﬁﬁfﬁfg 0?01;:0?;1]22
to LOM, the body can never be in y
tgbal reaction of the surface in the case c%%not}?;m;gnci? EEZ
resultant of the external forces. On th_e 0 21}; a,ié i
resultant of the external fqrces_be within tel S resulf:a.nt;
the force of friction will adjust itself so that 1Ief0mes e
reaction will balance the resultant of the externa

will keep the body in equilibrium.

Cone of Iriction.

When a body is im contact wz’th.a rough surface, a?.z:cl
with the common mnormal at the point of c.ontac.t als amals,
we describe a right circular cone 'zf)hose scm'z-v‘ertzc; : a;;izj
s A=tan"*u, where u is the coefficient of friction, this
15 defined as the cone of friction.

Bvery generator of the
cone of friction, therefore,
makes an angle equallto
the angle of friction with
the normal.

If the body is capable
of sliding in any direction
on the surface, it is clear
that the resultant reaction
of the surface can never
have a direction outside
the cone of fricbipl?.
Accordingly, fl?rd e(l}:_'ll}-

i the body it is _
:;‘;:E;i;lf that the resultant of the external forces on the
body should be within the vertically opposite cone,

>
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94, i
Rolling of a body on a rough surface.

Let a b : :
surface l?e azsi ];?IW}I;% 2 point in contact with a rough
this force system red ; i system of external forces. If
point of contagt, bhenuicf"et;sh?o & single resultant through the
1ot exceeding the angle of fs resultant force makes an angle

tion of the :
normal at the point of contact, the total reaction

of the surf : :
res‘ﬂmﬂfi,raifle ﬁ‘g;llboi]d]usq 1tself to neutralise the above
body will slide, Y will remain at rest ; otherwise the

If howey
ody does Ifcft, :(:fuczﬂfrnal force systom acting on the
Point of contact, fhe tota[,)la- Single resultant through the
3‘dJUS§ment whateve reaction of the surface, by any

r, i
n th cannof keep the body in equilibrium.

= 18 case we can 341
. wa (]
Info a singlg force &cting atl;.e;lﬁl ce the external force system

Wit a cou 1.z e POinb : :
reaction of ILIEEWQC}I does not Vanish_Of l\?g‘?:ugg'tfnogiﬂ;ill
f“jhich will be th rlace can balance the si ,I 5 lto t
With the norma] &e ¢ase when the regnltant 35’. e resu &]I?
the point of o t; :Dg!e greater than the ap loes{r;op ma ;)e
couple wi]] DrOduze wil ave no sliding mit(? 0 fgmt?ui);;]e'
bod Dii:ltt:.m}mg effect on the lggéy L-;vhic]h
ody wi : 0 g,

Y will roll. g 18 the casc:gg{:fﬁr’e ll?ol?Pher words, the

ing.

If on the Oth
Wlth fihe er hand, the Sin 1
of eenfia‘ci::l C;;‘mal Breater than thg € resultant makeg an angle

ill b : € an 1043 1
couple, slide, while the bOdE;?leY;fllfréﬁi;?néigl E;iém;]?:

ody will gither be in
Sechion, ap ang] normal g, the surfy i single resultant
e 90 at ifg Point of inter-

8, or ®xceeding the angle of

FRICTION 151

ffiction. If however, the single resultant does not intersect
the area of contact, the body must topple.

In working out examples where a body with an area
in contact with a rough surface, and acted on by external
forces, has got the equilibrium broken, and if is not known
whether it will begin by rolling or by sliding, it is always
advisable to assume rolling first, and work out the magnitude
of the friction necessary to prevent the sliding motion. If
it is found to exceed the limiting friction, then sliding will
take place before this rolling stage is reached. Otherwise
the body will roll, and the necessary friction, not exceeding
the limiting friction, will come into play to prevent sliding.

9'5. Equilibrium’of a heavy body on a rough inclined

plane under any force.

Liet a heavy body = ‘
of weight W be placed R A ©
on @ rough inclined
plane of inclination «a 0

o :

to the horizon, and be
acted on by a force P at
an angle 0 to the plane.
Let # be the coefficient
of friction.

Case I. Tet the body be just supported, i.e., just on the

point of slipping down.
. If B be the normal reaction of the plane, the friction
in this case, which is limiting, is #R up the plane.

Hence for equilibrium, resolving along and perpendicular
to the plane, '

P cos 0+ uR=W sin a
P gin § + R= W cos a,
whence, eliminating R,
P (cos 68—y sin 6)= W (sin a — 1 cos a).

sin a— i COS a

P=W -
cos 6— u sin 6
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If 2 be the angle of friction, go that p=tan A,
= 70 @ = cos q tan 3 Sin (a —7)
flgEctSr 2 Wcos 0=sin 6 tap 3 cos (0 + 2)
8iving the nece

8821y value

of P in the
weight on th

to support the e plane.

Case I, Let the body

In thig case the limigi
and hence the €quations o

be on the point of

g friction uR ;
I equilibrium g
P cog 0—uR= W sin o
P sin O+R=WCDS a,

Whence, p— W at i cos o

ive

and

i + 7
4= prsin (a +7)
o8 0+ i gip g cos (0 —
Alternatiye methoq,

18 90°~ g 4.gp0

8D
sin (180°=

given direction just

sliding up.

8 down the plane,

2)

TR about to glide
an 18 9

~0~=17, and that
- YOW, for equilibrium
» by Lamig’ theorem,

a+7) Whence p— wsin (a—2),

cos (0+ )
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c f sliding up,
1 the body is on bhe(R?II::eoget, as before
In case Itﬁiew;;gosite side as in fig. (i1),
A being on

2 sin (a +?.)_
P" "“:“‘Whencep=”7ggs—(—o—__—z)

sin 7(90;; 0+7) " sin (180°—a—4)

sS1n

gin (@—2A) i
for case I, PchoE (0N
£ 1, it is found that for
Cor. 1, If a £ A

t the
§ ired to suppor
ther words, no force 1s req:li]ziting equilibrium
negative or zero. In ?"h will rest of itself (in non‘;t to bo positive is A.
body on the plane, Whliximum value of a for P 1 to the horizon so that
in cage a < A). Th~a nzl.naia:on- of the rough 1;1mwzc of friction, and in
-eatest incli . angle :
s, the greatss it without support is the equilibrium, just on the
the body will rest on ¢ body will be in limiting eq
j the
this extreme case lied parallel
point of slipping down. d 0=0, the extreme values 5 ngdial;, and when
and ¢=4Y, 3 lippin

i . W :bc body is on the point Ofls E‘Esin (rayjiEs oot
to the plane, when th ing up, are respectively n these, the body will
it is on the point of Shppr has any value betwee

A ey 10 ¥ ilibrium. . 3 s
o o the i in non imiting equili t forco that will just
rest on the plane 1 hen o > A, the leas N e leil
w in (e =),
Cor. 3. In general, lane is P=W sin (a ry to drag the

the body on the pla the least force necessary

support and 2

irecti iven by
. = —N\, ¢ in a direction give
a direction given by 0 (a-+)) applied i

:Jdﬁ ul) the plﬂa = ”‘ Sl
ne 18 P n
he lash resllu' can be [?m" in ﬁhe form th 1 Lst a.nglc of tra \n
] e le ction
P. 8 t i 1 n.
D& mllgh incllned la.no 1 he mgle Of. frictio

A les. :
i Iustrative Examp ilibrium with one end resting on
9°6. ladder is in equilibrium © 1; if the ground and
i A QA0T S . all ; 1
Ex.1. 4 umformﬁzm_ against a vertical ""La wand & respectively,
Heed .
the ground and the o oeficients Off,-wh?n bcubgm s, show that the
wall be both rough, the ¢ the point of slipping at boi
if the ladder be on th -izon is given by
aﬂdl'@{wiau of the ladder to the horizon 1s g
anchin

1—
tan 9=*_2:-

[ C.T.1936; B. H. U. 1942; U..P. 1947 ]
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Let the length 4p of the ladder be 2g,
normal reaction of the groung and the w
these points are LR and p

L and S denoting the
all, the limiting friction at
‘S in directions shown in the figure,

[\
1 us
=3
h-—..~_q
A uR _
Now for equilibrium, resolving horizontally and vertically, and
taking moment ghoyt 4, we gat
S= iR .ns . (i)
R+ p'§ =1y S ai(it)
and §.94 sip 044’894 cog g

R IV-& Ccos A= 0.

(iii)
S(i +f*')2w

From (i) ang (ii),

and then, from, (iii),

28 (tan 0.+ 1)< W-:-S(I +y.’).
i

1(1 y
o 0=W( ')._ t 1=y
2\ . -+ " '—“Eu—-—'
Ex. 2, 4 straighe Unif,
E s OFIL beam of 1oy i 927, in Limiti
cgmhbrimn, n Contact it iy b e
o116 end opn

. @ rough verticr wall of heign I, with
@ Tough horzzontal_planc and wity,
beyong the wq, If boty, the

wall ang the
Drove thay A, the angle offrictimz. 18 given, by

the other opg Projecting
Plane pg equally rough,

[ C U 1944 ]

— —

FRICTION

t G—'GB—”-
he beam G its m:ddla pﬂlnt-, 80 tha A
AB is the o )

co W = Henc AC=1Tn cosec a.
s the all=T. ik 8, £ I
1

+  ‘Thus, GO=h (cosec a—1).

(o]

the total rcaction R at 4 is

i limibing’rtical, and the total reaction
blllee?\v:zith the normal CE to thc:o;

the weight W of the rod a ’
s ommon point D, so that DG

Wow the equilibrium b: iy
i angle
AD making an AiEE]
:;;?I:i ¢ is along CD, making an

R
forces R,
at €. As the three Al G

3 Tibrium
are in equilibrium, L

F a0 s
is vertieal, intersecting /.ECD / GEC=a, and 5o DO She
ADG':?\: 1, s i
n GC GD_sin @DC sin DAG,
ac 1

N sin GCD sin ADG
=an A in GCD sin 4
SN e G D PGB

Clearly,

! Lo
—1)_ sin (a=N) sin(90°—a=)),
e - (cos‘;ci ~sin (90°+2) in 2 —sin 2\
i b in (@ =) cos (a+7) _ sin 2 ]
Bl, VALY A

sin 2\
(el (cosec a—1)= sin A cos A

b =81n sin 2a.
sin 2\ cosec a sin Za, Or, sin 2 ) a
. 9 9N

E wo eq 2 0 4 d a ld Stﬂ-ﬂ,d
T 1 !MIZfO?'TM lﬂ.dde’ s are Jolllad at ne €n 7
ua
. X 3.

whose weid
rizontal plane. 4 man

v @ rough horizon G
with the other G:d; oc:nc of the ladders ascends one of them P

7 to that o

is equal
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& ofher will slip first,

adi 8 ]
istance Z, prove that ¢, UDposing that i sl

i € coefficient of frietion s
1y a+a) tan af(9g+
g the lengey, of %

et each ladder, ang o the {
angle which each
mak

A

/\

~)

=3

eeussmameay

F=p M, We got
B+R—g
; =SW .
R .Qa Sin o (l)
o= . a >
5 Sin g ; G e
3 Again, congiq : W sin o4 .20 o )
akin ering ¢ 2 Slna, ..
% wgmmoment ah"utg he equilityyp, s (iii)
1Ot entar ¢, Wheraby ty he ladder 4
€ Cquation, v, 5ok actio C separately
s » We gt D at 4 of 4B on
4 ﬂ*—R-aSinq_W'(_z :
fom (ifi), pr. w.2a+o g 0 a, = (iy)
.28 +9 iv,
94 ' and then frOm (
n) R= W'4a —~r
%

%
Ds when he has ascended

es witlt
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‘Hence, from (i) and (iv),

F=IF'=tan a {ngf,i-‘“— Tl tan iy
2a 2a

]

Thus, F_atz, F_ata

T e tan a, and " oatw tan a.
Now, (da—=x)—(2a+a)= 9(a—x) is positive, for z < a.
Hence, g, > fﬂ, for all values of x.

One of the ladders will slip Wwhen eithctg or 1'1;—'? is equal to the

Coefficient of friction p, and as %?p is the greater, this will attain the
A%

value . first. Thus the other ladder AC will slip first, and the co-
efficient of friction is conneoted to @ by the relation

Blio:n
i B
Note. Initially, when =0, i€ the man is on the lowest rung of
the first Jadder, 1121=& tan «, and %—,=§ ton o, and s must be > § tan ¢
EROr s thak (s Tadors! may sokWALpAMEIOHdedRELLS i

Bl 4

= » will attain

o 5 ;
F—, being always > =

n
R dnd " both increase with @, bub 7

s satisfied,

the val

ue p fivst.
» cone is placed with its base on
s gradually increased ;
¢ will be one of sliding

a rofx. 4 A heavy solid Tight- circ-ztla Jii
ege,,g;? nelined plane, the iﬂchnat:wn of which %
- lu;"m.“ whether the initial motion of the con

nbhng over. )
onevéfke C. @. of a solid Tight ciret
7Eh of the height of the vertex

0

(dar cone 8 0 the awis at @ Theight

from the base. ]
(resultant of normal I

be a force, acting
1 force, namely the weight of
dg through its centre of

fl‘ietiThu total reaction of the plane e‘:s;:?v;:ri
e t.lfn at all points of the base) must "
the © base AB. Hence, if the externd
.. . cone, which acts vertically downwar

Svity @, falls outside the base 4B tho total reaction of the Pl
Wil nog by gble to balance the Weighb and the come will fopple. -
Thyg, assuming § to be the inclination of the inclined plane in the
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marginal case when the weight passes through the extremity A4 of
the bage

and the cone is on th, point of tumbling over about 4, the

base will net slip before this stage is
reached provideq

the external force i.e.,
the Weight makes with normal to the
Plane an angle, Jogs than the angle of

friction A, ., Provided £ AGN=0 < M.
This requires

1
tan 0 < tan A, or, Z;QT? < I

Now, o being the semi-vertical angle
of the cone,

BRI
ﬂna-—o =

L

{%ﬂ%zi tan 0.

Hence,

the cone wi] tumble if 4

Ifdtan o > #, then befors tie contemplated position for tumbling
is reached, the hase will slip

tan o < I,

Hence, the initial m

otion of the copga Will be one of slipping or
tumbling gyep according ag

k<or >4 tan q,

In cage B < 4
DPlane to the horizo
tumble When g =t

tan g, the cone will glj
, d.e., ﬂzh——-tn.n"‘pu.
a0t (4 tan q)

Ex. 5, Two

P When the inclination of ﬂ.l"
If o > 4 4an a, the cone will

eights P and Q (P> Q)
Plane, being Connected by a thin

Pulley on thy Plane, the Parts of the
Jreatest slope, The 4

are placed on @ rough inclined
Siring passing over a small smooth
string being Parallel {o the line Pf
- e planeg ¢ the horizon is gradually
Mereqsed, Proy

inor e that the weights qpi1 begin to slip on the plane whemn
s Welination g ¢, the horizon, 8 given, by

: angle of friction of the plane, assunted sqme i, respect
10 githigy weight.

iction is
norm:il reaction on P, the fr
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Ex. IX |

be the
R up the plane. If S

friction
he point of moving up, the
s () is on the

3 jon of the string.
normal reaction on @, & Lot T be the tension

#8 will act down the plane.

ar
U = = ndlcu 1
w, for Cq brinm of P ﬂlﬂd Q re. Olvlng ﬁlloﬂu "Hl(l p(}] e
]
1
uili

. e
to the plane in each eas

s 3:.'15
Psin 0=T+pR, PO

=S.

Qcos 0

= g=T—uS,

Q sin 0

From these, 0)=1=0 (sin 0+ COS 0).
gin 0 — i cO8 -2 :

P-( 0 (P—Q)=p cos 0 (P+Q)

sin

P+Q P*thl.\.
. tan 0=p "0~ P-Q
Examples ol Chapter I S
jght TV rests Oﬁeaogog:?ction- It.is
1. A body of Welresponaing ange by pulling it with
plagSgeifbeing (the clordY on the plan gle of friction, and
desired to move the )DFinc'l the least an
he help of a string. S
?;12 least force necessary. in limiting equilibrium
1 f weight 4 bs. rests in 1300 St
B Jffx?g"lopﬂieg whoso Slolpreeal:tion '
BTN O _IILeCH norma :
officient of friction a.nd[t(l;e 011036 B. B, Allahabad, 1958 1
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3. How high can 4 particl

@ rest inside a hollow sphere
of radius ¢, it the coefficient of

2 g 1
f t be —= 2
riction be N/a

L P. T. 1929, '31,'39]
Prove thag the h

4. 1 Dorizontal force which will jus
Susfain g heayy Paricle op g rough inclined plane, _Wln
i Smooth plane whose incling-
flpn‘ls less than that of the rough plane by the angle of

n.

inclipgpie o2t inclination to g horizon is 30°. When the
‘nation jg increageq to 60°, finq t Sl e
Which wi]) Support it, nd the least horizonta

(A body " of wei |
e ght W can Just be sustained on
%1;?]1‘3};) ;n;hned Plane by g, 1000 P, and jugg dragged up the
greatest slope, gy 2,20d Q o acking up the line of the
Pe.  Show that the coeffigignt of friction is

h ; :
ust Squortsa.b:d s along 4 Tough inclined plane
inclinagio 20 the angle of frioti 3 baing
OW that the Iea;m]}:ra:elon of the plane to the horizon.
“Ulficient 4o drag the body u;c:i;]egpﬁ?g.;he Plane, which is

ei
P an (a+ a)

RO TH }

Oclineq p?mllza‘s’:t force which wil]

e Moyg g weight up an
OW that the leagt force, acting

161
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Ex. IX ] :

W i jight upwards,
‘allel to the plane which will move the weig
Parallel to th h

is 1+
P ~/1+‘l_£ ]
e e plane.
being the coefficient of friction of the P inclined plane of
it being e e I-Ougih l?cfrictioﬂ being 4,
18 I - ] e o 1 -
i 11"]. tiinhidstro the horizon, thf f;l:cis which will respect
Inclina

nd Q be the leas althen
4 1> (rll).a g,It{hi;J hao]il(y gp and down the plan
ively dra

P sin (ﬂ.+a;_
0 s (-0
o ( rough plane
i rallel to a g o0
ik Bl ficient to @mm
T ‘gl?‘: horizon 18 ]1.‘1511; :\;lill just let it be
of inclinaﬁioxiJ aﬂ,t?imes e ;\hlzhlf .
-0 y e : 0 -
T Ppﬁ of sliding down, sho
on the poin )
tan a =4 7 | :
1 ing res
by a light string 1
g‘sisiz?g round & smoo}:hl
he string being paralle

jeles connect

#12. Two rough 1mﬂjﬁhe string D

% Thed pl&ne, of : e
on an incline lane, and the parts Tf the weights and correun
pu“ey ok e e I‘B&test SIOPe- le WS’ and 1, Ua
to the line of the gts of {riction are clination of the plane

Loniing coefﬁﬁlen that the greatest 1n
cctively, show thas ia
resp?ctm b zvith equilibrium e
consistien s W+ s W),
tan~ " (“',

14-.4/2

[ Pungab, 1940 )

rizontal ground
f d on a horizon . i
i with one en ve that for equ
*13. A beam 195::& vortical wall: eeﬁrihe e e
priftleiosck agml; be friction het;v een the beam and the
cround, and need ot be friction boF™
- ground, and need
wall. ith one end on the rm_lgh
i Jadder rests Wi inst a rough vertical
*14. tAIumftm:nd ;nd the other agtmtrll{e R
rizontal groun L ( :
]‘?\'01:11. The coefficients of {]i]? Determine the angle which
ends are 7 and % respectively-

- it 1s aboub to slip.
the ladder makes with the ground when 1t 1 [C.T. 19431
e

11
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15. A uniform ladder res
its lower end on & rough horiz
against & smooth vertical wall, If g
ladder to the vertical, prove thag

tan 0=9,
where g is the coefficient of friction,

What happens if the ladder be non-uniform ?
18. A uniform ladder rests with its lower end on a 1'0}13151‘
horizontal ground angq 168 upper end against g rough vertica
wall, the groung and the wal]

eing equally rough, and the
angle of friction ;. Show that

the greatest inclination of
the ladder to the verbical is 2.

tan ascend hefore |

: 1t begins to slip, the foot of the ladder
being 6 ft, from the wall,

Vertical wall,

that of the ladder ¢annot asceng f the top.
What weight must be placed on the bottom of the ladder
to enable the man to ageend tq the top ?
19. A man Weighin i ifor
8 1401bs, climpg o 2 uniform
ladder 20 f¢, long ang 79 lbs. in weighf, whichprests against
afrm_lgk} vertical wall g an angle of 45°, If the coefficient
of friction at each end of the ladder ig 0°5, how far will the
e 0 climb yy the laddey before it hegins to
Find algq the greag i
climb to the top. ok o st ot

20. A un
Oné end op g
& Smooth ve

& creature which can
[B. B U, 1940 ]

iform laddey rests in limits
‘ mifing e
Tough homzontal blane gy ¥

quilibrium with
Tbical wa]y. man they ge

he other against
ends the ladder-

TON 163
TRICTION
Ex. IX ] F.

i i t go more than
3 his weight, he canno ‘ bl
e, Wh&fl?::rhallipens if the horizontal [plca,n% ai&;;g ;
hfhlfﬂ;’lﬁ;S; u%ive reasons for your answer. 5 (OF
smooth *

) B e
) in limiting equilibrium
i ladder rests 1n E Tk
e En;iosrtma rough vertical Wall.‘ LE!::)(L lt;l;;ang Lo
& ﬂ?'a ntal plane, the aggle_s of }'11361 e
- 1'0ugh_ hcinzo Show that the inclinafion @ o
respectively.

i is given by
the horizon is g o :

bam 0= 5" in 4" cos A
: ¥, inclined to the.
*99 4 uniform ladder of weight W, inclin

i inst a rough:
ith i exfremity agains :

° rests with its upper r gailsthonen
h011_40n &t' %15 ’n? its lower extrem:t_} on tf}lale Ii sl e
Vertm{:ﬂi1 “l?ens: horizontal force whmﬁ:l ‘:;1
gggttm]f&rds the wall is just greater the

TV( 5, 1+ ﬂ.’),

e+ =

2 1+u

4 i iction at the lower
/' are the coeflicients of frictl ast ihe dover

[C. U. 1947 1

where ¢ and ¢ 104cE
and upper end respectively. . B
iform ladder of weight w 1; BaShautnen
S Oldm nd against a smooth ver mE : &, golied
horizontal groun éu e fiia "a o o
i 'mﬁﬁ %I;glen OEc:li::gb to the top of the ladder
welig Y _ oca

ot
ladder slipping i MR e a)’

W~ Qutana—1 i Uigl%,}
# being the coefficient of the friction. 5 (8

: C, CB are freely jointe;ﬂ
iform rods A : S
; 2043_ ndleggejq[;a:,lvglI‘lbical plane with theIczn{f‘l};se [iq?l?ﬁbrjum
B‘ontact with a rough horizontal pl.m;.e. T e
?s limiting, and the coefficient of friction s

S [C.U. 1935
sin ACB='1+4#2
. weight W are placed so as
‘ ual ladders of weig ; )
£ T;\' Oaisgt each other at an angle 29, W1th_ tltlelz
5 dle&n ﬁiﬁg on & rough horizontal floor, the coefficient o
ends res
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; : re
friction of which with respect to either being u, whe
806 > 4> % tan g If w’

W' be the weight which placed on
the top causes the ladders to slip, show that

W' =7y 24— tan g

fan 6-.14‘

Explain the case when 4 < % tan o or > tan 6.

28. A bar rests on two Pegs and makes an angle a ‘;::’};
the horizonta]. The centre of gravity ig hetwe_ey “_101 o
at distanceg @, b from them. Prove that for equilibrium

H1b + poq
tan ¢ 3 o

iz are the coefficients of friction at the pegs.

[ Agra, 1940 ]

where g,

& Vertical plane -

Pegs, so that the rod lies in
which will. rest i

ength of the shortest rod
n such g Position ig

a (1+tan cot 2),
‘?E'here @ 18 the distance between

the pegs, o is the inplirllﬂ'
bion o the horizopn of the line Joining them, and 7 is the
angle of frietion,

: Orizon are g, and ag, and
goeflicients o rickion fap 1 8nd 2., If ¢ bhe the
Inclination of the beam ¢, the horiy

rium,

2 tan 9= (as + A2) = cof (ay = 7).
*29. A heayy uniform yqq in Iimie ilibrium
T 0 limiting equilibri
Johin o ﬁx&e ~o%8h hollow sphore, 1t 4 bo the angle bof
Tiction, ang g9, € angls gyht nd at the
tentrg of he sphere i by the Bochs

, show that the ineli. s he rod
ST AR Gl or 1€ Inclination g of t

2 tan 6= g5 (aH)—tun (a—2).

[P. T. 1954, 1943 ]
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in limiting equi-
91 rests in 11m1t1ng‘
J i i rod of lengbl} 2 o mdl?s .
e A' th}ll umfroorl?;h vertbical clrcula;heh%%[;izonml ¥
PE s : clination of the rod to
Prove that the in o S |
cot™ ()——Ttg—*“u
i iction.
where u is the coefficient of frictio

. tly out of
b B T e

: is balanced par ting agains

3L A Elas rg?erlivith the lower en(ii ;ez;:gﬁhg greatest
oY adgion) tl;n%he tumbler. If a a'na,]-e with the vertical,
e lcalisids 01 which the rod can mak
and least angles friction is
prove that the angle of fr sin®e — sinjﬁ-——)‘

b ton o T o7 on 5

: ied to a uniform
the least force, W}}1ch_a1)§)é1?n e
*32. Prove that ejjght W Will.mmnt&;nz e A e
hon vy sphereugO}i :ertical wall, is W cos 4,
against a ro )
mg]gle of friction, is less than

_1(_’\_/_'5_:;).
coS 9

base is
ith a square

0§ :eofitgltwo gides of the base
pla

to the horizon
Loa b f friction,
inclination o e
i gy e, 101 o
e o base, find the grea ef re toppling.
andl E 511;1@ > :E?le dou,;'n the plane befo
so that it may

4 : d with its
) linder is Plf’*c‘f- G

; id circular ¢y he inclination

o SOInIS inclined plane 1?n(11ntcreased§ show

e ]roucﬁorizon is gradua ftr slides, if the ratio

of the I)Ia,np to t 1_61 | topple over befoyeder vl A

that thd‘?‘. cyh;nderfvzlh » base of the cylin

iameter o 2t twer
?:stsht?ha.n the coefficient of friction

is placed with its base
i i i lar cone 1_s p_ _ e
35. A solid ﬁljggndt 511;;‘; e incllna,mogl:{;fml;;fction i
hori f?sgl;r;;?lally increibsed-e Eih&alile itnihs on the point of
Roming ngle of the con ; !
301 ﬁ?‘ipggz :ng turning over simultaneously.
both sh

e
*33. A rectangular li}gc;d
placed on a rough incll
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aIcs [ Ex, IX(a)

ANSWERS

1. \, Weain A, ) e Y

7 x 1 J\/3, S. wi.

: 33(2. ~/3) above the lowest point

6. N3 1bs, wh. ; 20 N3 1bs, wh .
N, 5 &.' 14, 45°,

e1860 7 : m, tan §=p (m+n)m

1:. HG can i p
t rise to t;hc to h?
W[t:]]ﬂub the la(idﬁr S]Ip])iﬂg
18- of t:he “Clght of the ]adder. 19
5 . 10 ft- ) 1"."‘E 1bs.

25. If 4> 3

- i tnn (7} the Ia

tlvn' %e., the top musi: be pull t without 17’ being nega-

b in Timiting equitibriag. g 2. % 1% Which caso tho ladders will
I k> tan g, the laadnum' the lower ends tending to sl ? {: : ‘:;

' ers wi ; ip outwards.

8 will be in non-limiting QQUilihrhim :'h‘:tever

Posif:itre va,]ue W
may h
W' must, bo a%e, and to put them j
negative, 4, em in limitin e
lower ends will ¢ 2.¢., the top must be hall g equilibrium
end to approach each ofhg pulled upwards, when the
r.,

15. If the c. g. divides the ladder

ddG[’S cannot reg

83 2 5
i - cosT 47,

Examples op Chapter I1X(a)
A hemispheri

base 60 the popiy.: L 0 be the inclination
%o BIn"X(2 sin ). Or1zon, show that g cannot be
. - A heav .
aX1S verfien] ¥ particle yegt
and S on A
gf the paraholy, s ‘Trbex dQanargsrougfh parabola with its
ertex at whiep th: and if ghe grela,te t o0 ol et
if 4 be the g Particle qgp mmaisn hflght above the
ci at rest be b and

ent; of fript:
ES . r]ct]

3. (1) A . °n, show that 1= (7/,\%
T-axis vep ticl;:iugh ellipse 4242 4 2/ “=(b/a)®.
©an rest on i : Hind iy which .;chb'ﬁ‘:: 11s pl

D G 81 10n g 1_1

1t of friction,

aced with its
eavy particle

Ex. TX(a) ] FRICTION 167

find the depth of the posifion of the limiting equilibrium
of the particle below the tangent at the hlg][Jest point of

the ellipse. C. H. 1954 ]

#4. A heavy uniform wire in the shape of the ellipse
2%/a® +y*/b® =1 is hung over a small rough peg. It the
wire can be in equilibrium with any point 1n contact with
the peg and if x« be the eoeflicient of friction, show that

a®—b*
o< 2ab

“5 A rough cycloid is placed with its axis vertical and
vertex downwards. Show that a pﬂ:l‘t‘.lGIG can rest on 16 2:1{:
any height 1 above the lowest point where P ﬁq'sin }}
2 being the angle of friction and a the generating circle o

the cycloid.

*#@. A hemisphere rests i
surface in contact with a rous
to the horizon. If 6 be less than
than the angle of friction, show &
the hemisphere is inclined at an an

the horizon. ok . s
7 A yniform hemisphere of radius 7, an weight 1w,
rests with its spheriml surface on @ horizontal plane and
a rough particle of weight ' rests on the plane surface ab
the pboint P. If C be the centre of the plane base of the
; 3 we ) :
hemisphere, show thab CP * 5o where ¢ is the co-

efficient of friction.
*8. A rigid framework AB

n equilibrium with its curved
h plane inclined at an angle 6

sin~*2 and also less
hat the plane base of
gle sin *(§ sin 6) to

CD in the form of a rhombus,
of side ‘@’ and acute angle 6, rests on rough peg whose
coeflicient of friction is 4. Show thab the distance between
the two extreme positions which the point of contact with
the peg can have is au sin 6.

*9. The handles of & drawer ABCD whose length and
depth 4B, BC are 2a and 9b respectively, are distant 2d
from each other. TIf u be the coefficient of friction at the
sides of the drawer and 1ts base be smooth, show that it
is not possible to pull oub the drawer by pulling one handle
straight outwards if b < ud. e
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S0 A uniform cylindey of mass m ig supported against

wedge of mass M and angle a,

& rough horizonta] floor. If slipping
is about tq take place

» caleulate the coefficient of friction
between the wedge and the flooy,

V' on the rough planfil
fa.c-e of a golid homogeneoys hemisphere of radius @ and
weight 7 resting with it ey

Zonftal plane, Tp the position

system, the barbicle is af g di

Prove that the iriction exerfed between the particle and
e hemisphere ig equal to

[C. H. 1959 ]

mogeneoug hemisphere rests on rough
orizontal plane gnq against a smo0t7, verfical wall. If the
coefficient of friction &b

gh (coeﬁ'[ci’ent of f
the angle ig in~ ——’-‘li'u-)
81n 3 1+#I£l
he lowegt points of the wheels of a bicycle.
The length of 4B ig 9; and the centre of gravity is f‘ﬁ
. above 4R an istance g in front of its

: e friction, show that the.
slipping, ig © % Which hg bicycle can rest withoub

riction u') show that

tan~2 g‘__ﬁgli-c? or, tan=14l=d),

. Ll s 20+ yJ,
according gg the front o 0 i
€ coefficient of friction(f S Y Ridi=d. L

% ® Depth of g g,  AVSWERS
Particle bult:w the highggy Point of the gllipse is
<ag-- _a? :
(i) a-— 0! (a2 ..].“nbu)él! m g
Na? +pp2’ 10, ?ﬁﬁ‘[&

_ the parallel force Py + Ps

CHAPTER X
CENTRE OF GRAVITY

es. .
10'1. Centre of like parallel fore

s aching
P be a set of like paf{lvlé?slr{or;rﬁn 4.4,
Let Py, Pa; Payeeeres respec

5 Felppedosne
on a rigid body at 41, 4a, 43

A

Ag

. Oqdq=
-h that A1_01 U1
: st internally at Ci, suc and P is & _pu.ra.llel
and divide it 1n resultant of Pi e e
Py : Py. Then the 2t I Join Glzia:i} D, + Py, Then
vy’ aé Gy auch thot 0103 : Cade= Py Lot pliEE
atlvas T + L3 e t A1, Pa at A
P, at C, and Psab js’ z'f{éoc{ififis it at Cs such
Of P1+ a & 1 A a

join C ing in this
S & - Nixg’]o'u}l_l- Eh e 'Frgfeeegrzgﬁy arrive
that C20C5 1 Gﬁﬁ;h'; fgrées are exhausted,

manner till g

lel to
force I P paral
ichapasies 2 iv arallel
at a point C tlh‘r (i;]%lsl gllél(;-esulb&nt of all the gn|en D
the sysfem, whie
tic.

fonoos itions of C1, Cq, Cs, etc.,

he positi St

it 1 ident that b D A =
d Nlclodwr’mlltsr I:net‘}rlle magnitudes of P1, P, Ps
epe

here they act,
T o A where T
the pOSitlonihﬁighgopgl(?tjvithl the common direction of
but have no
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paralle] f |
orces. . Hence, the point O arrived af, through

which the £

fixed, Whatesgi Ii;aesuy]?nt of the parallel forces passes, 18

forces, 50 long as theiy ¢ common direction of the parallel

Temain unchanged]euTEmggltudes Sndimointalof appﬁéqtion

3 nged. e fixed poi g -

entre of the given system of lz'?ce p];?';rﬁel?’o: i SR
ces.

We may no [
f1}'5—35111[;&111& P alsv:];: tpri?:;nf‘; lihi point through which the
10 : W g :
DO;:](? fzggg‘l‘f’%n parallel forces Pal e‘:l;m ]E;? the cq?}llon direc-
y & 11l come out to} '+ 8) Lgyeeaa., 1t is &unique
We pro 16 out to be the ;
ceed to combine the given fox'jjﬁz ];1;22§?Ver order
ion.

Analytiea] determinatiou.
We shal] confine

oursely
paralle] forceg acting in one ;)?;nzo the ease of u set; of like

Py
Fs
Y A P
3
A
NS EAB
A 3 i :
A e |
..;"'""'"0 l l ; —-'—""*—-—-':
:I L, M L '
E AL, Ly  x
Y'I
Let p P
ok A 1 a PS: ...... i
ol be a set of like Parallel forceg aeti
acting

(ma Y ) 2 Syeeni., on g
1¥U8)ye.n,s be t _pla.ne, and
recbanhe Co-ordinates of 4 Izt 1, Y1), (zg, ¥a),
8ular axes op the plalxlle e s referred
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t of P, at A1 and Ps ab 4, is P1+ Pq
z ch that 11101 3 O]_Agﬂpg :_Pl.
ThED., Ale_, Ang
0X, since these are

The resultan
acting at C1 on A 4. su
Let £, 1, be the co-ordinates of Ci.

and C,1M; being perpendiculars upon
parallel lines,
LaMs _4.0. £1-21_Ps
Mng C'lA-Q s i mﬂ—él Pl

2 P 3‘-."‘?2579_ ol (6
whence we get &1 _11’!1_:}5;_ (i)
i imi _co-ordinate (&2 say) of
Txactly in a gimilar manner, the a-co-or
C., where the resultant Py 4 Pg+Ps of Pat P ab C. and
P, at A acts, is given by

(f1+1%}$;+}%£g=£hz;+3ﬁﬁij&£s,ﬁvm (i).
€a= (P1+Ps)+Ps P,+Pst+Ps

P d

-« manner, when all the forces are exhausted,

nf“?{fempamllel forces through which the final

co-ordinates & 7, we geb

Proceeding 1
the centre o )
resultant passes having

mekﬁlﬂﬂmgﬁgaﬁai;3==sz

S T R =P
and similarly i
Pﬂhﬁﬁﬂgtgmﬁ“"=4g,

= 7o TP e e P

10°2. Centre of mass.

Let a system of particl
placed at the points 41, Aq,

es of Masses M1, Ma, Msz,... be

Divide 4,4, at G1 in the inverse ratio of the masses
ab its extremities, i.e., 41G1: GiAs=msa i M. Assume
the total mass m. +mg collected at G4. Divide G-lffis at Go
in the inverse ratio of the masses at the extremities, such
that G1Ga: Godg=ms: (my+me), and assume the total
masgs ab the extremities, 7.6., M1t Mo +my collected at G,.

Proceeding in this manner, when all the particles have been
oxhausted, we arrive at a final point G which is defined as
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the Centre
0
of particles, 4

mass,

or ceniye : :
of inertig of the given system

(Mt‘;) *G
Ag
_(‘ms)
As
It ig
P ?wdenfz from the mode of

re 0f a8 sef;
e en Mg, Mg, .2 8et of parallel
I8 unique, o 28 Proved in the pe:ec\;j&chng at 4y, Ay, Ag,

(@, ¥ say)
n the brevious article,

Etw_ﬂzl"‘ﬂb‘zmh_*_m i +
= 3 “es
m1+ma+m3+.a.. =

s
="t may, +

Zmx

mx
=m

)/ 12 T Mgl g+ ...
T LA AL
The 5 M1 +m, +om, +?" té‘;my'
Lo Ymmefiry o i
ﬁna,lly tt‘lat the Point C;h? ar P
) : % Ao © Co-ordinpte 1
Clessig er orde t » and wi]) b ived. a
o he massegy may be e
Instegq i
of an S /
e reit; pq,aticles, We hg
Oslder jf g S it
8 an gg 1 body
glomera s o o
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{Lﬁ infinite number of infinitely small particles, and define
its centre of mass as above. It will be a definite point in
the body.

Centre of Mean Position.

More generally, leb there be a seb of points Ai, 4a,
4s,... and let mq, Mo, Mg,... By 80Y get of numbers which
are associated with these points respectively. Now join
any two points 4,4, and divide it at G. in the inverse
ratio of the number associated ab the ends, such that
A41Gy : G dq=mg : my. Assume the number m1+ma %o
be associated to G. Join Gids and divide it at G such
that G Gy : God,=ms : M1t Mma, and suppose Gg to be
associated with m +me + Ms- Proceeding in {:hls manner,
we finally arrive at a unique point G _Whlch is called the
centre of mean position of the given points for the system of

Jiven multipliers.
If the points 4y, 4g,... €be. 8T €0

.n&t.es (ﬂ;ly ?11)1 (ﬁev ?fﬂ)! etc‘ we g(‘lt exactl}’
article, the co-ordinates of G g1ven by

planar, with co-ordi-
as in the previous

Ime __Emy,
T="" 7=
Sm =

n position is & more general
1 cases such things as the
and the centre of mass of

Note. The centre of mea
cerm which includes as specid
&enbre of a set of parallel forces,

System of particles.

W i ivliers are all uniby (or equa-l.). the
cEntrehZI; iJ;aEl;i?itxﬁailti;) referred to as the centroid of
18 given points. 'This also means that the centre of mass
of o body of uniform density 18 the same as the centroid

of the body.

10'3. Centre of gravity-
We It law of gravitation that every material
Darticle\?So‘;tgzae?iowmﬂs the centre of the earlth witk
& force which is nroportional 0 the mass of the particle, and
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Now, given any material body,
&n assemblage of particles each of
earth’s attraction, angd all these fore
centre of the earth, they have got g single resultant which
we call the weight of the body. If the body be held in
different Positions, the positions of the line of action of this
weight relative to the body will he different. Now, in some
cases, the line of action of the weight passes always through
a fixed point in the body, however the body may be placed ;
for instance, in case of a spherica] body, by symmetry,
the line of action of the resultant weight always passes
through the centre of the sphere, In case such g fixed point

is available in the body, it is called the centre of gravity of
the hody.

we can consider it to be
which is acted on by
€s passing through the

pect to the system of Darticles), when
which the resultant weight of the
YS passes, in whatevey manner the

one such exists, through,
body or the system alwaq
body may be placed.

strictly speaking,
; in other words,

in a striet sense, the centre of gravity of g body does not

exist in a]] cases.

. Now, for hodieg of ordinary size which we have to deal
Wlt‘h in genera.l'. the radiug of the earth ig 80 large in com-
Ear;ion, th:.t hz;e:hdra.wn from different Doints of the body
0 the centre o e earth may }e taken ¢ racticall

parallel. Thus, the v Y P e ctioally

. ights of different elements of which
the hody is composed of can he taken as like Parallel forces,
the common direction he

= ’ ing the vertical at tha point on
€ earth’s surface, anq the magnitudes of the forces are
propor_t.xona,l to the masses of the elements, If the body be
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t in the body through
ses, and this we call
Strictly speaking, as

body. Hence, there is o ﬁ}ie(,iml.goiis
which the resultant _welght i;)“ e D
the centre of gravity of t_ e his point is the centre o
defined in the previous article, this lssuml’tion’ when the
mass of the body. But on the above " fore small compared
1 7 : f] din m\ finite size, and there Othe centre of mass
bt? (t}lJ(;Se?u'(tjll]l lglwtcentre of gravity and
coincide, g e
aid that 1
already been s big body,
It is clear from what has i oravity of & big hioh
: the ceutl‘e 0 2 . Oints of whi
Err?xf)euedb i fﬁf(?n;l'tice lines from different P
ntain for instance,

llel, the
ated as paralies oo
0 the contre of the earth cannob bevittsl;eut all, and even if 15

v same
°dy may not have a """.‘ttref:i{f r:ot in genﬁ”“}‘ljfyzhsxist.
a : € gravity . noint will alwe

as Si‘:'hzhceer;g;tg{} nc:ELsLs which lagter POt eights of

5L it : ume Wwelg

In what § llows, we shall alwmnia?::iﬂl syster to't];re
4 vna (6] ’ r or & f gravivy,
diffapa: ; of a body 2 centre 0L '
1’&rafl(;?t 'L(;lgni)(;l:c}:t’aed to determine E;.l;emass, and i alway
Which i's‘identicnl with the centre
8¥ailah]e.

dy is unique.
104, The centre of gravity of 2 body

s of gravity,

ave WO centre h both G

) h throug :
@ o it Possible, let a b‘?d?he body PASS%, hody may be
b '. The weight of ner

¥ ks
tever nm? GG’ is horizont®

hejg ™ by definition, in Wha

; such O8>
Tll ' ‘L.O“": hOId the bOd}\‘(;-'tiC[Ll fo]_ﬁel

s they cotl
g f gr{bvlb}

ineide. Hence bhere
incide.

tbrouge]ght’ which is @ of the body-

h hoth @ and G unle
Snnof, 1,4 two distinet centres ©

cannoti NOW DPass s
a
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I. A thin_uniform rod,

A Q a G

PP B

Let 4B he o thin uniform rog of any maferial, & the

middle poing of AB. ;
;

Consider fwq equal infinitesimag] lengths PP’ and Qthoe

e rod, equidistang from @, so that GP=G(). Smceh'ch
rod jg uniform, the weights of thege two elements (whi

of these two equal and like Pa
point @,

and for egch Dair the resultant of the weights acts at G-
ence the weight of

he whole rog acts at &, and so & is
the centre of gravity,

Thus the Q. G,

of a thin uniform rod is qt its middle
pont,

II. Four rogg forming a Parallelograp,,

Let four thin unif ds 4B, B
Material gnq thickn s e

» D4 of the same
858 form g, Paral

lelogram ABCD. Tet
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‘, R and

3 ﬂ;nd C—D: ﬂﬂd

nd Q be the middle points of AB, intersecting at G, we

1E a}?d J )fc 1]1) nd BC. Pg and P»:Sl ES S

S those of 4 a . AR ‘ &
& r 'y that 2 , 4 Of the

- el e

af , and this 1s also

diagonals 4C and BD of the parallelogram.

ir middle
e at their mid
3 and CD are at & f the
- reds 4B and ( » weights o
The C.G. Of(gjhind at these points ttl;? these two equal
Points P and s B i resultan allel forces, both
1.0(]'8’] t‘.hl(;;h;reri’?u(‘) ’('which are llkeigﬁ:oint of P@.f ?t;]i"
Weights o and 4, ough the mid- reights of the
¢ A o ugh eigh 4
FIe vertical) 1‘5}55%1“_ Lﬁ;: resultant of tfl,]-gu‘:h G, the mid-
Jugh G Simila RGN Aok i the whole system
p‘o\.'o teq;l }ism%ql i,zf):h; resultant weight o
Ing o (1. 1S b4
Acts af @, uniform rods fmm.mg
T the C.G. of the system of our ection of the lines
ws, the C.G. ik o ntersectt : ;
a pay Z; l i 's at G, the point of m;mpaz'-r of sides. This
attelogram 1s ) pposite '
.'foim'ng the middle points of the oPPoS

110 [IZS-
Po C '0 (o) thﬂ d-'l gon
int 2:3 GZSO t'/.-'ﬂ pﬂil't'bt (0}} 'i?éterse trom f

jangle.
L Three rods forming a triang

e

me

A ds of the s& )

b in upiform X2 " vire
three thin U thin unl ints

m i?t 4B, BG'- G,A bse (or parts of ;"he the middle PO

formy, [:Zl &Ed: thsllchnAe;)’C Let D, B

a triangle ;
of BG o riang

. . 11
» 4B respectively- ds AB, AC ach verfically

3 IYr
5 TO respectlve
do The Weights of the utilfogﬁnts F aiﬁeflengths- The
the“{r ‘Zigi'f td thei;ai?édgriportional %
itudes
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) treated as
ip. This can be int O
SIJ.Ch Stl'lp_' z iddle PO]D ! ’
let XV e ] aﬁalté be the mid-points
a thin -I;mfor?ihlt acts. Now, if P an
where its weig

: . . oy TCes,
resultant of these two weights which are like parallel fo
acts at & point X on FH, where

line like
% Ty
vy, PQ bisects eve int of
of 4B and CD, ffm% Geo’g%n’andbso %1% m;? ilsegrnobher
. <! Or.-'.vtbe-' hole
Vi XY parallel to < ilarly, the . of the w
- ‘lt"&#%= i@gts‘_fg %3;15: II;E' i Situabe% o Pg;nc?ﬁhe combined C.G. o
XE  wt. at F ength 4 strip lies on POQ. , . Tt g
1 x 3 5 . infinite num g
Thus DX bisects the angle ED 7. % laming lies gn Z; Q o thollominalinto 6&1;&31 ] emclt‘;li ;Irll
: ¢hin in, dividing » BC, w s also lie
oAl fadianoiof ihe wel‘glgt % f:'h(la trggﬂl%cagd AC thi;xsgt;n;-li!]:;s parallel to ‘é% Otl)f the whole lamina &
ab its middle point D, and the joinf welf);‘f Hence, 5ho 2 that the £ (.)f AD and BC. : Bt
oty 2 will ach Hoome pmréb i sit‘uated on the RS joining the mid-poin f the lamina 13 the it
combined C.G. of the three rods ig 8 A G e
line DX, 3 Hence, the ?'ﬂQ?t-&ngof PQ and RS 30“"(:719';:;.}, this 18
imi ini i first an int of intersection G from Geo !
Similarly combining the weights of 4B, BC o Point o : :des, and
then conside;'ing the weight of AQ, the -combmedyoﬁlich of the opposite pair of si
the three rogs is shown to be some point on K
bisects the angle DR F.

C.G of th atso the d 0 " lo-
e 2 t a he pamlle 0
S 1 [4) e 1 on&ls fﬁ 7
ystem of t ds l 2787 Of 'éute:rsection. f I rag
e Pory
gram.
o i hree ro

Thus,
eing g Common poin

is ; Lliptic lamina.

6 situated on bobh.DX and Esy’thé Rt eLi B
their poing of intersection, 2.8., the Teq?é??'f_’d_ C.G. zg'ddle — [
1n-centre of the triangle DR Sormed by Jorning the m =
Doints of the rods, Q F —

1v. A uniform parallelogram lamina,
\M‘
]

.
q |

el

y.-

el

Bl
: axes of
:or and minor
! be the ]II,BJO
, Let 404’ and BOB f thin
o li_‘itf ABGIiI llJe & uniform thip Plate or Jaming in the & thin uniform elliptic pl&-teéo an infinite mumber o
; &’.Dara;he ofram. Ik Divide the lamina 10
Magine the aming, to divided jng infini
Number of thin strips by lineg B

be any
; is, and let PQ

major axis,
il 8trips by lines parallel to the
Parallel to 4p o 0D, anc
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such strip. Thj

8 can be treated as a thin rod whose C.G.
18 af itg midd|e

point, which, since the ellipse i_s S)I;M:)el
trical about itg minor axis, lies op the minor axis. ilthe
larly, the C.G. of every strip, paralle] to 44 lies on

i 1 ! ] ia the
Winor axis. Hence, the C.G. of the whole lamina lies on
Mminor axig,

Again, by dividing the |
mingy axis, the C.G. of
b0 lie on the major axis ag

Y : . 5
amina into strips parallel to ﬂ?n
the whole lamina can be show
well.

Thus, the required C.G. of the elliptic lgmina is the
Common. point of bot}, the m

1 ; ; he
ajor and minor awes, i.e., t
centre of the ellipse.

Cor. By making the two axes equal, the el]f;pz@
ircular plate, ang We see exactly as before,

that the C.@. of & thin uniform circular plate is at it
Centre,

VI. Bodies having an axig of symmetry,

T Fig. (ii)

If a materigy

88 in Fig (i), then
8ide of OX, there

ystem be sy

N ra
neirical about an axis OX,
Correspondin

8 to any element P on ong
similay element () situate:
70 e * side of OX, so that PQ 18

1886 angles by o x Now the 0.G. of these two
€qual elemengg p and Q is at ghe middle point of P&
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: is case can be
body in this ¢ trically
i % the whole ts symme :
g llios o OX"rsAzf such equal ?lezﬁ:} pair the C.G. is
divided into Pm]ecb to 0X, and for ebodb' lies on OX.
situated with T‘Zﬂwd C.G. of the whole.
on OX, the combinea C.

] tem
! - o material sys

lamina, or & . lar axes,

: form of & serpendicu
15 bodyaln t'lljsmebl‘iwl ”‘h(.)-ut t.;;vo éGp of the system,
e e O dein i, (), “of these axes, and o
N KOX and, 7S T e o
a5 shown ghbme'non point O, 0 11'1;,,1-1? for a SOI‘_d L9 i-’
RistboRshe cozfmthe gystem- P intersecting EeY
5 oty © mmery,

lpff itS%)];:ignmetl‘ical abou tre of 83
- d acc x
bendicular axes, ant e body-

};E;ﬂs point is the C.G. of o

u‘fo?'gn, bﬂdy

tually
three mu
tm-amgls' bas & con

ial system
or a matera
if @ ut body
: if @ y C.G. of the
Thus gc?wm“f”wiwc of symmetry, the
1O
has a geometric LS
or the system will be at e ireular or ellip?ic
in wmiform CLI?es g )
18 or examp Zlorn
Examples of th Among other tangular plate, (u)_;tion :
lamina given aho-‘fe}-m square or 7¢C iform sphere, solid ?t
he cases of (i M‘].Ia!' wtic ring, (ii) T_Wd (v) uniform 7rugh
Sorm circular Ortg.z’(;fltim' parallelopiped;
iv) rectangi
hollow, (iv) 7e

te.
id or hollow, &
circular cylinder solid o1

we get

avity is at the geo-
s the cenfre of %mivxitycase (v) is the
Lol thetse cﬁe the body, which
metrical * centre &
middle point of ifis ax18

mind.
VIL. Uniform triangular Ia

m he
f; 1'-'Lng1.1lﬂnl ].aunﬂlnﬁz, D &ﬂd E t
'l

. J %
Let ABC be a unifor nd AC respectively, and le

i Ca
middle points of the mdga‘ B
AD and BE intersect at G.

i i thin strips
D ; : n infinite number of . y
e thel tlnt? n‘EBlg 1:221 [;:b P@ be any such strip. This
allel to )

.1 at its
by lines part d as a thin uniform rod whose C.G. is a
el

can be trea
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middle point. Now if O he the

point of intersection of PQ
with the medig,

n 4D, sinee POQ is parallel to BDC,

PO _40_0¢
: BD 4D~ pe

But BD=DC. Henco pg- 0Q. Thus the mid-point of
bhe strip PO, which i 1ts C.G., lies on AD. Similarly the

c

will lie on 4D, and so
ina lies on the median 4D.

he same way, by
PS paralle] fq CA, w

C.G. of every str
the

ip paralle] to BC
.G. of the enfire lam
Exactly in 6

in stri
entire laming, a

dividing the lamina into

© can show that the O.G. of the
Iso lies on the median BE,

Thus, the required (.@.
Common, point

of the triamgle,

of the triangulgr lamina is the

of intersection, of the medians, i.e., the centroid
From Geomety
2 Y
the mediang i
tion of fhe m

Wwe easi]
1 the ratip 9 2511
ediang,

Y see that @ divides each of
' “e., it i8 the pojnt of trisec-

For, let 4, W, w he 4 ?
particles placeq at the he weights
N

v B, C of the triangular
. O the equg] weights w at B
» the midqe Doint of B(, Again, the
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CENTRE OF GRAVITY

i AD,
¢ a point G on
f 9w at D and w at 4 acts a
resultant of 2w ¢
where

AG : GD=2w:w=2:1.

Thus, the C.G. of the three P

eaiﬁ-n:
isection of a med
point of trisection iform triangu

i we
f tbe unl X . ular Jamina,
i e tats ioht of the uniform triang tices instead of
W be the weight W, 477 at the ver R
iy qual weights 37, & which case not only
m

ight.
A them,it‘.uc‘[e of the resultant Weig L
i s ina is therefore statzcata_l
o of one-third the to

ich is the
; is at G which 1s
arteLee o e
an

lar lamina ABC-.

it by e
may replace i o
placing any three equal “]c::
would be unaltered, but :f.f e ;
i -ticles, each
iy T;c:gh;,hai of three equal par
equivalent to

£1CES.
weight, placed at the vertic

les. e pyzact
-ve Examp A I AG, BD LY
AU et drilateral whose diagonals
18 @ QU
Ex.1. ABCDis

4 at the
3 3 Ut
b v S Clta BE SO h 7
If a POoL? L be taken W .BI) wel hat i) ()]) 7,
t T
f 1

CD.

-ilateral AB

the quadri

\EC is the same as thot of th [ C. U.1956]
iangle 4

C.G. of the triang

A

Tet I be the middle po nt of BD Then since BE= 0D, we have
— : 1 : 1 f : i i t of OE as “'811- Let Gl
o a 3 v I is the mid-poin b

d accordingly
BO—ED, an T I

G, =2 1. r Cibige
i that 4Gy * : E. Similarly,
be the point of Aj}; i;l"];s w‘;n as that of the triangle A0
i le )
of the friang

Then G, is the 0.G."
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Bz X(a) ] gin BAD ﬂS_izl_C%gs
DC — p) sin 4
G, being the Point on QF gy 3 ., BPorm om sin 480
ch that C@, - =9: f, is' the
0. of the . _ 2: @, F=9:1, G, is

Now BD=DC, - jp~ AD

5 { -0)
that of COR. T P, and p, be sin (90°+9 =2,

: 5 . °—g—pB)_sin (I

:'?derfo.ndmu]ar distances from 4 and C on BD., Then the weights Ly mf(:q_s%ﬁr‘f‘ﬂé—ﬂ— 15

@ triangles 4Rp wnd CBD being i i ir ares X 0=C)

s W o] & In the ratio of thaiy areas, are cos (ﬂi@:gﬂ‘i—(’(}_‘.

s 220Dy p. Similarly, the ragig of the weights of o, —in B Lt

he triangleq 40F and gop is als

9 cob C-+sin 0.
D B aee

3 = 5 —cot G)-
‘N .. cos 0 cot B—sin 0 :Z) .. p=tan™*§ (ot B—¢
Now, the Wholg Quadrilateral ABgp : 6 e i) %
¢ D : an 0=% (c
4BD ang ¢pp whose w 18 composed of the triangles . tan

eights act gt G,
nee, dividing GG, at @ sue
f the quadrilatera] 4BCD,

Again, the 4

and @, and are in the ratio on Chapter ze)
h that @, @ : GG.=p, : p,, i

e .
B rm triangular lamina

{ a unifo al particles
. e C.G. o three equs
riangle ARG is composed of the triangles 407 and 1. Show that t::ue point as that of
COE whose weights also act - t - : is situated at the san f its sides. 3
Henoo i 36 Gy and @, ang arg In the ratio p, : p,. i 1o he mid-points Of 1 B AalareloNl6
i ¢ the C.G. of the whoo triangle A7(Q ig exactly the same point placed at the niform triangular S (ot (BKHE S
> G2 whero 6,6 GGa=p,: p,. 2. The sides Oft-a:a;;r Find the distan
Hen 7 respecbively: ides. :
A ADC Ttﬂ;clslﬁgrtest and longest ¢ { a uniform trm.ngu.mr
e Ex.2 4 friangu.lar laming 4ABg hangs at re. o %
ing !

Supported qf 4 Jized

the verfices zq, 75- Find
With the horizoy,

istances of the VeI lane are 21, 47 1

b e dlsstraighb g mi::tslilvj_ﬂe. O

g e (ole ronite rtex of a triangle,

the distance ticle is placed ab sacl ;(emal to the length
4. If a parbl

: 1o being Propor £ mass will be
h parbicle hat the centre o
the mass of eac prove tha

yposite side, b gle.
‘ ofibaic] gﬁre of the trians : { the sides BC, C4, AB
| s F are the mid-points o 12, ms are placed ab
T Y may, M2,
5. D, E L& Masses

dﬁ,‘ﬁD,E!F' IE

/ sty one of the angles A
Powt,  Find the angl

malkeg € which the lower side

A |

; ABC. are place
| of the trmnglisses fay e ‘"30 G., prove thabt
{ A, B, C &ndtr?ns have the same L.
sge -
the two sy i g '=—7"an
et S s + 1 My 3
e yport & heavy triangular board of
le suf

If three men =¥
gi:t ﬁff at its three corners, com

pare the weight supported

» these tyw,
the samg Straight Jine,

; : ]
» a0d the reaction 4t the point ‘]f; each man.

: ywhere on a heavy
c4ual and opposite, acting in ; reight is placed anyv f gravity
If 9 by g aan T 1oevertical, , i ' Ul = -gwesmﬁa%ina; show thin thle cenErS 0Ug19271
8 requi TSR v an Loz 3 1angle. =
£ 4Dg. (90° ). 4uired inclinaion of BC to i1, sl Lo g uniform tﬁamglies within a certain triang

of the 8ys

\
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[ Ex. X(a)

8. Find the locus of the (.
is fixed and (i) whose v
vertex moves on g giv

G. of a triangle whose base
ertical angle is given, (ii) whose
en straight line, :

9. A uniform wire is
Show that if its C.
triangle, the trian

bent into the form of a triangle.

G. coincides with that of the area of the
gle is equilateral.

10. I the Q.@. of a quadrilateral laming coincides with
(é) that of four equal particles placed
ii) the poing of int

L ab its angular points,
ersection of the diagonals, show that
the quadrilatera] my
11. A trian

st be a Parallelogram.
gle of uniform rods of different densities has
its C.&, at

(i) the circum-centre :
(i) the In-centre

case, the densities are proportional to
and in the second case, they are
Proportional to cogeg $4, cosec?ip cosec?iQ
12. Thyeg rods of
to form

) unequal length are joineq together
a triangle ABC, 14 © Mmasses are equal, prove
that the C.G. coincides with bhat of the area. If the masses
of the sideg a, b, ¢ are Proportiona] tq btc—a, c+a-b,
2@+b—¢, prove that the Q. . is the in-centre,

13. A uniform wirg 94 inches Jong ; bent info the shape
of g triangle 4BC, the siq o st e.s 1 0.
Particles of Weightg p,s q,es e B W D

e it is
found thag the C.G. ig unchangzi],pla%d 2t 4, B, C and i

Prove that
Pigir=9.8.q7 7
Ifl" A thin u

Wire ig bent-into the form of
C and he:wy. Particles of

Wweights P, 0 R are
€ angular pojpge Prove that, if the ae tre of
mass of the Parficles coincides with that of tlhe ?v?r:efhgn

L ) B
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Ex. X (a) ]

i ABC.
3 triangle A
' ‘form wire is bent mt,oo? st
15. A thin éna O’;S R Ve -
Prove that its C.G.

T ively,
C respechive
b+c G_+q,rm+b eabANE) % U.1946]
o ; the sides BC, C4, 4B. o
e o the form of & triang

+ the distances of the

where a, b'
place

] int
16. A uniform wire 18 bent in

thab
) b, c. hroxe ides are as -
s danlos leﬁgﬁlir&ngle {rom the sl e
C.G. of the W o 2D (R S
e 'a, . b c

ds of lengths 9a and

AB and AC are two uniform rolmt E o distance from
17. a

=(, prove i
ectively. If LBATGOdS i
?ib rfeilpne C.G. of the two
0 !

3 U. 1939 ]
+b* c. U.
(a* +_2agbg_,cos_ﬁ, b%) !

a+b

n
] ]
fj ‘} 15 bl lﬁngﬂlﬂar l&mlnﬁl 3 pO]-nts .D E 1 are bﬂa]_\e
B &

. ch that
in BC, C4, AB, su il :
v f is the same as
0.G. of the triangle DEF is
Prove that the 1. it

' ced
that of the triang b+ec, cta, atb are plﬂb g
rtional to ’l lamina, where @, b,
19. Masses PIor® of & triangu &rthat oSG o
at the points 4, he triangle. Sbow e
U C;{ g;tige triangle joInIDE
the in-centre o

i C.
sides of the triangle AB

gles 4, B,
vy particles are placed E’J-t gl}ec.&nShow that
20. Three heiheir weights beng as af om 4 is
0 of b e O.C. of the particles fr
the distanc

9bc cos 34,
atbte
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STATION iy, X A f a right-
% 29. A uniform triangular lamina 12:}3? i";”ﬁ?in% attached
J130212’} The in-circle of briangle 4BC touches thotsidas angle-a triangle is suspended t]?i]?ie[?clinﬂﬁions of the s;deg,
o 4, 4B in D, B, FI‘GS]_‘)ective]y. Prove that the C.G. to the right angle. Show tha he vertical, are equal to their
res“;mt;g‘bbs Drol_Jort?[ona.I to B, Cd, AB placed at 4, B, C other than the hypotenuse, t?t e
Pla([:)eg ;.‘l'.’e}_)y S with the (.G, of the same weights inclinations to the hypotenuse. ccessively from
o FrESDectlvely. 80. A triangular lamina is suspenﬂ?g S‘; of any side are
o oUu. A triang two posibion J g
t‘.22, O 'S 20y point within the triangle 480 another the angles 4 and B n,nld tt};eeach other. Prove that
uaugfleils fonsned by joining the centres of Sravit\" G found to be at right a.ngnesr i
00 tﬁle A°BOC, o4, 4op. Show that AG, G, @, is . @it beg oGk
ar to A4Bg, and ig one-ninth of if, i

; o
having a right angle at C i

: B ina | ! kes an angle
‘ 31. A triangular lam! q the side AC malkes
?_3: Prove that the C.G. of four equal particles in any suspended from the angle -‘i :l?cfn suspended from B, and the
Ezzgmr; i }ihe Yig o 15 that of four other 1f‘-‘(lu‘nl I)a,r[;:ic(les a with the vertical. glitﬁ]“’ith the vertical.
O i i : ’ : p: n
ormer, Which is placeq ab the 0.G. of the three of the slde BC makes an a L%
Show that cot a cob f =%
.24' Uniform ¢y

i / biuse-
y of We]ghb Tl:/-, 0
32. A triangular lamind AI;(I’J;DG with its side BC on

angled at C, stands in 2 yertical st weight suspended

w that the lea
i table. $Sho

3 6 sides of g hegyy trian a horizontal

pectlvely; if it be

A 5 triangle, 18
suspended { gle are 3, 4, 5 res- from 4, which will ngrt;lnbghfcg
kst ; ended from the in. : e
16 will regt With the shortest siqe horii;ztgfntrex show that W a=

26. TW = e
B, are huggun&;marhi} » BO rigidly united at Interpret the cas
horizonta] i v the end 4

> show that B will be 33. Ti G be the centre of gr

| masses m, and ma ab P4 and Pa,
sin C= /g9 sin 2. s
27. A trisng

hen ¢ > 3a°% +b°.
avity of two pm‘tlcles' of
and O be any given point,

-] n‘l
0P+ +ma - OPs*=m1 . GP1 ("‘mi- Gfuoa‘ﬁ
t Ny » AL mq+ma). ‘
ire has the side Q4 ‘ ; e
the poing 4. Show that for Creneralise this result for 7 particles. (05 18E

acted upon by forces towards the

550+ 20) = o, 4 a)?,

*?l. A particle illswhi(ﬂl are represented hy_ A1 PA,,
Where BC =, Cd=p, 45— points 4, Azﬂ,..z.)A ey o flasike SR e )
i g [C. U. 7941 ] | jpt,fdby ------ o
i i ’ sen
ABG a.n%l ?sm:IOz;IpI:a V;we IS bent in the form of a triangle (il NG, o
%8 from 4 wil] o fEOm A, Prove g % plumb-line ' is the C.G. of the weights placed ab 4s, 4s,... 4n
. BC in the PoInt D, gyol that : where G is the C.G. . Jn respectively.
: D0 =

Satbig4, proportionﬂ.l to Ay Aa..
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ANSWERS

2, #,J6 and # n/6 inches.
iw. s, (i) A circle.
line,

3. ?T(z;‘i"zu'!'s:). 6. Each supports
(if) A straight line parallel to the given straight

10°7. Determination
cases ( continued),

VIIL. A wniform trapezinm lamipg,

Let ABCD he
zZium, whoge D8
2a and 9p respec

& uniform g,

rallel sides 4B and @
tively,

ming in the form of a trape-
D are of lengths

_é&et I bef the height of the trapezium, o the weight Pir
unit area of jgg Surface, ang Jet P and @ he the mid-points
of 4B anq CD respectively, Y

The trapeziym is Composed of three trj AP

angles, DAP,
fPB and PCp Whose Weights aye clearly Yahw, Tahw and
2.2bhw respectively, 7

So far ag the Wweight of D i
Eﬁvlaee it by thy | ADAP g b cerned, we can

r]angl g b 1 a ) A: P SIIDIIBI'].Y%
€8 can hg ye aced hy 1 i
ab each of P, o, I_)D °C OY dahw at eac

We thus get dahqy + 3bhw
3 ab each of D tahw
ab each of 4 and B, gnq Fanw +tahw *+ 4bhaw) :;J CL.C: s
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; esult-
ive rise fo & T
: t D and C g1
e]_ghts &

e 7, the
Slmllﬂarlyi
X int of CD-. rahw at P.

mid-poin ltant sa i
ant Fhw(a+20) ab @ hblif and B gwiagzizfl? @ and & Weilgslalrti
iclodusal WlEbLRREe i@ he weight of the 8
We thus finally Ib')e;: equivalent 0 ]
hw (2a+b) ab

lamina.

'The two equal W

such
,’.cfo)‘g (5]

; . the
The required C.G 2a +b).

(.
that PG : GQ=(G’+2b)

i edron.
unlfo]'ﬂl Sﬁlld tet
IX. A l'!].ll.

E be
i dron. Let B

orm. solig tetgah(x?j and Ga, pam%s
age OD, anE=2:1=AGg: g dl.
: G; of the triangular faces

if

Liet ABGD_bE 3{ E‘E; i

iddle poin ;

2363% and AE ,Gsu(;}:;etl;ﬁe

Dd a ’ ) iy

Thef)l &ia zOD SR ! itely thin triangular

i trahedron 8" ;nﬁn:Bec% and let PQR be
ivi he tetra il fs :

Divide © %

i triangular
lices by pl&neshpaﬁaé;il Ls troabed a8 & uniorm
slic iop whic
h slice
one suc

1 .
cent]_‘Old
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lamina. Now, 4p intersecting QR at L, since QLE is
parallel to ¢,

QL_AL_LR

CE AE ED !
and as B is the mid-point of ¢D, T, must be the mid-point
of QR,

Again, in the Plane AEB, which evidently contains PL
and 4G, if 0 he the Point of inersection of PL and AGy,
since PT; is paralle] to BE (as planes PQR and BCD are
Parallel),

o Ol orn |
Bd, 4G, G.E’
80 that PO_BG, g

Ol R T
Thus, 0 ig the centroid of the triang]e PQR.

. Hence, the C.G. of the triangular slice PQR lies on 4G1'
Similarly, the C.G. of every slice paralle] to BCD will lie on
AG, . Thus, the C.G. of the Whole tetrahedron lies on AG4.

by dividing the tetrahedron

S by planes paralle] to the face
can be showy that the O Nofthe  whole totra-
hedron g]gq lies on the line BG,,

i £k ] i I i i EBr
ﬁ:tersect a6 @G. Then (‘;v?mh oth lie in the plane 4

n 18 the requireq (.3, of the tetra-
NOW, AGQ . G3E=2 . lzBGl : GJ,E.
@13, is Paralle] tq 4B,
Thus, 4G . GG1=BG GG, = 4B ‘1 G1G,
=Bp . E@ =3 il;

Therefore the 0.@.
Join

ing any angulay
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-

fore
=14@G,. There

: i e that GG, =140y eI 0
We may nofteGln{:S:}i (:fy face is + of the dis

the distance o

B face.
opposite vertex from the hedron is identic
tetrahea
Cor. The C.G.of a ‘
Darticles placed at its ”Gmw;;mise to the student.
. an exe
The proof is left as

base.
i id on any
X. A uniform solid pyram

1
al with that of four equa

1 base
F the polygona
and ABCD

roid of
i he the centrol
Let O be the vertexs B "o et Gy be

1 rram
of a uniform solid Pyr2

c imilarly
11 gimilar and simi
the base. nto thin siml

ramid 1 1 to the base, as
By dividing the mlg:‘”w planes paralle

G. of the
1 n that the C.
situated po_lygona.%i :11; t can be show
in the previous ar y

' 4 : ints of the
whole pyramid lies gn t;oo ;ach of the angular pomn
Again, joining G

tra-
20 number of te
id is divided Tt’]‘:c: of C.G. from the
b ;v S Iﬁ?rc?imwbich th% dfeztex O from the ba?le.

drons, for eac ) { the 0 f i
-]ﬁiée is 4 of the{) _d:e?aécé oof the pyramid is also

the combin G

H‘;I]lg ed’isba,nce from the base.
sa

‘ ' 0G4, *
id is the point G on
GO A base, at
Lt .ﬁf;ié the vertex to the centroid of the ba
the line J01RLT

13
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a distance Jrom the base equal to
vertex from the base.
If follows that G.G=1@

XI. A uniform solid co
cirenlar cone,

lO: or, OG: GG1=3 gl

he C.G. of g Pyramid is true, what-
eve);3 be the numher of sides of itg polygonal bhage. ,
Y making the number of sideg infinit

: ely large, the base
:ar.ln Eﬁtlmately_ be made tq coincide with any closed curve,

© pyramid reduces to g cone with any hage.
A particulay tant case ig ¢
cont(a:) 5 Us We may state the resultg -
i e C.G. of ¢ Unifoy lid
on the axis op a hei g
Cireulay base, nkeg
&Sé1lgs’l;)1:16 t(}zfiine' Jniform geliq cone wi
ase, at a height 2 FERGaTo

% of the h
Thusr OG : GG

XII. A hono“r
uniform sheet),

By dividin
O.f Circular
since the Q,q.

and impor hat of g right circular

righty circular cone 1

of a un th any closed
_ erbex to the centroid of the
eight of the vertex from the base-
: 1=3:1in either cage.

right eirculap cone without page (formed of a thin

i;slllelconical surface intq a0l infinite aumber
of ea.Jcslrn Dlm};es' Paralle] to the circular base,
Such ring ig g 1t8 centre which lies

T of the distance of the

the height of the vertex from the
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(0] trhe cone, th AT
blle axis l (<} C (; Of t]lB Whole hOllOW cone

. . ! . inﬁnite
el (1 the conical surface into 81
. saoidinge e >
Again, dividing

te. with
ol B. R OBCRE Ty
' $riangular elements hke, ¢ < at 0, and infini
number of triangul® sommon Verte:

jrcular

: ares of the circu 2

2 tesmm({vhich may be tre&t%ises’

baset_ Ly straight) ash g

prac IC‘fse that for eac g

e e 0 e Rl e

SEincs f trisection of the I S
poinb of U 1 of the heig

- : i o e
i ve the gircular base

1 ; for
Oig and this 18 t‘.heﬂzsrtz::? o
cone,' h triangle. e
Y e cone, the heig

the wholeé;oll_ow

he C.G. 18 ¥
((:E Cg above the base.

reular cone without

of the height

w 'J‘IgM ﬂi " 1
e holl: sheet, 15 0T the awis 00 ab
7N 4

tex above the circular base.
el

Thus, the C.G. of

thin antfo

base, formed of @ (atd

A il
a height % of the hezghi C.)fl l
ThuS, OG 3 GO =4 . .

*®
jalcases: 4 0.G.
XIII. Some other special c: sroof, the pogitlons of the
; nut I !

itho - rence.
We give below,_wglgﬁses for ready refere
i 1a.l G it i
e g .\ A thin uniform circular are
P (@) A

9
{ a be the radius of the arc, 2a the
<\ o i centre,
gle subtended by it at the g2,
i . . l
i i 16 C.G. s on the radius bisecting
- —-—Sin & rrom the centre.
lsstance a fro
are, at @ @ =

(2 2a

arc this becomes =
Tor a semi-circular

-__—___T__‘____————'
» 10l 5e8 v,']l] be gl\‘eﬂ mn t}[le Subseque 11 (‘,l]apter
Proofs of these SPCCIE ci
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(i) A uniform lamina in the form of a sector of
a circle,
=] If @ be the radius and 2a be the
a angle at the centre of the sector,
‘ the C.G. is on, the radius bisecting
RO sin «
N A the sector, at a distance 2a W
Jrom the centre.
Q

For o semi-circular lamina

: 4a
this becomeg 3

(iii) A uniform goljd hemisphere.
If @ be the radius of h
the C. @. ;s on the qmis of the
hemisphere (i.e., radiug perpendicular

b0 the plane base) at g
24 from the centre,

emisphere,

distance

(iv) A hemispherical surface
formed of o thin uniform sheet).

R Bl (el on the amis ot

@ a distance }a Jrom the centre,

where ¢ ig the rading, -

ermination of C.G. for a system

(

10°8. Analytical det
materia] particles,

Case I,

of

_ ] B be the weights of 8 system of
pviirtlcles mfsua@ed oD a strajght line, anqg Jet their distances
4 ! Droper sign) be 2, Tk e measured from any
Xed point op the line chosen g5 origin,
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from O.
. &[ﬂely G, ver
» thelr C.G’-‘r n a.IIIB: howe
» = stance of is the s & us
Let‘m Hae %;sition of the O.Gg'mrhicles be I?E.ld’ leThe
e smcehés h?’ 119 containing bhehlo‘rizontnl pos.ﬂﬂlfn‘;re all
the straig An held in a icles which ¢ e
assume the line t(ivl:ieﬂhts of the Ei"::l_}_..., and ﬂ?s&gout
resultant of the_.m-asbis Wyt Wa ¢ of the resultan i
fo-ccully;rdomng ating the momen ts of the compon
at G, Helncfivli(il:}lgum of the momen
0 to the algebr

+aga T WsTs T

) p=waTs
(wy+wetwst ) 4or ZWX,
Y alll i
Wiy T wsﬂ"-'-r-]-—zgﬁ_l_s.. Zw

R=—2t—— = : e

o K=y, Fws t Ws the parbicles, ﬂ?tth
asses O{ - &150 wriie
be the m we méay

If my, mo, ms,..- °

S,
: he masse
Weights ave proportional 0 :

— Zmoz,
2 ituated on @ plane.
the particles a7 si
S |
Case IL: Wien/iTa LAY R i
s o 0
Y b .
""""" R
s
ml ------ - wi
__________________ ~ w‘
___________ o ?
: of a system of

eights a set of

: o "Zth;s referred 'G)O D)

Let wq, wa, 'J.Uss‘]']'ose GO'Ordmne are (@1, Y1/ W2

Darticles on o vllﬂne,';s on the pla AT

X rectangular & . e :

ﬁxea’ l)ec iy i of their -Glg finite, how-

T3, Ug),... the plane is he e

Bt _on o the p
A tﬁft Ewéifgi)o; of the Gi}(gld. let us 3{55;?; weights of the
eser Eh}aoplane Dﬁf"y 'Ehe resultant ©

Placed horizontally-
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particles, which are like parallel forces, beiqg all verticﬂlclg’
downwards, ig Wit ws+wg+--+, and this acts at G-

Now, equating the moment of the resultant about the
Y-axis to the algebraic sum of the moments of the
components,

(w1 +w, +w, + )@ =1w,xy +wa, twamg + oot
T b W12y +wea, twars+ - Swx
=—_——_ T ————— Y e,

: Wyt we + 1wy + -+» Ew

considering moments ahout Z-axis,

e W11+ way, + Walis++-  Swy

= =242 VWsla T SwWy.
W1t ws+wg + - Iw

.If M1, Ma, Mg,..

weights hein

Similarly,

be the masses of the particles, the

E Droportional to the masses, we may also
write
RN 7)1 R Xmy
TrT=——2: U] =‘;——-.
2m ;7 Sm

10°9. Given the weights and C.G. of two parts of
a body, to fing the C.G. of the whole body.

corr%se;ovgl and EVQ bef the weights, ang G1 and @, the
r nding centres o Tavit s
SR o 8ravity of the two parts consti
Join G, @, and divide i interna]] T+ 1 i
: 2, i ALY ab & in the inverse
Tabio of the weights acking af jtg extremities, gq that
- GG GG2=W2 Wy,
The resultant of the wej
both

Verbically dq

ghts W, ang w.
forces, ig Wy +

2, Which are
wnwards, and are therefore Iike parallel
2 aching af Q.
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ight of the
ltant weig! e
[ i here the resu soordingly
hf.[l‘hulf,dér > fé];e f;g:‘?:\,:r the body, and &
Whole body acts,
line G, G, is placed.

1 .G- nd Gg
D Gyt tho Eoa g distapoes o 2 o 1,
1 . 1Ga
from some chosen point 0 Ouotieglil‘.lrl:n by
then the distance z of G from
— W 151.4__-1?—"'53'
T=" 7, + We

t!
ions of & 3

It may be mentioned &

ts
Note. When the two Par

rtional bo take weights
the waights may be taken .gtoa?e weights ?gfm thin wire, the
4re parts of a ﬁniformhs"h"r'e parts of & un
to their volumes. If, b 213' to the lengths. hole body,
may be taken proportions w

C.G. of & TG "of the
iven the weight ?ndto find the C-G
10°10. Sy e T
and also those o0
Témaining part.

o of graVitY

he centr art
weight and Cg the C.G- %f‘/’z-"-p 1
Let W be the whole eight and 1ng parb 18

- the welg ,em&iui
Off a bod'l';["l a‘ndtthiveight of ther of s a.ctingl
of it. nen 3 e ralle
Let its ¢.Gt. be ab th G heing G which are 2]1;1? l?ﬁe, Ge
: o ral
at qc';hel;ngf %5{2[;‘%’191 “cttinﬁe&zn thehssglslgesma
1 us G, wib
IQI'GES, G:I.v G, Gg'msi eof T
being on the t?liéoc:iti(ﬂ;_. Wa): W
GLG 0 . Wlf'G;LG'

B

GGs “W- Wi
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This gives the Position of @,, the required C.G. of the
remaining part, ‘

Ana-lytica,lly, if 2, and z be the distances of Gy and G
measured from any suitably chogen point O on the line

joining them, the required distance Zs of G5 from O is
obtained ag

Wi+ (w=7,)
whence, g, =2~ Wiz,

g=WaZ1 + (W=7, ), = W12y +(W = Wy)zs
W

1

This resylt for deizermining %2, giving the position of Ga,
may he interpreteq as follows :

Assume T acting at @ ang g negative weight 7, acting

186 Gy, and use the analytica] formula to find out the
resultant Q..

Note. The note given below the Previous article applies here also.

. lllustrative Examples,
Ex. 1,

The distances of the angulgy points and the point of
ntersection of 1, diagonals of 4 plane uniform quadrilateral lamina
Jrom any lin, n it dand e; show that the distance
of its 0., from the

8 plane qre a, b, ¢,
same line 43

z’;(a+b+c+d-—a).

e 0

1]
b .

<

=
=3
=)
=)
g
=
=
=
=3
2
—
(]
B
&2
o
©
S
=4
jor
@
—
3
g
(=}
b,
(o=
w0
[
&
S
2
B
=
Q
o]
&)

:
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i d thus
i their areas, an
i ights W, and W, are proportwn&é to e
%e weights W, « and C on BD,
if AM and CN be perpendiculars from 4 R
I.BD Anr_g':(a:_c)m_s_c
W‘%g@\f“ﬁb:m’v‘m e Jine X¥ ]
o i iven lin
Lo being the angle made by ARC with the g

AL AT SRG) elghts
j a8 ass can bo roplaced bY triangle
triangle 4BD that of the
Now, the weight of the d D, and similarly
éwl! 'Jlﬂrn %Wl at 4, 15} (3 1

. o of

- t C; ‘B' D A to those 0

OBD by weights §1, §Wa, 3Wa 8 drilateral i ﬂ‘l‘uvnil;n; at 4, B, C
4 he gquadrl '}(Wx‘i‘ a

Thus, the weight of t $Was

from the
+TF2)I ired 0.G.
the particles of weights s g’:Zldigmnca of the requir
fnd p respectively. Thus, 2
8iven 1ing XF¥is oA
@3 W, + (b+d) H(W, + W) EC:
g=8'7 LAt

R re—a)rele=d [ from(i)]
Liale—a) Bt abTT
= a—0 —¢)
! (o~} alamg £ A=
S 0 p+o+d—ok .1, AB=0,
=3 (a-i-c—c+b+d)=§(a+ . Jamina 2 ere B 8
m roctangte’ 45 removed W1
e
Ex.2. 4pcpisa “’”fL oz ar portion z a %
Sband g >p, A triang
b v =D,
Poing i AB such that BLC G. v b
W that the distance of the C-
Y the Temainder from AB s
b (3a—1)
3 (2a— b) AD. £ g
T its distance from f‘ the A distances
: The Whole weight W S the is af G Whose
Eect"‘ng]e is abs, where o i8 and B 0.G. 1 9
rf&ce 3 laming, ively- . %g, and 1
e density of the iar respective .on CBE 18 3o wen to b
B and AD are 3b an moved portt 4D axe easily 8
a :

Te
O 89N, the weight I, of O e
%'G' S at G, whose distances

nd (g 1b) respectively-

AB ant
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Now, as

, &8sumin

i g a whol i

. 6L, T e weight W
given by the re

at G, 3 . T ve w [[
: (', 'Lnd & Debﬂt‘i e Cighh

ATy n&mely G,, from AB .‘
qu E!Zd G 21 18

abo.3b —3b*
Eg;:?,g,j*%uima b(3a—
A (a~3b) =s‘(g;:3-

Also the di
e distance of @, from A
is given by

abs3a—3b%.(a—3p)

e fo—4)_jar—
abs—3b%s —-—i)(a':%b)_=3ﬂa—‘3ab+bn

(a—4b) 3 (2a—1)

Ex. 3
bk
Gt quare hole is
al of the square baiazglmnchcd out of a circul
ircular laming, the

cenire of :
grav a radi
ity of the remainder isad;us of the circle. Show th
at a distance . 1 chag g

f e cent L
f e cv €y Wiey
rom ﬂ nire o ﬂ ?‘(:Z whe ‘e a 18 ils d!a??lcl:e'?

[ Allahabad, 1945 ]

he lamj
Ting, the weight of the

centre
. g its diam
eter), and
’ the C.G. i
.G, is at the

The Square porti
—ay "°0 Punched o
73’ and its we B Sevinziala:
eight is ¢} a diagonal ¢, j et i
st . 9 its side 18

GG, = 1 1 o, the Q.G be
2 , ¢ 1 V.
{ ing at @&, where

ape
2"4::1.
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ta’c and if its

is therefore jma’c —
ts at

T .
L blle weight of the remainder
G . be at @,, we get, since the resultant OG- of the two weigh
vand @, is at G,
ﬁa"'a’(‘ln’-—l).GGn:%“?a‘GG'

or, GG.= GG uip JolTes ArE
3=gr—1 4(@r—1) gr—4

4, b and 6 lbs. aré 1 angular

12 incheés rder. Find the

ye of the Tiexagors

E L
I}Ointsx. 4, “"-"lf]his Of 1, 9, 3,
dista of a reqular hezagon of side
istance of their C.G. from the cent

 regulst bexeEe”

vely 5 W€ koowW

h other at O
ro all equal,

A .
Where B|' 0, D, &, F beit Jomt: 0
fromthhe weights 1, 2 3, 4, 1:;;?[‘) 5
B g e 0,
ry that the dingonals 4 ) 00 T

o
Q%hcentm of the hexagom *
equal to the side of the he¥® t.at 0
: . Whe at 0.
Sim.}{qow, D dulat and 1 1b. ot D a1 eQuwnlel?b;;zblisf 4 Tbs. Wi
1larl bt i i
7. 9 Tbs, wh. at Bond 31%% g ‘?)s i 86 F 87 el

at (o)
, and go also 8 Ibs. Wt 88

4

6 lbs‘ wt. at O.
d 8 lbs.
Thy ; ; O st by O
s, the given system is equ;;;Fﬂisa thombus, & a so DF and
and 8 1bs: wt. at D

Wi,
each at D, B and F- Agail: !
d so 3 1bs. vai

O/ 1
o ebcht each other at H: ant =
Quivalent to 6 1bs. Wt 36 &
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Thus ultimately, the given system is equivalent to 12 1bs. wt. at O,
61bs. wt, at 7 and 3 1bs. wt, g

B, and so the combined C.G. of the
System is on the line Of at a distance 7 from O
that 0B =19 inches anq OH=6 inches,
7=12X0+6x6+3x19 79 g
“ST T5rers  —51~8 2 inches.

Ex.5. 4 Dile of six Tupees rests
Tupee projects the same distanhc beyond
Possible horizontal distance
Tupees,

01 @ horizontal {able and each
one below it. Find the greatest
cenires of highest and lowest

[P. U. 1937 )

between the

Let r be the radius of g Iupee,
ance which each Tupee projects b

rred to the centre of the Igw
distanceg of the centr,

dist,
refe

W its weight, and let & be the
yond the one below it. Then
est rupes gag origin, the horizontal
8sive rupees above it are respectively

Thus, the horizonta] distance from O of the
Tupees above the lowes

tis
= W + W20+ W34 Wda+ W55
IR e e

and in opdap that thig System may g |

combined C.G
verbically ahoye th

this, the conditio

alanced by the reaction of the

: Of the upper five Tupees must be
¢ surface of th, lowest,

n ig
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r X(b) A
1bs., y
) lbs" 3 = F" 4),
] hose masses aIe ! lil’ 0), 3, 4)’6'( a;:)es of
1:’ Pnrtlcleslwced ot the points in’d the co-ordin
?&1 4 5 %bs' M(e 13~ﬁo) respectively:
»=0) and (-5,
their 0,3,

2. TFind the C.G. ?f
Weight 10 1bs. together A
Dlaceq at its four corners <

Examples on Chapte

CD of
late ABC
o uniform Squmgop gO, 40, 50 Ibs.

10 ol = ) 7
withBng};}tiespectﬂ"‘tnc" U. 1945 ]

nd 6 ore
4; 2 E],I]l rder,
ional to L, 9 3,n taken in O
3. Tf masses proportion® Jar hexagom

he hexagor:
: egu tre of b
Placed gt fho vertices of & T at the ce%

d
is 5, 7, 1, 6 88
*0W that the centre of Dlas: les of Weigh{:}:giﬁlihgl , B, G D,
‘t1c lar
: 0.G. of PAXUS e e b
11 i’l-bls‘ 'E‘l;‘nc(l({,l:;?lccesSively ﬂlt the d B.t the

ce

s o0, icles plﬂ'

£ of a regular hexago equﬂl Pf"rt"]'31
ven

; f se enulﬂar
5. " Find the C.M. of seVel = ints of 8 FeB &
a'nglllm: points of & regul&l oClds : polﬂbs ' Show tha

ngule
8. At cach of n—1 of the &

: ( o
particles eircum
Dol ides, equal T the _

thg&rgun of n side _radins:

. froll’l
distance of the C.G

; circu™ Jength &

Dolygon Sl R i the s each of

- iy .M. of thl'eefquzual’e' drilatersl

: Find the C.M. of WW72%0 u
fOrmsngEt‘ﬁdcg:ecuti"e gides © i 1(14 Iuchese;hz
. M. of the Pelinc es ® " gides are
two& Fing th.e O'loi lengths 6i;he othe
pan. 2f Whose sides her, whil®
B&Fallel to one another

i A, B
arbicles fnd the
Icheg long. ¢ OfB thg ﬁua o, 4
% & pO 3 { 3
B L BT 7O e
O 8 positions o ﬂdrilﬁ'ter o the 2
G, of 4, B, o of 'ghts pjﬂ.cel bub negably
1o, Show that the C: eqU IWQIG e of etlm"a'ls.
g of four pa.rticlfis 2, afth pa‘:fl the diagon
Orn ith ‘ol
‘Weigasbﬁgeﬁtﬁrtﬁlinterse" ;
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11. A4BCD is o quadrilateral laming, whose dmgonjlg
infersect at 7,; I/ ang N are points on the dm,gonTnaiSDL
and BD respectively such that Ay =CL and BN=1 ds‘
Show that the C.G. of the quadrilateral ABCD coincide
with that of the triangle LMN.

12, Prove that the C.G. of a uniform triangular lamina
of mass 27, bordered with thin uniform rim of mass "’”’t_:
and loaded with g particle of mass 4m at the in-centre, is &
the centroid of the triangle,

13. A uniform rod, 18 incheg long, is bent so that the
two parts 8 and 10 inches lon

g respectively are at 1‘18\1'1;'
angles to one another. Fing the distance between the C.M.
of the new shape and the original.

14. A square 4BCD is divideq into four equal triangl%s
by its diagonals which intersect af O; if the triangle 0{1
be removed, fing G, the centroid of the remaining portion
of the square.

15. The sides of a parallelogram ABCD are bisected ab
o B T H an the poi on of the opposite Slde?{
2 8 meet at O, and if the smal

€ removed, find the (.G, of the
remainder,

16. D, B, F are the mid-pointg of the sides BC, 04,
4B of a triangle Apg. 11 bhe triangle DEF ig removed,
show that the 0.G. of the remgq

inder will coincide with thab
of the whole triangle,
LT Qg the C.G, of the tri

langle ABC. If the triangle
GBC. be t€moved, find the distance of the C.G. of the
remainder from A,

18._ From g Uniform triangulay laming, 4BC, a portion
PRBQ is rémoved. Fing ghe Position of P g4 that it may be
the centre of Eravity of the Temainder,

19,

. e ti FGE is
) » Bhow thqat the 0.G. of the 1 e
a distance T2DG from D,

emainder ig on DG at

| 20- :[ ]I.e 1T 1(1(l]e p tl tIWU ] 1'(183 OE & 'IlnlfOI‘]Il
a'].OD t ] e . G Of the I&Iger port]oﬂ.
i g lln Flnd the C- .
n .
g he o1mnl

: ich AB and CD are
; trapezium in wéng?bively' Prove thatb
21, ABCD is & ths @ and b 1'(.3 111)1 the side 4B is
parallel and of ]llen(g]_G. ot ABCD fro
the distance of the s
3 atb

C. U. 1944 ]
trapezium. :

h being the height of the

DE is
o DE, Where
griangle 4BC, po; t}jol?ezéhe distansesczf ;f;
e 82 distan
22, From a tnl il 10 that the
C, 1s rem show
parallel to BC, :

f[Om BU alr l ]) ti\'els’,
E respec i

G’ Of t(i:le I‘Bmﬁ:inder fI' 1
the 0. . V .0 BG s

~ 3(a+b)

[C. U 1938 ]

f a given
-om the corners o S
fang be cub from -espoﬂdln.g opp
23. If equal triansles 0 (1 ire o imcide with that of
¢ 'an.gle by lines dra;;g I;emainder wil
Tl f
3 G. o
sides, the C. )
ShejtElang e ABC, three equz’]l_.i::gles ABC and
4, If from & ﬁl‘i“’“glihe 0.G.’s of the
2 % ‘]_t Oﬁ: d
BPE, CQP be ot ent. : te, G i8
PQR will be coincid f a uniform quadrilateral pla
i C.G. ol &
25. @ is the

and
t its corners, an
al particles placelclr‘;ve that 0, G, G are
the C.G. of four equf its diagonals.
is the intersection 0 '

collinear, and 0G' =3GG -

of

& Ammimoinlﬁiéotﬁ:mgu
i 6 0. Ak
lglisdli‘:;g eél.t;f !;f the remainder

: rts by joining
D is divided into twto i}if:ting e
97. A square 4BC ¢ BO. Prove tha ey
A to B, the o e ABE to that of theq
(4. of the tri
the C.

: - to AE.
: -pendicular
ADCE is per

‘ CDEF
sular hexagon 4B
ﬂi;: T)E}:{;;on 0OAB beremoved,
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28. From s thin uniform triangular bhoard ABC, ﬂfe
portion constituting the inscribed circle is removed. Prove
that the distance of

the C.G. of the remainder from the
side @ is
A 25° =3/
3as s — A

A being the area, and s the semi-perimeter of the board.
29. From 5 un

out a circle whi

iform cireular
diameter ig 1.

dise of radius 7, is cuf
ch passes throu

gh the centre and whose
Find the 0.G. of the remainder.

[ C. U 1940 ]

disc of radius R, a circular
dius 7 ig DPunched out

» the distance between the
WO centreg being ¢, where 7+ ¢ < RIS et oIl
of the remainder ig 4 a distance
crd
‘ Ra—__‘rﬁ

from the centre of the dige,

‘:'(_ii) If any portion of volume
of bodies (of total volume ¥) be 4
thn, DProve that ¢

(v) of a body or a system
he displaceme

isplaced to another posi-

: nt GG of the centre of
T8Vt of the whele is paralle] to 99’ the displacement of
he centre of 8ravity of the Portion and its amount is
given by
GE = ) [c. & 1950]
31. A‘Square is d.escribed externally on g side of an equi-
lagf;eral triangle. Finq the C.G. of the area of the combined
ure.
32

) t into two coplanar
. » 7, touching each other externally.
prr e distance of 1t8 centre of 8ravity from the point of

[C. U 1946]
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. {
; into three sides ©
niform wire 18 bj?ﬁ)tilsn trganhing- Show
83. Anpleco of TM/CHE e side ints A and B success:
a square ABCD o up by the two p'c:;'ons of [BO 8TkBILERCEs
that if it be IEHFS(-,ween the tiwo positl
ively, the angle b

§ seom rods firmly
: a] thin uniform roc¢ each
three equa BOD heing
34. 4B, BC, o% s BnalesAB0 mz;ile point 4. Show
ioirted nopl2 9‘nt;aem’is suspended {rom
120°. The sys
that CD is horizontal-

jght circular
f gravity of & hou?;:mnsgbeet, is the
35. The cenfre 0 made of & thin 11]1};1;5 its vertical angle
cone closed by & basi'-as solid. Prove
. e y y
e ae Lt hose height
in” = % W
is 2 sin™* 4. 1id right circular cone
'for!Il s0l1 =}
36. A uml

18 d() 1 t t Oi t bﬂs b o i. 2
1 rom
(] ame r [ h e, S 5 I
1 he 1
ble Of e e 1 un up

W its axis makes an
f the base. Sho that its

1 he rim O _
point on t

L tal
o .t he verbica ; ‘0 sheet of me .
jueloiotel T ed of & unlf‘?rm E,}flma,shollow‘ hemi-
37. A buoy 18 {(ﬁg]w cone s?andll?gvertical angle of thc;
in th:e form of a ho n base. pig tﬁe be at the centre o
sphere with i %%TT:mbiﬂed C.G. may
cone, so tha

the hemisphere. :
What would be the :]:?r;:jlsila ;
the hemisphere were bo

; hed to a solid
. cular cylinder 12%‘525%013116 heigb_"‘ of
38. A solid right 'EELSG- Find the 1':0 that the combined
hem{Sphere o eg;I: lra.élius of the base
the cylinder o

e base.
C.G. may be at the centre of th

ding resulb if the cone and
ol

! id right
id right cimul.a’ 2 cyhndgr,oft' So’lﬂl‘idnd the
39. Froma solid ;ame base 18 Bc—ot;P;he cylinder if the
circular cone on tth? the cone to {;];at, c:}{ e
e off ;311116 Pe‘i::gn%n;er is af the vertex
0.G.o er

ertical
ight ciroular cone whose verticel
. I]ght C':Ereu 4 oopea out.
40. From a unlfg;gt‘_'e st possible 513%@:8;‘[?&?1?661' divides
aﬂgle 18 Got,ot}]lg E‘vhlch the C.G. of the
ati
Tind the T

the axis of the cone.

14



210
STATICS (mee

:{:41. A "fmst
k um of g ¢ .

upper portio - @ cone is formed | :
to the base. nT(LfearS%l'l‘d right circular con;Yb;u)tlf::ng off tlhzi
B and 7, and 1 tﬁ( IIhOF the parallel circular slect?e pa;a} 7
height of the C.G fe eight of the frustum, sh ons be i
«Gr. of the frustum from the b’ show that the

ase is

ﬁ Rej‘ Q_Riig?.ﬁ
AN

3 > P&Ck of cards 3 ¢
projectis i . ¢8rcs 18 laid on
the one beli(féeif I_I.efctmn of the lengat;htu?flet_"hﬂand each card
that the distance,sl bEa.ch projects as far a e pack beyond
cards from the to ebween the extremiti DI Ly shpw
P will form a harmonical 11?8 of successive
1 progression.

EASEAN T
: in hemispheri
a weight 7' of spherical howl of we; i )
of inclination ¢ t‘gﬁfr and rests on g r;;elhght W contalns
e horizon. Show ﬁh&gt tlmclimad pfliﬁe
e plane of the

top of th
given by il maikes o angle ¢ with the h l
e horizonta

W sin ¢ = /
$=2W+ W) sin a. [C. H. 1955 ]

1 -g0. ANSWERS

2. The Q &0
1 .G, divi :
CD in the ratio 19 ‘lf;s the ling

4 On Op, gi
, dividi
t vidin -
he hexagon, 8 it in the ratip 5 27, where O i ;
X e O is the centre 0

. )
loning the middle points of 4B and

0
Tequired (., ig iizlii

7. Ata distance

gul. .
a 3T point, and O the centre, the
distance 340 from 0 '

the cent a from
Te perpendiculny o th:}:ﬁ-zentre of th
1 dle ro('[

8. In th
Lo 1i . .
dividing it ° e joinj
g it : n 1
1n the ratig 17 73 the midqre Points of
i e parallel sides

0 Pl’Oﬂchd at

8 8 A
quare, on the line from
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13. 2& 2 inches.
14. 0G=20E, where OGE is perpendicular to CD.
17. £4G.

15. On OC at a distance 100 from O.

18, P is the middle point of the median AD.

90. The C.G. divides theline joining tho middle point
sides in the ratio 4 : 5, being nearer the base.

26. On the perpendicu]:mr ON from O on DE, at &

sof the parallel

distance 5ON

from O.
29, At a distance 5%3 from the centre of the disc on the line joining

of the disc to that of the

g1, At a distance fi;*‘f, N3 a from the yertex of th
where a is the side of

the centre of the square,

tole, produced backwards.

the centre
e triangle, on the

line from the vertex to

the triangle.
N AP
MO ) ; 60°.

40. 49:11.

32, re~7. 37. 2 cos"(
38. 1:n/2. 39. (2— N2) s L.
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b E OF GRAVITY (Continued)
ALYTICAL TREATMENT

l ] 2;2;‘1: ----- TPEE lsvlng on
Of their centre om a fixed point
i o Ty, o)., s, Ir 1 poin
given by gravity (C. @&.) ornceixhtig 'v]; the dEStance
of mass (C. M.)

e - (1)

(i) We have
h
the syste © have further :
. m of partj S‘%Bn in Arg .
points whogg co-oﬁ-&tizrlnii’eslymg in a pia]ﬁ(e)a Sbfe(?a_ie i
referred to fix. situated at the

on the
Plane are
5 @
@ co-ordinates of (thléiihc);’ (@2, 7,) de rec)mUEUI&r axes
 C. Q. are pive\@n Yn), then (3, .
glven b 3 en \&, ﬂ)v
—=;mx y
O N T
-~ —\;—_
= - (@

Where 3
m
Z stands for e
1T My + veene

85 Whove, theuy ° Iasses |
8 1gid bede o 18 eing sif
gld body, then Wa'e cUntlDuOuS dlii:ﬁflbitélSOIated p()lntg
t 1on of mass in

:r£OSiti°ns of C. G. for
nbegration ag i]1yets e::bplane area, volume
ustrated in t}q ?:,ﬁ Principle with

Owing articles-

(2) can |
De wWri
T = >Tim ritten ag
Zdm ven
e (ll)

.
e

and =
m=@m, e fL

e, VT =1ém

‘ Som, SN C)
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)

where sm is the element of mass ot any point P and these
can be written in the notation of Tntegral Calculus as

= _Jzdm 3
£ [dm 2
— [z dm, —_[ydm SN (4
and o= Tdm YT fdm - @

d throughoub the whole of the mass

where integrations exten
£ the body-

of the required portion 0
ite Integrals.

ntegrals will be const-
egrals obtained in
@G. of the different

10°13. Important Defin
The following results of definite in
1y the evaluation of int

antly required 1n nablc
connection with the determination of C.

kinds of entities.

s i : s .
(A) F sin’z de =.-5 cos™w dx (n being @ POSTiIve integer)
0 0

_?1:,1.7,1:%.&';5......:”:.1.51

s U 71.-'2?3—'4: 4 2 2
Rl ORE 1N 2.4

o S TR e Bis &

according as n is even OF odd.

i o QA .
(B) 50 gin™z cos"z dT (m and n being positrve integers).

odd, say m is odd, then pub
wers of sin @ in terms of cos ©

d as the algebraic sum of
Tf » be odd, then

16 one of the indices be
x and then express PO
Tt would then be expresse
tegrals each easily integrable.

2= cos
7,84y &
geveral in
put z=sin .

1§ both m and 1 be even integers,
in @ or vice versa an

in terms of s
qeveral different integrals of the type (A).

first express either cos &
d then it would reduce %o
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(C) Those Who are fami]

functio 1 i
1S may use the folIowinlggm;orEltIh Dete' and [ Camy
ulae :

Lo
i ; m+ 1
(1) ,[0 sin™g cos™s dy = 1 - r(T)r(?}_;—;)
2 I“(?LL +n+9 )
2

(11) J'!mSin" AT n+1
o LT
2 g Jo Cos" dp = %r 2 r

B |

—_—_—

()

s gé.whether n is integer

where I(3)= ks

or fraction, I L(n+1)=pT(,

er
® " and 7 are pos;

10
3 ::, C.G. of a thin rod,
hen the rod ig UNiform,

0O B
Fats Q A - Let 04 be a rod of
Let P, ¢ 8th @ and let us take

i b ; 04x :
dls‘;tgnceg @ &ndzi‘? Belghbouring po; as the z-axis.
ensity and . 1. % tom O points on the rod ab

a be the Hnif’ 80 that PQ =gy, T.et p be

en f:-he e
a €men orm 0
e constantsg, b of magg om af ciossa‘SECblon of the rod-
Tet ; = a.6zp, where a and P
he ¢ . b
m h
Oment about Oe ,S,J:fl;]ance of its 6! a ¢ ]
. ' W6 haye . drom 0, Then taking
Hleymnys A ¥a 3z pe 5
tants a, im)—- <2 oz ( iz

on lei .
ding both sides by the cons-

a
b J' z dy [1 a
= 0 = mB]
a L2
T e da S ;
EZlngS of inhEg0 [m] 2° s (1)
rati
o od 2 vy 8 fragﬁlog 1;ma taken gg
usr ﬁze O 0q E'11(3}:1 3
Q. : , since for the

O] a 'lt??.'?
2 or 3 ‘
2 ,il. WMCi z g
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(ii) When the rod i8 of variable density =
Suppose the density p abt the point P be & known func-
tion of its distance from one end, say ©- Then p=/f x).

Here proceeding s above, the olement of mass oM ab

P=gbz.p=a su.f ().
a3 aszf(@) = Saszfl@)a,

- o 5f(e) ow=Saf(a) 68, dividing BY the constant d-

50 af(x) do i )

JipiE e
Sz fl) dz

known value of flz) in any case, and
value of © is obtained.

point of the rod varies
. then f(@)= x®: where

a‘;-'_'—

Subsbitubing the
integrating, the final
if the densiby ﬂ:t any
as the distance from the extremity 0
Kk 1S & constant, and therefore

a a 2 A5
r—SO mf"dm/ﬂomdﬂ:—— 50 (3)

n of a rod at @ point P on it and
t length) is called the
ty' is usually

For example,

Note. If ¢ be the cross-s(qctio oo
p be the density there, then ap (i.e., TNASS per unit le )
line-density of the tod ab o BY the §1nglc word ‘densi
meant volume-density i.6., Mass Per unit volume. -
If in the case (ii) it is given that the line-density A at any psmf, P

varies as its distance from O, then dm (the element of mass)® @
would be A dz. Now Wwe can proceed asin (3).
CisEs i e e

sm (=element of mass in length PQ) lies
re the greatest and least

* Strictly speaking
A 0w and Al0® when A, and A, &

between - 7 =
values of A in PQ. Since we assume A is continuous and since 8z — 0,
Sm —> A O 3 thus with sufficient accuracy for our purpose, we can write
sm=An 0z

Similarly, strictly speaking, the distance of C.M. of PQ from O
lies between & and o+ @ and henee is equal to - 0.3, where 0 <0 <1
which however tends to = as 50—>0. Hence, with sufficient accuracy
for our purpose we take the distance of the O.M. of mass dm from O
as o

In the following articles, the above principle would be followed
in considering the element of mass and the distance of its .M, from .

a point or & straight line.
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10°15. ¢.q. of an are,
Let (z, ) he the co-

P.9s =element of mass af p (= dm).

Let (, 7) be the co-ordinates of the (.G, of ¢pe arc AB.

Then, ag in (4) of Ars, 1012, we have

fam fpds’ = ‘&l—ﬂ-'?’-?‘ = J:E?L.@f. e (1)

When P is constant, the formu]g,

(1) becomeg
s_txds _ ¥ ds
S @
The formulm (1) ang (2)
the determinafsion of the
easily transformed When the
in Cartesian ¢0-ordinateg (
polar Co-ordinateg,

are funda.menba.l formulae for
G. of an 9T¢ and thig ecan be
quation of tp curve is given
genera] op Parametric), or in

217
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»

th ﬂ-ppllfm.tlon of thB above integrﬂl th g
Note1, In e 8 e IO].lOW in

h ld e = 3
ICEUIbS shou b nof d. H' hen the equatlou of the curve is

() y=1), as=,\/ + (g’”l i

(i) z=/(0): ds=¢;(§j)“.dy 2
(i) a=a0), =900, ds= o/ (Z) +(&)" @
(iv) f(r, 0)=0, ds= \/ W do.

ds:JH—(Wdr.

‘Lud @x=17 COS B, Y=7 sin 6.
e h G Go in such cases 18 gcnemH? not on the arc A B.
Note 2 The

ive Examples.
A G. of an arc of a quadrant of the circle
Find the C.G. o

i ¢
ot : ositive quadrant, p being constan
z?+y?=a’ in the p

Y4

A

Ay
.

s § =
Here, y= "Jd,u_m”’ s dm ;\/G"_ma
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To evaluate the indefinite integrsl in the numerator put a*=qa* —2*

(we can also put z=a?—? or g=¢ sin@). .. ads=—g da.

g=10ds_

o2
a0 onmia i '[ : _1;]«@“3 =
SOJ\/E'I:x.‘dm 51N’ lla 5

Ex. 2. Find the centre of mass @,

of a circular arc of radius a,
subtending an angle 2a radians at the centr

€.
B Let O be the centre of the circular
Q arc AB and let /AOB=2a. Let
P ; M be the mid-point of the are AB.
Join OM, and produce it to X and
9 G M X take O as origin and OX as g-axis.

Now, /A40M=/BOM=q. Thus,
from symmetry G is on OMX.
A Let 0OA=0B=a and 0G=3. Let
£LX0P=y,
For a circle we know r=
0=—gand q,

+a
Smd’s S a cos f.a do [siu 6]+a 2
e E=‘- _J-a SN a

a, s=qf.

=]

$=a 80. Tor A and B,

-
Bl A d-a_ ()
Sds S *adn [a]“ "
Cor. 1. For 4 semi-circular ape
2a=m, a=3m, Y
$ e aﬂ’)_‘h =2a,
™ ™ M
Cor. 2. Tor an arc of a quadrant B \\
+ Of circle, a=2r,
. 0G=g8ndr 94,00 1
od a __-*_éir = ——;ﬁ- s G
If the two bounding diameters
04, OB of the quadrant be taken as 0] A X
T-axis and g.

8Xi8 respec tively, then
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(5‘77) co-ordinates of the C.G. with reference to these two as axes
are O@ cos r, and OG sin 1,

i€y T=Y=t [ See Ez. 1 above ]

Ex. 8. Find the C.G. of an arc of a quadrant of the astroid
T=gq cos’¢, y=a sin’¢ in the first quadrant.

For the point 4, y=0, .. $=0,

For the point B, y=a, .. ¢=4im

Y
B
) A X
(22)" +(24)". agp=3a si s ¢ do.
Here, ds-—",\/(g—;) +(C—{¢-) d¢p=3a sin ¢ cos ¢

Liet (z, 7) be the co-ordinates of the C.G. of the arc 4B,
3 &

— [wds -_Jyds, - (1)
m.—.l_j%‘%v Y="Tds

>

i 3 — 3,2 i RN
fa:ds=so a cos’¢ 3a sin ¢ cos ¢ dp=3a 4. c0 /

i co

=3a? S; a* dz ( putting z=cos ¢ )= = a®. e (2)

J'ds=5 3" Sa sin ¢ cos ¢ dg=3qa S 31.- sin ¢ cos ¢ de
=3aS ; 5 dz ( putbing z=3in ¢)=32-a. - (3)
[y ds=s zw a sin’¢ 3a sin ¢ cos ¢ dp
© =8q° S zﬂ. sin*¢ cos ¢ de
3a*

=38a? S; 2* dz ( putting z=sin¢)=gg. v (4)
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v T
: i . = # 36 d6
s __3a%f5_%a —_8a%5_a, Again, Syds—g 7 sin 0. 2a cos §
() ( ): (3)1 (4)5 & 3“12 5} = 3a/2 s 5 ! i
Ex. 4. Find the position of the C.G. of the arc of a semi-cardioide. t =§(’)T Ao AR S o
Let the equation of the cardioide be »=a (1+-cos 0§ |
e be r=a (1+cos 0). . —gg? S;’ cos* 30 sin 36 df.
i ‘ :
J Putting z=cos 36, dz=—% sin 36 @0, and when 6=0andm, z=1
Q

P ! and 0.

1 5] S G RIS 4
S?f ds= 16a* SD 2t dz=16a’ [5]0— 50’ ,( )

0 A X 74
2 _’!.,'la" o "='R"ﬂ" L
From (l)r (2)1 (3)1 (4)r &= _46\5 =z, I da B

- .17. C.G. of a plane area.
Hence, 4PBQig theare. At 4, 9=0 ;26 0, 0= 10.1
i % ’\/ ”T""((—E?)J dg ' Case I. Cartesian.
. ‘ Suppose the area is bounded by the curve y=i(z), the
e — e T i o b T . d !
= \/a,‘ (14 cos 0)*+a” sin%g d0=29q cos 30 do, e e Y o
and

7=a(l+cos g)=24 cos? 30
i 0. + 61
Let (z, 7) be the co o e ;

-ordintes of the C.G. of the arc APBO. Then 0T e M o o

= _[zds - : )
T J?dsg’ ?’L_I;}'d%s‘ o2 (1) a neighbouring point @ on Y =
™ : the curve. Divide the whole Q
5 T ds:S 0 7930, cos 39 9 area into elementary strips APx®
=\ like PMNQ, by drawing lines
all+cos g ; :
S 0 ) ) €036 .23 cos 30 do parallel to the y-axis. The
=.Qa,=s 3 2 €08% 30 ( 2 apg2 0-1) de area of the strip=9.02 ulti- 0 KMN U X
= i § 7, Si i g 1L ' 1
=dg2.; ately, since 62 1s Very sma
a*.2 S b cos®e (2 cos*h—1) de (on putting 9= 2¢) ];jet to cras Ve homogeneous
= 2 b o ! . ‘
o '[2 S o e d‘-f’“g 3 o3’ dqb] | and let p be the surface demsity of the strip PIMNQ.
= et:u <[258-%] [ Seo0 § 7073 above ] Then 6m, the element of mass of the strip PMNQ=ysz.p
=X%2, -

(2) and the C.G. of the strip PMNQ is ultimately at the Dot

S ds=9q & 0 0530 do=dq, e (3) (2, 3y) (with sufficient accuracy for our purpose). Lt (z, )
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be the C.G. of the area AKLB. Then talking moments
about 0Y and OX respectively we have,

z.2py dx=3Spy sw.x y.Spy dz=3py éx.k.

Cancelling out the constant p from both sides we get in
the limit

L X

Sn xy dx Sx vZ dx
X= - ) 3'(:.15 x; ’

S y dx S y dx

X4 X4

where 7 has to be expressed in terms of 2 from the equation
of the curve.

Note. The surface-density p at any point of an area=¢\ where
o= the volume-density and A =the thickness at the point,

Case II. Polay,

Let the area AOR he bounded by the curve r=/(0) and
the radii vectors 04, OB (0=¢
B and 0=p) so that / X0A=a,

Q £ X0B=g.
P

Y

Let O be the origin, OX,
Al the initial line and OY the
y-axis,

0 X Let the whole area be divi-

i ded into elementary triangular
strips ‘hke OP®Q by radii vectors drawn from O. T.et the
¢o-ordinates of P, Q) he (ry 0), (r+ o, 0+60). Then ZPOQ
=40,

Now, area of the strip OPQ =%y25p ultimately, since 80 is
‘very small. Then the C.G. of the strip OP() ig 4 point G+
in OPQ, whose co-ordinates are ultimately (31 cog 0, %r sin 0)
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(:;vith sufficient degree of accuracy for our purpose). Let p be
the surface-density of the strip. Then elementary mass 6z
of the strip OPQ is 3r® 66.p, situated at G,. Let (=, ) be
the co-ordinates of the C.G. of the area A0B.

Therefore, taking moments about y-axis and 2-axis
respectively, we have

1

2.3 3r® p 00=23 3r%p.dr cos 0. 56,

7.3 372 ps0=3 3r°p. %7 sin 0. 50.

Cancelling out from both sides #p, since p is constant,
we have finally in the limit

B B
S r® cos 6 d6 S r® sin 6 do
T = 2./& ) V=2 )
=37 Yy=3. / E—
S r2 de S r? de
a a

where »=£(8) from the equation fo the bounding curve.

10°18. Illustrative Examples.

Ex. 1. PFind the C.G. of the homogencous areq bouaded b

Yy the
Parabolg y? = daz, the x-awis and the ordinate »= Tt

Here, y=2 Naw, and p is constant,

Y| K
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Liet (z, 4) be the C.G. of the area 4EN, bounded by the ordinate .

KN, where AN=1,

h h e B3 2 8

1
E;SO :rf;dn:ugo :c.ﬁu'amciz_joz dz sl
i et L ]

T (n i
0 1 dz SU 2 Aoz do

T I
Si y* dx S; dax du v : t
y=4 g =1 ST‘ =~ Waz (on integration ).

w

W=

2 Naz dx
o ¥do o 2Naz

Ex. 2. Find the C.G. of

the liomogencous area bounded by the
Parabola

4 =daz and the double or-dir_late = .

Let (z, 4) be the co-ordinates of

a point P on the parabola. Dividing
the whole area into elementary g

trips by drawing lines parallel to the

Y QK

A N X

4
19 Q3
double ordirata KM, area of the el
and the co-ordinates o
C.C. lies on the z-axis,
p being the surface

ementary strip PP/(Q'Q=2y o,
f its C.G. are (2, 0), since from symmetry the
The elementary mass 5 of the strip=2y éz.p,
-density of the strip,

Let (@,7) be the co.

ordinates of its .. Then taking moment
about 4Y, we have

U n
Sn 2y dw.p.x _So ay de

T—-':BhasinEx.l.
Oyda:

3=0 ( from symmetry ),

<+ the C.G. of

the area lieg on the g
the vertex,

-aXis at a distance 2h from

“f the

225
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: ? B
*Ex. 3. Find the C.G. of a uniform rectangular lamina (area), [ By
x. 3. i -G.
the method of Calculus ]. k : AD are
Let ABCD be a rectangular lamina of which the gides 4B,
band q respectively.

5
PS c
B
X
AT QR &

and ¥.
Let us take AD and AB as axesof

i ntary strip
iy the areas be divided into eleme!

and P@RS »lementary
Paralle] ¢4 AB and let P be {x;:‘)] surface-densitys tho BleE
S%ip whose area is b.6x and if p be

ih)
RS ale (Ig 2
he area P@

Magg =y dx.p.  Co-ordinates of the geicE

ultimntcly.

g by lines drav
be an elementary

1
G. of the given area, The

! £ the O
Let (z, %) be the co-ordinates ©
“king moment about y-8xIS,

°
T, Ih dx p=2b dx.p.2-

a 3 g a

SO ﬂ:dﬂi %ib 0{____.,&‘1"_—:.{}.
Sl L Lt

Toe L it

& a;-ﬂ.-XiS’
Similarly, taking moment abot

7.2b dx.p=2b dz.p.30:
@
}bs de
= JO A sl
@

So gz
e 0.t sl
ne joining the mid-points ¢

T

A e
1b), 864 at the middle povi
lo is (34, 30 .
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BI

The part of the hypocycloig lyin
Where 04 =g, OB=p,

The parametric Ieépresentation of

Let (7, 7) be the co-ordinates of the C.G. of area BOAB,
L’f 2y do Sa Y dz
el o= %_‘.
0¥ do 50 Y dx

Pufting p=g cos*f, y=p s8in®g, dop= —3a cos?0 sin g g9 5
when =0, §=%r ang when T=a, =0,
e T ;Sg Y dz =342 53” 8in*d cossy gp

ir
=3a% SO SIn* 9 cog46, cog 0 do.
Put z=gipn Gh' a‘.’z=cosﬂdﬂ;
When =0, g-’ 2=0, 1,

1
v Ii=34% SO 2H1—52)a dz

1
=3a% SO (s —23°+2%) 4,

=8a% (é"'?'*‘%):tg'm’b.

8 in the positive quadrant is BOAB

s s
the curve is g=¢ cos®f, y=p sin*4.

(1)

(2)

297
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i 29 sin*8 df
5% sin
I’=Sg y de=3ab SU co

i —si "‘0) sin*0 df
1—sin
=3ab SO (

S oo DRy I w0 )
1 'ﬂ'____.,,-—-#]= 9
=3ab[§'§'§ 6433l 3

Fit 29 . 5in"0 40
cos .
S: y* dw=3ab* SO

S 0 =E§§- a.
——a?b X 3rab 816w

e 82 _ 256 4
;:l%’il_(ﬁ ab* X 57 0p = 316w

—9z2+2y*=0.
of the curve & +ay® — 2% +

=g (2—a)
he curve can be written as 3 (2-+a) =" ( J
The ¢

92— +:°N/§;é‘ - (1)
SETt s, )=+
i.e yP=wtog 46, Y 2+

-axis, there
is symmetrical with respect to t;u;m <é
5 i o< 2,
A t?i::fQ=0 and there is a loop OPACO in 0 L
0
is an asymp

. ; allel to the
trips by lines para
4 into elementary s et et s
VD 1002 an olementary strip at P=2y da anc
The area O &

i ous) the elementary
i of the area (supposed homogeneous)

surface-density
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mass=2y

dz.p and the co-ordi
since fro co-ordinates of the C.G. of the. area are (z, 0)

m s i
ymmetry, C.G. lies on the z-axis. Let (7, 7) be the

'Y

co-ordin, tes he T P axing
-0 & ()i t C.‘ . of the loo Ihﬁﬂ tal mn momenh s
Y-ax1s, we haVG ; ;

z . 22y 61 p= 29y 5y p.x.

Gancellin
T s tiac;ui; t;ne -coustunt common factor 2p from both sic;[es
a
s ries from 0 o 2, to include the entire loop, We

9
o e dx

e il

S:ydm . .- (2)

Wfiting 1=z

-
24 ¢ 1rom the equation of the curve (1),

Numera.tor=8§ A/ 2w dm=52‘”“(2—x)
2+ Jo Wais g1 da
=Sg.2i2_d\?3_w (2 434
; “’2““?_30 Ve
Put 2=9 g K
L=2, 0=%r, L0805 Gt 9 on 6 d6; when @=0, 0=0. and when

CENTRE OF GRAVITY

.". Numerator=2° S iﬂ sin?0 d6—2° 5 sn sin?f do

=93.

T _933=97—2t=3(37—8) e (9)

Az dx _S‘l T2

0 N2 —o?

i = B 2('-?: -—-S 2_5(2__—_—:1;)“ d
IDenommator-—S Om\/éﬁ-—x da = 2
=S da

2
0 N2z

.

2=! AR 0lab=3" S 3T in%0 db,
0 0
( putting =2 sin 8 as above )

=2’.1-—2°g$4—m e (4)

.+, from (2), (8) and (4),

s A

=3 4—m
From symmetry, the C.G- lies on the w-axis 04X. .°. =0,
Ex. 6. Find the C.G.of & uniform sector of @ circle.

Tt OAMB be a sector of a circle B

with O as centre and let Z4 0B=2c Q
and 04 =(QB=radius of the circle=a. P
Let OM hisect £ A0B.

229

Taking OM as w-axis, let (, %)

be the co-ordinates of the C.G. of
the sector. Trom symmetry, G lies

on OX and hence 7=0. A
+a +a
S r* cos 6 d@ S a® cos df
EFE = =22z [*.* herer=a]
= oy N + : er=
35 ﬂ,).ﬂ de 38 aaﬁ dﬂ
o e
a[ na]-i-a
92" s _9 sina
=3 B
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Hence @, the 0.G. is situated on OM, where 0G= 3 o Bi_:‘},

- - . 4a
Cor. 1. For a unifory, semi-circular lamina, a=3r, .'. 0G= ar
Cor. 2. TFor o complete uniform circular laming, a=w. 0G=0.
Hence,

the C.(, of a circular lamina is at the centre of the circle.

Ex. 7. Find the C.@. of

! the area bounded by two semi-circles of
radii @ and b ang their comme

n diameter.
Lot us divide the area into elementary strips by drawing radii
vectors likeg 0,1_-.1,:9l

and OP,Q, from O to the two semi-circles, O being

Then, the e]ementary ares

F1010uP, < Areg 0Q.Q.—Area 0p, p
i 14 9
80=4(a®~p2) 50,
density of th
(a.’—-b'ay) 34, © elementary areq ; then mass of

= i-a,"! 63 = &bﬁ
Leti p be the 8urfaga.
the elementary area=p3

1
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v . en
ILGt (I 7], be the co-ordinates of the C.G. of the whole area Th
3 & :
tﬁ-king moment about the y-axis,

ya o
Z2P.0,0,P, ie, c3ila®—b%) 50=33%a%60.0, —=3b7?50.24,
T2ty () aLl 2 UEn

11T are the distances of t‘he G.G- E] the u]t]mﬂtﬁ ng r
iiherc T,y To aT Of tria ula;
areas OQ,Qg ﬂ:]:ld OP,Pg fl'Dm t]lﬁ 1{-&X15, 2.6y

m‘=§a cos 0, z,=1%b cos 4.

S3a® 50.3a cos 0—23b2 0080 0SB, o " yitimately

= =% (a®—0?) 80

8l

i 3 _p%) cos 0 db 332 4_a”+ab+b“_
(a %) 2 (a '
pmadi = GGip)r On  okb
& S (T (an_bn) ae
i i 0=4m.)
ints A,, 42, 0= —4m and for the points B, Bay 0=37.
( For the points 4y, &2

i . 7=0.
From symmetry, C.G- would lieon OX, .'. %

above result we can easily verify that

. =0 in the :
Note. Putting =0 in th _ircular lamina of radius a, then

i-f G be the O.G. of a seml

= 4a

&= 0G= Bﬂ" -
Tind the C.G. of @ uniform segment of a circle.

Ex. 8. In G

Tet AOB be a sector of a:'circle of
radius ¢ bounded by the radil vergo;:)s
04, 0B, where £ A0B=2a. Let O ! ke
the bisector of the angle 40B. We take

| B

/

0C as the axis of . OQ
A

(60
Trom symmetry, the O.G. of the

gegment ACBMA lies on 0X. If G, =
(¢, 9,) be the 0.G. of the sector, then
11 1

we have

92 sina
w1=§a

19, =0. (8See Eaw. 6 above)

Also if Go=(x,, ) be the 0.G. of the triangle A0B, then
S0 1 7= 1 Yo

z;=3a cos a, ¥.=0.
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Let (z, 7) be the C.G. of the segment ACBIMA. Then by Art. 10°10
of the boolk,

anm_ga 8ln a

i 9
W —a cos a.g 8in a+ = g cos a
z= &2

a*a—a® sin a cos «

= g_aosin a—sin a cos?a
—_— =
3 a—sin a cos a

2 sina

2 a - i
3" a—sina cos o
and 7=0.

.

X. 9. Find the C.G. of the area of the cardioide r=a(1l+ cos 0).
Y Let (@, %) be the co.ordinates of
the C.G. of the cardioide.

The centroid evidently lies on
the axis of symmetry viz., the z-axis.

e 3=0,
0 .
A X Since the two halves of the
cardioide are equal and symm etrical,
the abscissa of the C.G., of the whole

is the same as that of the upper
half,

ey

w
3 T
Thus, Ezgw_ 250 7* cos 0 do ;
LS 8 (r — ( p being const. )
o Pr* de Sc .

—
H

2 ) o @*(L-+cos 6)° cos 0 29
T T e
S o @*(1+cos 6)* gp
T (/] )
=g§.8 o 2° cos® .2,(2 cos® 5 —1) a0
2.0k FNGSE a0 ), 98

m o B
S 0 2 cos* 5 df

w/3
da S 0 (2 €08 —cos ) dep
(72 . (putting g=2
S o C08'p dp g @)
5
6
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'10'19. C.G. of the volume and surface of revolution

of a uniform solid.

Suppose a solid is formed by the revolution of the curve
y=#(x) about the z-axis OX and suppose it is bounded
by two ordinates AL, BM corresponding to £=21 and

T=x,.

M-

Y

\

)

\

t

1] B x
0 N’l

I

1

I

L/

(i) The volume generated by the element of area PNN'P!,
where (z, y) are the co-ordinates of P is (the area of the
circle described by PN)x(the thickness between the
two circles described by PN and P'N')=ny*® oz, 111tima;te‘>1y
[ since PN =y and 6z is very small ]. If p be the density
of the slice bounded by the two cireles, then, om, the element
of mass of the strip=p.ay® éz. The C.G. of the e.lement
from symmetry lies on OX, and is ultimately at a distance
z from O. Hence, if (z, ) be the co-ordinaties of the O:G_
of the volume generated Dby the area ALMB, then taking

moment about y-axis, we have

7.5py® sw=3pny" 6T
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234 STATICS : 9 =9 cos 0,
botween Cartesian and polar co-ordinates viz., %=?
As the solid is of uniform density, cancelling out pz b cints
from hoth sides, we get . 4 { +8 sin?6 cos 0 Eiéﬂ (» cos 6).d0
X2
2 2 o)
X =E_f,j2g_g5_._.ﬂ:= Sx yox dx Solid : { & % gin20 a (r cos 6).d6
X Y'yﬂ ém X2 2 de
< S y2 dx -'_.0
X 4 ar=
d
and from symmetry, y=0. r? sin 0 cos alc'fg. a0
(ii) The area of the surface generated by the revolution Surface : 1 &=7 j rsin 6 %Eo ae
of the arc Pp’ (=85) about OX ig (the circumference of S
the circle described by PN) x (length of the arc PP’) Vi .
i.e., 9wy 55 ultimately, since PN =1 and ss is small. If p be taken between proper limits.
the surf&ce-ﬂensity then, ém, the element of mass of the ive Examples
belt = p.99.55. 10°20. Illustrative E olid cone.

Ex.1. Find the C.G. of a lomogeneous s
The C.G. of the belt from symmetry lies on OX and is

ultimately at g distance 2 from 0O, Hence, if (z, ) be the X

co-ordinates of the C.G. of the surface generated hy LI,

then taking moment ahout Y-axis, we have | a

]I

- Ip. 2ay 05=Xp. %y 6s. .
As the surface ig of

. . ° GRS
uniform density, cancelling out 2xp from
hoth sides, we get

B
g=>Y 0.2 [yx ds

== =~

2y 83 [y ds

In the integration,

X homogeneous
! f @& the C.G. of the 5
he co-ordinates of G,
Let (Er'?-j) be

solid cone A0B.
the limits for 8 correspond to z =24

"oras [3o],
and ¢=g,, B4 =t Ea 1wn]h "
y* 0
Cor. When the equation of the cu

rve ig giy i lar

g1ven ID.PO From symmetry,
ormule can easily be @ 114e on 00, such that 0G=
TmS by the relation )

7 =0.
¢o-ordinates, Bay 7=

C.G. lies on the z-axis, the axis of rotation. .'.
transformeg into th

(6), the above § £00., ie, 0G: GC=8:1,

e following fo
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%. 2. Find the C.G. of a lomogencous solid hemisphere.

e
B

A

Let (z, 7) be the co-ordinates of

solid hemisphers AMB, @ the C.G. of the homogeneous

S!!“m da St; (ag‘—mﬂ}m kg

=2 @ " _a'da’—%4* 38

1,8 ql

S ¥t de SZ (a*-2?) gz @ a—3%a® 8

e E:

From symmetry,

0. 1 ;
i G. lies on the Z-axis, the axis of rotation, 7=0.
18 situated on OM such that OG : GM=8: 5 l

Ex. 3. Fing the C.G.

xed 1 ;
let £ 400=0,030 0G =7, gyos OC [8c0 Fig. of Bo. 1 above] and

el density. Let us
© asorigin and its axig OX
y-axis,

tale the vertex 0 of the con

OY, perpendicular to OX ag as g-axis and

The equation of the line 04 ig Y= tan
= an a.

ds= 1+(‘—iy~I " da= 2
dw) dx= V'1+I:an"o;.dz=(sec a) dz
Let z, 7 i
¥ be the co-ordinates of the C.G. of the conical surf;
surface,

] =
Y ds S" L 3% lo_2
S o @ o1 a) (sec g) gy Szmdw [lxn]}.—ah.
2= Jo

o4 S‘Uzds Sh(mta.nu) h
z= Yo 0 e)a.(sec ) g S i [;_ma]h
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From symmetry, O.G. lies on x-axis, the axis of rotation, and

hence 7=0.

.*. G, the 0.G. of the conical surface is situated on the axis of
the cone such that OG=30C i.e, 0G: GC=2: il

Note. Here the generating curve is the straight line y=u tan a.

Ex. 4. TFind the C.G. of a uniforit Tiemispherical surface.

Suppose AMB be a hemisphere of radius a, with its plane base
ABCA, and let O be the centre of the base and let OM be the line
perpendicular to the base and suppose it is formed by the complete
revolution (i.e., the revolution through 2= radians) of the quadrant of
the circle MB round the axis OM [ See Fig. Exz. 2, above ]. TLet us
take O as origin and OMX as z-axis and OBY as y-axis ; then the

equation of the circle MBis a*+y*=a” i.e,

o 5 i d?] 2(:2
= — 2. .. ds= (= €T
¥ *J“J Ligs S ‘\/ . (dz)

s 2 ST OV o S O T
z:/\/l.;.(vzn—;_._;;) do= JEC:U“ dx yda,.

y ds=a dzx.

/

Tt (%, 7) be the co-ordinates of the C.G. of the homogeneous

hemispherical surface.

S yx ds Sg ax dx

Syds Saa.dm

[ since for B and M, x=0and z=a ]

0

Trom symmetry, C.G. lies on the z-axis of rotation and hence y= 0

Thus, the 0.G. is at the mid-point of OM.
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Ezx. 5. 1 : ‘
o X Find the C.G. of the solid Sformed by revolution about the
azis of the parabola y° = daz, bounded G g

X P
/3
A N X
Shy’xdz
;c':_?’l_“k
Oy'd:c

h h
Soéam”dm S:cﬁd;n .l,hs

h h
0 daz dx Soz dx =

From symmetry, 7=0.

Ex. 6. Find the C.G.

of the sur .. "
a loop of the lammnis i surface generated by the revolution of

b
cale r* =a? cos 20, about the initial line,

e

r T
X 0 AX
Lot (z, 7) denote th .

T e C.Gr. of
OQAP. Then from Symmetry 7—1:39 surface of revolution of the loop

) a8
Here, 53=,2 cos 20. ,°, rdr—- —a® s
T in 20,

gt \/T‘WF

=~ == n —————____‘____

(10 r +(&_6) —«da’n cos 29+q‘_l_ksr.|?q’ 20= __.77(1:7 1
a® cos 20 ~ ,/cos 20

CENTRE OF GRAVITY

cuf - a
Sxy ds 50 7 cos 0.7 sin @ e

e = = 2
. Qi 6.__—
Sy ds SO 7 sin T 20(18

S;ﬂ sin 0 cos 0. »/cos 26 d0

de

=a Siﬂ_ o C;B
0 sin

im e
50 sin 20 ,/cos 20 d0

Ty im
|—°°s Blo
1

= SO g? dz
= [ putting cos 20=3" ]

7.

w2

_a._~N2 _a2+ o)

6 A2-1 6

Ex. 7. Find the centre of
gravity of the surface and volume B/
of the part of a sphere, of radius a, L A
included between two parallel
planes which are at distances @,
and @ from its centre. (@, > @,)

Lot the sphere be generated by
the revolution of the circle a:"+g,r"'
=qa?® about the z-axis. Let us con-
sider the portion of the sphere

bounded by the parallel planes AL, O I,
BM, where OL=a,, and OM=2z,.
Then, for the surface

xa dn\? ng \/
1+ (4
—_ Joy (zS_S:\'-l my,\/ 4 (Im) & _Jaa jid

@ =t = e ;
Jy ds Sﬂy'\/l_,_(fl_y) I SJyJ1+§;d”
Ty dx T Y
&L

2
ar du
_Srl_7= 12,72, " _,+2,
Ta 95 Ca—2 2
S adz A
X1

and from symmetry, 7=0.

239
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For the volume,

o a’®—a)r dz %.(xg'z—m.“)—i(mu4_ml4)

]IR
[EN)

o ;
vz S PP e I
—,2—xz,?

(m +3,) ===
Sa '—CLL -—:clm._‘—&"-',-"'

From symmetry, 77=0.

N
g ote. If we put z,=g4 and %, =0, we get the case of a hemis-
phere, and for the surface z=3a, 7=0, and for the solid z=§a, 7=0.

Ex. 8. i p
135 I"@cl the C.G. of the volume generated by the revolution
b the = axis of the arpa bounded by the parabolas y* =m, * =1).

Clearly, the points of intersection are given by

y=n=y, C.o9=0, 1
and so ¢=0, 1,

-*» the points of intersection are (0, 0) and (1 1)
1 1 .

The v Y Vi
f) c.)lu-ma of the strip generated by the revolution of P,Q,Q.P,
about z-axis is w(y,? =1,%) 8z, where Y, =P, M and Ya=P,M, and 0%

being very small, Then
e (@, 77) being the C.G&, of the volume generated,

S(yz —9.%) da.x S_O(:c ot)e do s

B — =0
S :D") dzx %_’% 5y

x=s (22 ~y, )dn:

Algo from Symmetry, 7 =0,
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10'21. Theorems of Pappus or Guldin.

If a plane area bounded by a closed curve revolves
through any angle about a straight line in its own plane,
which does not intersect the curve, then

(I) the volume of the solid generated is equal to the
product of the revolving area and the length of the arc
described by the centroid of the area ;

(IT) the surface-area of the solid generated is equal to
the product of the perimeter of the revolving area and
the length of the arc described by the centroid of that

perimeter.

z! App

—

/o

(I) Let 64 be any element of the area whone distance
from the axis of rotation is z. Then -6 being the angle
through which the area is rotated, the length of the arc
described by 64 is 20, and hence the elementary volume

described by the element 64 is z0.64.
The whole volume described by the given area therefore
. = 320.64=0.32.04=0624 [ From 4rt. 10'8 ]
(where A is the total area of the curve and z is the distance
of its centroid from the axis of revolution )
= Az0 =area of the closed curve X length of the are
.described by its cenfroid.

16
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I
(IT) Let 65 be the length of any element PP’ of ‘the
perimeter of the given curve, and z' its distance from the

axis of revolution. The elementary surface traced out by
the element §s ig ultimately 20 §s.

The total surface-area of the solid generated is therefore

=5:0.05= 03" 55 = 0z's [ From Art. 10°8 ]
( where s is the whole

perimeter of the curve, and Z, the
distance of the centroid

of this perimeter from the axis )
=s.5'6=perimeterxlengbh of the arc described by

its centroid.

Note. The above results hold even if the axis of rotation touch
the closed curve,
Ex. 1. ming the volume ang

surface-area of a solid tyre, a being
the radius of its section,

and b that of the core.

The tyre ig clearly generate

d by revolving a circle of radius a about
an axis whose distance from the

circle is p,

The centre of the circle ig the centroid of both the area of the circle

a8 also of the perimeter of the circle, and the length of the path
described by it is evidently 2mp,

Hence,, the required volume=yg2 X2mb=9m2a2p, and the surface-
area required =g % 9rph = 4r ab.

Ex. 2. U the theorems of Pappus to find the centre of gravity of
(@) a semi-circular qye,

(%) a semi-circular area.
Let the semj

-circle ba of radius q

(a) For the Semi-circulpy arc,

2#5.7ra,=sur£ace’area. of the sphera= dmg2,
2a

m

S g=

248
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(b) For the semi-circular area, o
: 9rgima® = volume of the sphere=gma®.

=40,
m—sﬂ_

Examples on Chapter X(c)
the density
AB of length a,
i 0.G. of a rod Wi
i F?ntd oﬁfh:*hich varies as the nth power of the dis
at any poin
from the end 4. i
G i the centre of mass of the .rod Alz ]:ef {:;i&nca
2'. G ity at any point of 4B varies asb o
i h:}?-denoint O on BA produced, where
from the p
: GB. b :
< the C.G. of the arc which 1s in th)e first quad
i A i = = 0).
5 f S‘Jl:cycloid 2=a(6+sin ), y=a(l cojw, v
et d the C.G. of the arc of the parabola ¥ =4dax
i) Fin G ;
4-158&)3 vertex to an end of the latus rectum
from

y A b
(ii) Find the C.G. of a uniform wire bentr into the
i1) Hin . .

form of the cardioide » =a(1 + cos 0).

f the catenary
. troid of the are o
5. Find the cen

@
y=c coshz’

% f the circle z°+¢*
Tind the centroid of the area o
6. Fin :
=g? lying in the first quadran

troid
. he area of fthe as

3 entroid of

7. Flnd the ¢

5 i drant.
.ﬁ +y%= aﬁ lying in the first qua

from the vertex V to any point P(z, 'y)_on the
10 |

i
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= .

9. F.Il i W 0S1ne
eu-cosa:a.nd?-—0 hee—-‘:é .<_
cury = /=0 wher :..‘,, T < um.

10. Fj_nd the ¢ .
: enfroid of the :
cubical parabola ay® = 2® and =1 iy oot the Rl

11' Finﬁ the e .
ent
ooy e ntroid of i?he area hounded by y=2?,

12. T :
s 2Fn:ld zthe cent-rmd of the area bounded by =0, y=0
=" and lying in the positive quadrant. :

13. Find the centro;
froid
v (a+a)=a(g - g), 1d of the area of the loop of the curve

14, Find the !
centroid
curve z° + g% — 5,2 +U:20 of the area of the loop of the
15. Find the centro

" g id
v°(20— o) =2° 3nd its of the area between the Cissoid

symptote.

16. Find ¢
he C.G of the area of the parabola

2+ (5)
v, 3 ) =1 befween the curve and the axes

17. (i) Pind th :
Y=g © centroid of the ares between y* =g and
(i) Find th
© centroj
and y =g, nroid of the aroa bounded by y* = 4daw
18. (1) Find the centroiq

?= i L f the area bounded by y =22,

(ii) Find %
he centroj
and 2% =py (g, p > 0). old of the aren bounded by 2 =ag
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>

19. TFind the C.G. of the area enclosed by the curves
22+ 9% — 9z =0, and 2% +7° —4z=0. :
90. Tind the centroid of the area of half the cardioide
r=a(1+ cos 0) bounded by 6=0.
21. Find the centroid of the area of the right loop of
the Lemniscate % =a® cos 20. ;

29, Tind the locus of the centroid of the area of the

parabola 72 =4ax cut off by & variable straight line passing’

through the vertex.
93. Tind the O.G. of the segment of a sphere of radius a,
cut off by & plane ab & distance b from the centre.

24. TFind the C.G. of the solid formed by the revolution.

g

of the quadrant of the ellipse z— + 25 =1 about its () major
axis, (ii) minor axis.
95. Tind the C.G. of the solids formed by revolving :
(i) ay®=2°, about the z-axis between 2=0 and z=c;
(i) @=a(6+sin 6), y=a(l - cos 6), about the axis of y 5

(ii1) 7=a(l + cos 6) about the z-axis.
96. TFind the centroid of the (i) surface and (ii) solid
generated by revolving half of the cardioide r=a(l+ cos 6)

bounded by 8=0 about the initial line.

27e
tion of the parabola
the axis of the parabola.

98. Find the centroids of the surfaces formed by the

143+ of the following curves :

Tind the C.G. of the surface formed by the revolu-
y? =2z cut off by the line x=4, about
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(i) Cycloid «=a(6+sin 6), y=a(l —cos 0) about the
axis of ¥ ;

(ii) Cardioide r= a(1 + cos 6) about its axis.

29. If the distances of the verfices of a triangle from
& fixed line on its plane (not infersecting the triangle) are
T1, T2, g, and if S be the area of the triangle, show thab

the volume generated by the revolution of the triangle about
Omi
the fixed line is '%g—(ml + s +x5),
30. An equilateral triangle of side a revolves round its

base which is fixed. Find the volume of the solid generated.

31. Show that the volume of the solid formed by revolv-

Ing the ellipse z=g cog 0, =0 sin 0 about the line 22=2a
is 4a % %p.

32. Tind the volume of the solid formed by the revolu-
tion of ¥* =4am ahout the latus rectum,

ANSWERS

1. On the rod at a distanee #+1
ance nvg ® from A4,

2. (3a+21)/(3a+1), 3. 2=(r—4)a, 7=2a.

RSt LTS rJQ-—-]orr(
4, (1) L= ——m 5 _Mr2+1) - é 9 ~f3_1
b VR (VarD) I 30 o (e
(1) 722 50,

O B=z=cly—c)ls, j=1y+caf2s, where VP=s.
8 F=s_da —_—_9256a =
=3z % z=3= T 8. w=3m, y=3m.
9. 3=0,7= E=ap =
2=0,7=%r. 19 =8, =0 . z=45 7=23
12, B=g, J=11 z=2.37—8
T O e S S ] y=0.
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2 - z_ 3.1, 17. (i) z=3, 1=%
15. :_5-:1“_;(1, y:O_ 16. 5 5

= 18. (i) z=3% 7=0.
(ii) z=S8al5m?, y=2alm.

19 —u—i,gzzg-gu
(ii) $=w"gaf“"b3 q=_-_,‘},a%b&. . 8= 3 O
ma N2 - . 2y° =baz.
—_ba - _16a “‘="_"£_‘?J_ —0. 22
20, g=hiy=7z | Plia=Sgey
4 - — . —50, —=§b-
-_3 (‘.H'b)f, 7=0. 24, (i) z=28a, y=0. (i) = /)
2SS !

__ o =_a 83720k i 7% oo,
25. (i) Z=4c, y=0. (i) 2=0,9=¢" 516

=4 7=0.
= - s r yolume =734, ¥
926. (i) For surface &= {§8a, y=0- (ii) Fo

L O il
97 poAte Z0 28. (i) #=0, ¥=715" 3r—4
5 SR Y e
wa®, 32. iiwa’.
(i) z=4§%a, y=0 S04

{2}



CHAPTER X (A)
CONSTRAINED BODY AND STABILITY

10(A) 1.
fixed point,

3

Equilibrium of a heavy body supported at a

If a body supported at a point he ab rest under the
action of gravity only (and no other external forces), the
C.G. of the body and the point of support must be in the
Same vertical line,

This is obvious ; for the onl
body are (1) its weight acting ve
1ts C.G. and (2) the reaction at the point of support. For
equilibrium these tywo forces must he equal and opposite
and also must haye the same line of action, Hence, the

ed_ point and centre of gravity must be in the same
verfical line.

y forces acting upon the
rbically downwards through

Note. The abova Principle can be ugp
the C.@. of a plane laming. Thus, firg

attached to any point 4 on itg boundary and draw the vertical line
4D on the laming through 4. Wo know that the C.G. lies on AD.

Again, suspend the body from any other Point B on the boundary and
draw the vertica] line BE, through B, on the lamina. Then the C.G.
also lieg op BE.

Hence, the reqd. C.G, is the

10(A) 2. Equilibrium
contact with g plane,

planl;he?zrzem.: A body placed in contget with a horizontal
Wbl or will wot rest im equilibrium, according as the

Vertical lip, through its ¢ ;
verd ] entre of gravip meets the plane
mside op outside the base on which ;¢ standsJ: o

d in determining graphically
t suspend the body by a string

point of intersaction of 4D, BE,

of a heavy body with an area in

249
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ody are (1) the weight
ards through its C.G.
which is nobhlpg but:
f the several points of
and hence acts through

The only forces actir_xg 111301(1} th9£
of the body acting verbically 1‘::1’:
and (2) the reaction of the tlijons 2
the resultant of the bqtal riﬂac it
contiact of the body{) with the p )
int inside the base. action
o IIJSIFIl'b -ium, the weight of thp bodg migoﬁk;’uﬁ; i
il lrr;ust ’be equal, opposite tahnre?s equilibrium,
St plape f aotion. FHence when the o e oy
z}};e s&ﬁ‘?c;llnﬁnz through the centi? ?I;Eeg;g:tical o S
e verti " et
s the base. Srith
meets the DI?;;;IES% ase, obviously there cannot be eq
ou ) {
the Dla.ned the body will topple over L 1) o
g the base is meant the polyg A R
g et enerally the closed cur}ra hm;ll:]gl S B e
angles, (or mdorl?y%oming the extreme points ©
wards) forme e : v
et | Sfe ; 1:?%152?;)3 willjoverturn if the vertical through 1
Note 2. A bus for exd

{8
C.G. falls outside the wheel bas be shown that a body placed on

it can Rl 3 i
Note 3. Exactly as above 1rough to prevent sliding, will be in

ientl 3 f
an inclined plane, sufficien erding as the vertical through ftt;; Giﬂ;r; 0
over, ac bage of the body.
L orbtocf; lgoes o:: does not pass through the ba
gravity of the bo

: ive Examples. ] :
10(A)'8. IllP?ﬁr::'tzalur cone whose height is b and radius of
Ex. A SOH{Z Tighn :

S d from
; s placed on an inclined plane and 23'?'8 i’:; 0 fﬁnd
it bas;f%sﬁ:' :;cllji:m;imr. of the plane be gradually incr )
sliding. (

when the cone will topple over-
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In the EXtIeme pOSIﬁlon 3.8,y '“’hen 1}[16 cone is on th
3 e Polntl of

toppling o :
ﬂ:roug]f ﬂ‘:el, the vertical through the C.G. of th
e extreme point of the base, 4.e wnull& cp'tcson:hmmt ey
i ass through the

end B of the bas
ase. Liet 0 be the inclinat
Then obviously /. BGO=0 ¢ inclination of the plane at that time.

Now, from the ri
ight- i
ght-angled triangle BGO, tan BGO:-‘EO— Ty %
tan =4, ivi L 55
4r[h, giving the required inclination et

Note. If ab i-v
e the semi-vertical ang]e of the cone, the H t
) n »/h=tan a.

He ce, the on WIII Op D, 0 an o
nce, 11 [¢] e ti le if fan > 4 t
i .

10(A) 4.
Stable, Unstable, and Neutral Equilibrium

Let & bod 'b .
forces and ¥ be 1n equilibrium unde
: T
glﬁa body be zTi%gchtils?; 511 beImg supported air?y:rtleymrs;nenﬂem%
© externa BRIy M e
rnal forces and the reaction;tsi ;3(}%111316}1111321‘2[1; pg:}f.lonf,
05161010 O

the body will ;
bod nob In general he i SR
Y, When left to itself, wi]] beegi? t‘;‘ll;;lhbrmm, so that the
ove.

Now, accordi
the Ol‘ig,inal ording to the way in whij
unstable, or n: qtulllbnum position ig c"Ic}f:: faqbods moyce,
utral under different c:il'mscnn;3 b0, boistabie,
stances.

(i) Stable Equilibrium,
A body i i
s (%S;SI said to he in gt
a tendency to

aceﬁd from its pgsbélt?oflqu?ibrium S afienibs

Te : A 0 ilibri i

(i) U urn to is original DOSit.ethbrmm, it has
nstable Equilibrium ¥

Y 18 said ¢ ; -
when gl o be in
. ghtly dji unstable S
1splaced from itg Do‘;?g;l;bz}um’ IJlI'OVided
equilibrium,

1t tends 4
0 recede
(i) N further away from its orig;
eutral Equilibrium, i = 5ol Position.

A boay ig 5
When slightly sax;;lp forben

CONSTRAINED BODY & STABILITY 251

10(A)'5. Stability of a body under gravity with one

point fixed.

In this cas
in the same ve

If a body suspended from any point
O and having its C.G. ab G vertically
below O, be slightly displaced by being
turned through a small angle about 0,
as in Fig. (i) then the weight of the
body W, acting ab G, will have 2
moment about O, which will tend to
cause the body to revolve back to its
original position. In this case, the
equilibrium is stable. If, however, &
the C.G. of the body, be vertically Fig. ()

above O, the point of suspension, an
the bhody be slightly displaced through any angle, then the
moment of the weight about O will have a tendency to
revolve ifi further away from ijts original position as in
Fig. (ii)). In this case, the equilibrium is unstable. When
the body is suspended from its C.G. it will remain at rest

o we know that the point of support must be

rtical line with the C.G.

Fig. (ii) Fig. (iii)
in any position, for the weight of the body and the equal
tion of the support always act at the same
Henee in this

and opposite reac
int and hence they ba
o body be displaced, )
de further away from its or

lance one another.
it will nob tend either to

po
case, if th T o
return to, or to rece iginal pPositlon

¢ o -oilibrium.
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In such a case, the equilibrium is neutral.

10(A)'6. Stability of a body with a portioniof it in the form of a

sphere resting with spherical portion in contact with a horizontal
table.

A
Fig. () Fig. (ii)

Fig. (iii)

In the position of e
acting vertically down

quilibrium the weight of the body
G is balanced by

wards through itg cenbre of gravibty
the reaction of the table at the point of

accordingly be perpendicular to the
Plane of the table and wi]] therefore pass through the centre
O of the sphere. Thus 0@ must he

vertical [ Fig. (;) .
Now, let the b
Dew point of contact.
at BL to the sphere will
© below. 0, the weight of 4, bod i bicall
Ownwardg through G will teng e rertically

! : to rotate the body about
back to its equilibrium  pogjt; %

S e €q on as in Fig. (ii) and the
equilibrium Dosition ig accordingly stable. 0

Dass throug

53
ITY p)
Ex.X(A)] CONSTRAINED BODY & STABIL

i ig stable,
in this case the equilibnumhof téheGlfoggtlh i
o neutral, accordil_ng as _t Tl -be].OW, oAty
PDSﬁﬂable 0'r'b ium position is verbica 5; elow, AT
= hh?i equh. tlﬁl the centre of the spherical p
coincident wi
with the table.

ilibrinm is stable
i 0(A)5], the equi

illustration [§ I

Note. In the firsti

int of suspension.
bl ording as @ falls below or above the point
or unstable acc

ilibrium is stable or
a illustration [§10(4)6), the equ;:;:o through which
5 ding as G is below or above the p B PR T
CSA L gses in all positions of the body.
the reaction pa

lower position of G ensures stability.

In‘ Ee'ﬂerl'b], tOi) henllvf bodlﬂs are llnstﬂble and bottom hedvy bodies
B

ilibri itions.
are stable in their equilibrium positi

Examples on Chapter X(A)

; dius
: f height 7 and radi
Sl ircular GYh,“de.r' 2 f inclination
o saeion, o et on an oclnedplane o ol ek
o o eamtod from sliding. Show tha
a and p

topple when
y tan a > 2r/h.

i ach of
] circular colns, e
: e G zontal table,
- " lgaizﬂ;?;nt:sa 9b, is piled over tO};le&cl;[i):S e
S a]? centres of gravity of all T of the Iine
o t'h?ft 1lj'nee Show that the greatest inclin A
i ine. i
:f)rzh% vertical is tan~ *(a/nb).

i ins, having the thickness
ual circular coins, : S
s ﬁ;ﬁn;{?:ﬁl of its diameter, ca.n‘siat,}nfi ?ng_{zil o
of ‘each AP an inclined plane, whose !JB!E,‘ ¢ ;s
dm{(;:]?I gggeoissuming that there is no slipping
of the 1

i i d with its
lid right cone is place !

i fi{n(?d Slglane whose inclination is égmdx;a.l}gr

RBee, O roq;gthnc;. be the radii of the largell-] an : 1?;; les
it i he frustum, show .

: height of & ‘ e
o 9‘pcll E[:ihrgateby either tumble (;r sl:ie 12§§Drtha§
frustum Wllfﬁcienﬁ of friction is grea (Erc e o)
i (%J§+§£Of+ +2)/W(B? +2Br+3r7). . H.
4R

increased ;
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5. A solid homogenous body, consisting of right circvlar
cylinder of height % and a hemisphere of radius r, on the
same base, rests with its spherical portion in contact with a
horizontal table ; show that it will be in stable, unstable or
neutral equilibrium according as

ris > or < or=Fh /2.

*8. A cone rests on a rough table and a cord fastened
to the vertex of the cone passes over & smooth pulley ab
the same height as the top of the cone and supports a
weight. Show that if the weight be continually increased,
the cone will topple or slide according as the coefficient of

friction is > or << tan a, where a is the semi-vertical angle
of the cone. -

*7, A heavy rod of length 27 lies over a rough peg with
one extremity leaning against a rough vertical wall. The
inclination of the rod to the wall is ¢ and P is the point of
contact of the rod with the wall, d is the distance of the

peg from the wall and 2 the angle of friction both at the
Peg and the wall.

@) 1f P is above the peg, show that the rod is on the
point of sliding down when  sin®q =

=d cos?).
(i) It P is below the peg, show that the rod is on

the point of slipping downwards when I sin®a sin (a+22)
~d c0s”] and on the point of slipping wpwards when I sin®a
sin (a—22) = d cog?s,

* -
8. A frustum of a uniform right circular econe whose

semi-vertical angle is a, is made by cutting E th of the axis.
n
Pro.ve that the frustum will rest with g slant side on &
horizontal plane if
t&nz < % 37’1«4 i 4?1:8 +1
o S e [ C. H. 19541

ANSWERS
3. 100,

CHAPTER XI
WORK AND POWER

11°1. Work. : g
A force is said to do work when its point of app zfad 207
moves in the direction of the acting force, cmd‘ the 1.001 o mz.a
by a force, acting at a point of a body for m%y time, 18 measq:;-
ed by the product of the force and the d-zs.placfmz.ent of the
point of application of the force in its own direction.
Pl RULY 2ot }P =

A B 3 BISHA
Fig. (i) Fig. (ii)

be acting on a body at 4 in the Q1rect10n
AXI;?): :nyi'otfi?:ze{?&nd let 4 move tq B duz:ing the mtserva-l.
If AB be in the direction AX, as in fig. (i), the work c?cn_le
=P.AB, and is positive. If the dxsplacemgpt AB oflA is in
a direction opposite to that of P as in fig. (11), the displace-
ment measured in the direction of P is — 4B, and the work
done by the force here= — P.4B, which is negative.

. B8 Ii the displacement AB be in
a direction different from t1%e direction
of the force, say making an angle 0
: P  with 4X as in fig. (iii), the displace-
A N - x ment measured in the direction of
P is AN=AB cos 0, and in this case
Tig. (iii) we get more generally

Work done by P=P.AB cos 6= AB.P cos 6
= Florce X component of displacement of its point of
application along the line of action of the force,
or, = Dusplacement* component of the force along the
direction of displacement.
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Evidently, the work d

one is Positive or megative accord-
ding as 6 is acute or obtuse

Cor. In particular if 6=90°
done by a foree it the displacem
Pendicular to the line of action of

» the work done is Zero, 1i.e., no work is
ent of its point of application is per-
the force,
If the displacement or its component

is in a direction opposite to
that of the acting force, work is said to be d

one against the force.
11°2. Units for measurement of work,

. When a force equal to the weight of one pound displaces
165 point of application through one foot in its own direction,
the amount of work done is defined to he one Foot-pound.

This ig usually the unit of work used in Statics in the

English system.

When a force equal to the weight of one gramme dis-
Places i i i

ces 1ts point of application through one centimetre in its
own direction, the amount of work done ig defined as one
Gramme-centimetre.

This is the
system.

11'3. Theorem I. The algebraic sy of the works done
b a number of coplanay Sorces acting on g particle, for any

déplacemg:r_,;: of the particle, s equal_to the work dome by
their resultant.

unit of work in Statics in the French

957
WORK AND POWER

Tet R be the resultant of the forces inclined at 0
e

on it.
with OA. ¢
The algebraic sum of the works done by the fore
2 =P, cos 0y . 04+ Pg cos fg . OJE;.'P
= 01+ Pg cos O+
—gj ipaig(;?)sr&i; sum of the resolved parts of the

‘orces along 04 2
*f(;)jici the resolved parts of the resultant along.
=04 X R cos 0
= work done by the resultant. M
in raising @ 7
ork dome in raising e
Theorem [I. Z'he wo o R I
itd other s 8
) rom one position to an : : e
piﬂlwle;;z'-gfht of the particles, and h z:s the dzs;:;::mr:secz.
thf:ch the centre of gravity of the particles has ' P
¥ 17 w wn be the weights of the particles 8
Tt wi, Way.--
aee 4 W
A istances of
In initial position, let &y, sa,......... 2, be the dis

I 0.(}. X d ]101'1-
the l{][‘l (4] HH tih&t Of ﬁhell' from & ﬁ e

= T Wala T T Waln Art. 10°8 ]
Wiy T Wala T T Wallnm

w1 +10q 900 Wn A ( )

| -I- = see 1

| Py + Walla foee - wWaTn W,
; ‘ or, W4Ty b g 1 t m, x;o, ......... m,n be the

| In the displaced position le 1, T'a

n

i he
! i l

lane, so that :

ame fixed p _ ’

S = ’wlwil + QUg_m_gi_ﬂliﬂu
@ =“*",w—1j_".wg + e wy

N ()
W'y + wet's + o0+ WA n=Wa. (
or, 1

: 1) from (2),
SUbtra::lef—) :'01) +w 2(417’2 T wﬂ) w5 kg wﬂ(ﬂ?'n —- wﬂ)
1

— (& - )= Wh ..

17
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Since z'; -z, o, ~ Z2,... are the heights through wkhich
the particleg have heen raised, left side represents the total
work done in raising the particles.

Hence the result.

Note. Tt should be noted that in the above result the work done

i8 quite independent of the Path by which the particles are displaced
from one position to another,

If the C.G. of the system is lowered, instead of being raised, % is
negative, and g0 the work done against the weight is negative, in other
words, positive work is done by the weight.

11'4. Power.

When an agent (say, a man or a machine or an engine)
15 doing work continuously, the rate at which it does work
ver unit of time is defined to be its power.

The unit of power in Statics is a Foot-pound per second
in the F.P.S. system,
in the C.G.S. system.

The above unit, being very small, is not suitable for
practical purposges :

» 80 engineers use a higher unit called
a Horse-power.

and a Gramme-centimetre per second

When an agent ;5 doing work at the rate of 550 foot-
pounds per second, it 4s said to have one Horse-power.

The word Horse-power ig usually abbreviated into H.P.
Note. This estimate of the aver
at by J. Watt by experiment,

11°5.  Tlustrative Examples,

Ex. Find the Horse-power of an engine tha
48 minutes g cylindrical wel]
98 14 ft. its depth 40 ft
ground 70 ft. aboye the

age power of a horse was arrived

¢ would empty in
Jull of water, if the Giameter of the well
v and if water ig raised by Dumping to a level
el [ C. T. 1946 ]
Volume of Water=vyolumg of the cylindar

4 =1rx‘?"><40=-’.,°-x49x40 eu, ft, .

259
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Ex, XI ] WORK AND

Yince one cubic foot of water weighs 623 pounds,
its weight =3* X 49 X 40X 62% 1bs. wh.
= 385000 1lbs. wt. ; f
The C.G. of a solid cylinder is at half its height. i
Hence, initially the height of th? C.G. of Fhe ‘;fo 5
’Dottomeof t;m well =20 ft., and finally it is 70+40, d.e., 5

the el been
]J h ght thfough 'i'n}.'llch bhe G.G. of the water h&E
£

raised =110—20, i.e., 90 .

the work done= 385000 % 90 ft. 1bs.

Hence, then the work done by the engine in

Tiet o be the regd. H.]?.;lbS
48 minutes=mx48x60><550 ft.- 0.00%90'
X IX48X60X550=385 l,_,
: 38500090 _175_ 97 é :
@ =48 % 60x550 8

Examples on Chapter XI

y foot-pounds of work is -done 1in

1. Find how mﬂns through 5 feet up a smooth incline

pushing a mass of 10 1b

of 1/ inge0; in drawing & body up
ork done 1n LB oot A
2. Show 1?2:; glliilewis equal to the work done in lifting
g smooth incll g

the hody through the height of the plane.

: five
in piling over one angther
: wvork done 1n piling ; : iven
3. Fl.m.l t]ﬁe v}‘.—jng flat on the .glound, %azﬁgwgeight
brickséhoniiﬁzkgesé of a brick is 3 inches an
that the

10 1bs.

4. A load of

the ¢
00 {t. long:;
;any foot-pounds 0

: AU,

to the top the horizontal section of which is Eect%r' tg}iz
B RMA shaft., to be sunk 100 f6. into the_ earth. find the

10 f6. by 8 {6 18 58 06 X13s 150 Ibs. per cubic foot,

avegragirf;eiig}%r?nging the soil to the surface.
wor

one ton is suspended }})y a ve;fsioci:al c}}’_J—Iagin
in i eighing 6 lbs. per foot.
haffnvlv?ﬁi{i: done in winding up the load

[ P.U.1935]
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*6. In digging a circular well of radius 3 ft. and of dépth
20 ft., 12 ft. of clay and later 8§ ft. of sand were taken out.
Find the work done in raising the materials to the. surface,
assuming that one cubic foot of clay and one cubic foot of
sand weigh a Ibs. and b lbs. respectively. [P.T. 1938

7. A tower is to be built of brick-work, the base being
2 rectangle whose external measurments are 20 feet by
10 ft., the height of the tower 139 ft., and the walls 2% it
thick. Find the number of hours in which an engine of
3 H.P. would raise the bricks from the ground, the weight
of a cubic foot of brick-work being 12 1hbs.

[C. U. 1942 ]

ps in 8 staircase, and on every sbep
ed a marble ball weighing 4 ounces.
high, find the work done in carrying
of the staircase.

8. There are 37 ste
except the highest is plac
It each step be 8 inches
all the balls to the top

9. A horse draws a carriage 11 miles along a road
with a constant for

ce of 42 1bs. wt. and takes 70 minutes
bo perform the journey. Compare his power with a horse-
power.

10. The Dal‘jeeliﬁg Mail has a maximum speed of
60 miles per hour,

! If the tolal resistance then be the
weight of 1 ton, find the Horse-power of the engine.

[C. U 1932 ]

11. What is the H.P. required for a motor-car which
weighs 3000 Ibs. and

. ) ¢an run af 30 miles an hour against
80 alr resistance equal to woth of its own weight ?

[C.U. 1943]
012.. Calculate the H.P. of an engine which takes
: minutes to pump oyt water from a rectangular well of
e{nf,}[;h 20 1., breadth 15 ff, ang depth 100 ft. to the level
82'5 leb ato]p of the well. [ One cubic foot of water weighs

[C.U. 1938 ]
e of diameter

Find the work
to a level 4 fti.

13. A well of which th, ion i
vhe section is g cirel
fas nd depth 206 {t. ig half ful] of water.
€ 1n foot-poundg in Pumping out the water

j § 261
D POWERE
Ex. XI] WORK AN.

. i inutes, and calculate the
q of the well in 10_m1nu . e
Zzg;:g:h}fof;)e})-power of the pumping machine. [C

. g 3 y ) plles
14 .A.I] engine ()f 12 H.P. WOILIIIg S hOllI‘S & dﬂ.l Ilp

of 40 ft. TFind the supply of water o each house.

s 11 stone climbs a pole ab

15. A man whose polchy ld. Show that he is working

the rate of 15 inches per secon
at just over ¥ H.P. ' g
so containing coal of total w'velghfl 0?;' dce:;th ie
b"m- A's:;t’?rom the bottom of a coal-mine W
eing rai

. . .
3 lth tha help 5 g g ].bS. P T 100G.
d ee W 01 a wire ['Ul e we l] Ing w =) f t

e WOrkK ine

employed.

A solid homogeneous right circular cone whose
*17. sol1

: i > 1) and weight W,
A : specific gravity s( L : i
height is 7, .mdm:e:éicsl right circular cylinder (t)lf Eigéu:t:‘e
is placed inside in contact. Water 18 P'O‘lll;e ey
{;heirdba.seps tg?}?f height so that the cone 1s Just 1
cylinder u

ise the cone vertically so
lc done fo raise
If P be the wor
as to be just clear 0

f the water, then
)
9 o

ANSWERS E
1, 5 ft.-1bs. 3. 25 ft.-1bs. 4, 254000 ft.-1bs,
5: 6107 ft.-1bs. 6. T2m(9a+16b) £t.-1bs. 0
7. 92 hours. 8. 111 ff.-1bs. 9, 122,1 H:P
10. 3582 H.P. 11. 8 H.P. 112; :37215: d; i
13. 1571329373 fb.-1bs.; 476755 H.P. !

d d
16 W.? H.P.

66000



CHAPTER XII
MACHINES

12°1. Machine and its use.

An i
tOgeﬁhgr, Sc: I;iréza}? ¢e, . or arrangement of bodies fitted
. € 1n a convenient form to apply force ab

one poinf in
order to ov.
A ercome isti :
another point, is called a Machz’ne& Easiatin floros (aoting 25

The f : i
A g;mpe’l;ggcshls lc':-mlled the Effort (or Power), usually
S e gt B;t::tar, Resistance (or T-T"ez'ghtj usually
atics we are chiefly concerned with

finding the relat
elation bet
B e n ho realstance

That b i

Yy using a machi
tl-.)isc; :nothqr, rl]fifering from 1'11?l ieu
b1on, or direction, or in al] th
ing familiar cages. {3

We can counteract one force
m%gnlt}lde, point of applica-
e, 18 evident from the follow-

For exam
ample, by usi '
can be raised to aygr:;zg a single pulley, a bucket of water

ground.
ralsed, is a

(i) the System of
(i) the TLeyer
(iii) the Common Balance

eelyards (R
(v) the Wheel ang Ax;):n e ‘a i

Pulleys,

d Danish)
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The principle and use of an inclined plane has already
been illustrated in many examples in the previous chapters,
and accordingly we need nob deal with it here separately.

In the following discussions, for the sake of simplicity,
we shall suppose that the machines are pgrfectlly smm_:oth
and rigid, and all ropes and strings used in their working

are light, inextensible and flexible.

19°2. Principle of Work.

hine two kinds of resistances are
hich the machine is specially
designed to overcome and (9) those which are due to the

internal adjustment of the different parts of the machine
ights of the different parts of the

e.g., friction and we
ma::hine. The former are called useful, and the latter
wasteful resistances. Tt should be noted however that

wasteful resisfances can never be wholly eliminate:?. even In
the case of most delicate and highly finished machines. In
elementary investigation of simple mgcl}ines, the w&ste‘ful
resistances are usually jgnored, and it is the effort which
balances the weight in such a machine. I-Ien_ce, the general
principle of work in Statics, in ‘this particular case for

a machine, can be stated as follows:
friction and weights of component parts

done by the effort for any assumed
is always equivalent to the work

In the working of a mac
overcome viz., (1) those W

If in a machine,
are neglected, the work
displacement of the system,
done against the resistance.

sometime be used to work out the

This principle may . {
ffort and the resistance in & machine,

relation between the e
as will be illustrated later.

12°3. Mechanical Advantage, Velocity-ratio, and

Efficiency-
(i) The ratio of the two forces, Resistance and Effort
oxerbed on & machine to balance one another, is called the



264 STATICS

Mechanical Advantage (or Force-ratio) of the machine.

Thus,

¥ _ Resistance w
Mechanical Advantage " Effort P

and Resistance = Effort x mechanical advantage.

Almost all machines are so constructed that the effort
exerted is less than the resistance overcome. Hence, mecha-
nical advantage is usually greater than unity. Bub there
are machines, as already mentioned, for which the effort is
equal to (as in case of a single pulley) or sometimes greater
than (as in case of a pair of tongues) the resistance, and
this really amounts o & case of mechanical disadvantage.
Mechanical advantage is often abbreviated as M, A.

(1) When a machine is worked
velocities, and z and 9 are the dis
of application of the effort and re

time, then u: o 1S defined as
machine,

, if % and v are the
placements of the points
sistance during a given
the welocity-ratio of the

Obviously, ¢ : V=g g,

velocity-ratio = Dz.sﬁa,nce through which P moves

wstance through which W moves
From the Principle of work, we have

P x distance through which P moves

=W % distance through which

W _ Distance throu

P Distance throu

Thus, in a
and in which

W moves.
gh.which P moves
gh which W moves

n ide?‘l machine whose parts are weightless
there is ng friction,

ere is friction, or
ances, the effort wil] have to do some

done by P will
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ing
: done by the mov
ccoed that done against 7. 'I:he worL_sd ga,lled useful work,
exceed oming useful resistance 1 T s
forceiﬁn overclz. done in overcoming Wwaste

and the work

termed lost work.

1918
wseful work done by the mac?azz; i
work supplied to the machn

y 5 i ed
Dfﬁciellc 1S IISLL{LH nd 18 Ofﬁen eXpr(-f‘SS
] i leSS ﬁh&n 0118, B:
‘ t ge but, in an idea.l m&chlne there t}lel e 18
as a percen a ', ? 3 i (0]
{Iicbion ete-, efhclency 15 unlts

diSﬁ&nGBS moued thro‘llg] I,y I IJ
e e

If o and ¥ are & P and T respectively,

points of application of

W | & _ Mechanical Advantage,
Y A s ity-ratio
Efficiency =5, ~ P / Y e

i.e., in general,

. = ; (: .
v l nt V';loczt‘?’-?'&tw X Z"]ﬁciﬂ?l y
1” echanica A‘

1. PULLEYS

i ith
. circular plate . Nk
consists of & eceive a
124, A Pulllglg’ its circumference S0 ﬂ'ﬂs tft;rcan i
a groove oub &BKE . from slipping off. ntre and
string and to prever: ' passing through ifs ce

pet pend cular to ts ‘pls‘ne hhe ends Of tb‘s axle be.ng helﬂ
y .. 1 : i 1 idl. tO !be ﬁ’:ced
f : lcﬂnlled the bzt)ak. A pu].ley 18 84

b g 1rame

i k is fixed
i as the supporbing b'loc :

O TG &%%O;S;nfhe weight of & pullggr 1su fg:ﬁg, i‘:;; 1;3;
O TS, rison with the weight 1r §S [()then AL
small 10 com£ BJin such a case the pulle% _11:l [
noglected, A7 lley. The weight of the stri e
aWOEHLeE Illmr being very small, will alwa@rriecﬂy e
round;h%gﬁe;}%m g consideregsstiggb:ossd it is constanb .
it U ion of the string P
5o that the tens

throughout its length.
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- 12°5. Single fixed pulley.

Fig. (i) Fig. (ii)
In this case the weight T is fastened to one end of the
string while the effort P is applj

wo sides may be parallel as
ther as in fig. (ii).
In both the cases, for e

quilibrium position, W =P, since
each is equal to the tensio

n of the string,
: W
Mechanical advantage =

Thus, in this case, the effort exerted is R
weight overcome -

; hence there ig no mechanical advantage.

he only advantage is that it enables us to apply the force
in a convenient direction

If the pulley be weightless,
in fig. (i), pressure on the fixed support
=P+ W=mw+ W=91,
Pressure on the fixed support
=P cos 0+ W cog 0=2T cos g,
between the direction of P ang .

in fig, (i),

Where 26 is an gl

Note. That =p °an also be shown by taking moment about the
centre of the pulley,

4 18 T
“next higher pulley. Effort ;

- acbing on it are the

MACHINES

- . S p = 7 Stem).

C

In this system, therlele;:
number of movable pnd 7
Ee!‘aach of which is suppo:tﬁelow
a separate string _pasgm.,ttwhed
it, one end of which s :nd L
tc; T Sumijsoig’r the string
: excep 277
c.)thenldeili:a highest p}lllef}:hﬁz
;E;l&ched to the block ©

f the
applied to the free enod;1 nod e
last string pa,ssm;:fl rweight. e
highest pulley. The R
Suipended from  the
the lowest pulley. AL
% 01'(10; dggvnward force,

effort as piglirn i
an additional pulles L e

often kept fixed 10

porting ! be noted that
. . ¢ 10 : a88es. It should

e d of the string P

free end O

ial part of the mgin
o A essenimclm}tribute anything
this pulley doe8 ;;?a that it does 1O
system in the se Sy

: A 1 the Weight.
to the mechanical the Effort (or Power).am' et md
Relation between e om i lovest
Let Az, Ao 10 i:1§]}:!eapiseanssit)rzs of the :hglpower ne
1 = ‘ . .
%" ........... b?Wbe i We]ght 2 5 in contact with
Ic;lu,nd Eilem and let ¥ e Y
T
t
us suppose

tlle plIHEX s [0]

z . ] .-I d ]
be Veltlc

sards.
next high vertically downw .
R Lezbltcf o weights of the pulleys be neglected
Case I. et in

; the forces
ilibri { the pulley 41 ;
u;i:};nl;];iva?rd tensions en.céh e;ltlvaélrsg T,
i i w :
:de of it, and the weight W acting do
on either sl )

aT =T. o T1=%W.
Al — .

(Consider the ea

e p———
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Since the forces acting on the pulley 4. are the two

upward tensions, each equal to T's, and a downward tension
equal to T,

hence as before,

9T, =T, ik =, 51 .
Similarly,
9Ty = T, L Ta=im = W
9T, =1, To=3Ty =25 .
If we have 4 movable pulleys, as in the figure,
7, ~p, LoP=dw
Simila,rly; if there be 7 movable pulleys, we shall have
P=_L .

mechamical advantage = %r =2"

Which obviously increases with the number of pulleys.
Case II.r Weights of the vulleys considered.
Let w,, Ws,... be the weights of the pulleys 44, 4.,

.Considering the equilibrium of the pulleyglid 35 0d g, e i
if we have 5 pulleys, then,

......

21ITJ.='-|717+Q.'_;1,
2T2 Iy T1+102r
2T3 =Tg +TU:3-
2Tﬂ= T‘n—]_ + Wa,

e end of the highest string
P=m,,

and lastly, for the fre
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i ively 2 93, 98-
* Multiplying the equations sui:cessnml} by 1,
9" and adding, we have ult:un&te"y T
gnp=TW+(wy+ 2w T 9%wg+ ot
the relation hetween P and TV
; 1, each of weight w,
271-1) w

which give -
If the pulleys be all eq T
onp = w+(1+2+2°+
(1) w- : G0,
it fT?loWs that the mechanical advanbag
0 Ik ; lleys.
ents oS Vo TR t the greater the
depends e bove it is olear that the g e
ekl i iven weig. 4
Nz Frzrlleys, the greater must be P. to. ra-;;z ;:lg e
weights of the gqnic"‘] advantage would be dimini
and so the mechanits

:oht as possible. ) )
should be made as g tem is called separate-string system WERERA
R
Note 2. This SY

y i assing round it.
ul so has got & geparate string passing
i is ca 8

I)li(}.lltll)ll {IB t P ineipl fV k.
AII he rmc1p e 0 Vor.
I‘he ﬂnbO‘. e lelafilﬂu beb ween Z

. k.
principle of Wor . : lied
Bednes {romt]jheelnd of the sbringhto g&_fh;g?iof olfs ;?’P ;3?
Suppose the = in the dir S hulle
t movable pulley
moves through that the uppermos : lle
this, it i e.asﬁytﬁsgﬁgh o height 4@, the next lower puiley
would be ra:lSe' Tl and so on, the lowest pulley and
through a height g2

1 . ;
i case O
: being raised through 2 height 2,,m, in :
b blemblleys Hence, from the principle of work (when
n movable pu L

s are neglected)
weights of the puﬂﬂls m ] b
i it e T

ights of the pulleys are taken into consi-
we

gquﬂticﬂn

and W can also be

Tf the

i z
deration, i s R
Pm-_—_W-%-i-wl‘:q?i‘Hbﬁgﬂ‘l 2

i e e T
gt p= T+ (ws +9ws +27Ws T §
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12'7. Second S
st
) ystem of Pulleys.  (Single-siring
je—x= b 4 n)
p 4
‘fp
&y
’\-
o
A\
¥ w
Fig, (ii ;
In bhis Sl

ysbem th
pulleys, the Y& ere are two |
Lower blook, whigh b o 10 freod o, cach containing
15, being movable %S}; bhe weight to be iaﬁ!upport and_the
Pulleys. If the t’ot - © same string P&SSelsed attached to
al number of pulleyg hz gouna all the
ven, divided

nto equal nu 5
must he fat mbers in each blgek [as in ig, ()

number of FHEd to the upper bloclk - )], the string
Will bo wyr eys be odd, the num%(;]: ’inth'.lﬁ At ool
& upper block

e one grEat
f] a II wer Ock as
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tring must be attached to the lower
block. In both the cases, the string passes alternatively over
a fixed pulley in the upper block and under a movable pulley
in the lower block, the radii of different pulleys being such
that the portions of the string nob in contact with a pulley
are vertical. The effort ig applied a8 & downward force ab
the free end of the string affer it passes over the opmost

pulley.

in “Fig. (ii)], and the s

eight.

Relation between Effort and W
rted and w the weight of the

T.et T be the weight suppo
lower block with its pulleys.
It is easily seen that if » be the total number of pulleys

used in the system, whether 7 be odd or even, there will be
7 portions of{;tring supporting the lower bl_ock. Since the
same string passes roun all the pulle}_fs “_*hlch are smoo_th,
the tension in each portion of the string is the same, being
equal to the effort P applied at the free end. Since the
lower block is gupported by n parallel forces each equal
to P, we have
W+ w=nP.

When the weights of the pulleys are I
W=nP.
g cage, the mechanical advantage=

eglected,

=1

ol

Hence, in hi
o Principle of Work.

Suppose the weight 7 (and consequently the whole of
the lower block) is raised through a distance . Then each
of the n portions of the string supporting the lower block
will be slackened by the length @, and the total length of
the string slackened being nx, P musb descend through a

distance ne to keep the string taut.
by the principle of work,
(W +w)e =Pz, ie, WH+w=nP.

gle-string system because a _aingla 3

Application of th

Thig system is called sin

Note.
d all the pulleys.

string passes roun
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12'8. Third System of Pulleys. (Inverted separate-
string system,).

This system consists of
several pulleys of which the
uppermost is fixed to a beam,

B and all the others are movable.
The string passing over any
pulley has one end attached to
a bar from which the weight is

= suspended, and the other end

N attached to the next lower

¢ pulley. The effort is applied at
the free end of the string pass-
ing over the lowest pulley.

\D-'
>
(4]

Relation between Effort and
Ty Weight,

Let .A.]_, Ag, .A3 be the
movable pulleys beginning from
the lowest, and B the fixed
pulley, and let T4, Ta, T, Ta

w be the tensions of the strings

passing round them. Also let

W be the weight, and P the effort. We shall suppose all

Portions of the strings not in contact with the pulleys to be
verfiical, and that there is no friction.

Case I.  Weights of the pulleys neglected.

From the equilibrium of the system, considering the free
end, and also the pulleys 44, A,,..., we have

IEE e
g T.=2T,=2P
| Ty=2T,=9%p
Ty=92T,=93p,

Again, from the equilibrium of the bar from which the
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weignt is suspended, (the bar being supposed of negligible
weight),
W=T,+To+Ts+T,
=P+9P+2°P+2°P
=(1+2+2°+2°) P=(2*-1) P.
If there arewn pulleys, of \_vhich the upper one lis fixed,
and (n— 1) movable, we have similarly,
W=Ty+Tat T+t Tn
— p+9P+93P+ - +2"EP
= (1'+2+2%+:+2" )P
=(2"—1) P,
mming the series which is a G.P.

by su

w N =
mechanical advantage =p-= Pl

<vhich obviously increases with the number of pulleys.

Case IT. Weights of the pulleys considered.
Tet the weights of the movable pulleys 41, Aa,... be

) ively.
Wqy Wayere respechbively

ideri 41

idering the effort '
ﬂqug?l?rsium of the pulleys in succession,

T1 =P

T —'—'-2T1+TU1=OP +Wq
—92P + 2wy + s

at the free end, and also the
we have

TS =2T2 +wa
Ui 2T +QUS:2SP+22101+2109+1U3'
(T

From the equilibrium of the bar,

/] =T +T +T3+T1 /
i (11+2-:22+23)P+(1+2+2“)Qul+(1+2)wg+ws

@t-1)P+ (28-1) Wy +(2% - 1) wg +ws.

=

18
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If there are n pulleys of which the upper one is fixed,
and the rest movable, we have similarly,
W=T,+Ty+-.-T,
=(1+2+2%++-+ 9" 1) Py (] 494921 ... + 97" %) 1w,
+(1+2+22+-.. + OneS it ot (1+9) wy_g+wy_y
=@ —1P+(2"* = 1) wy + (272 = 1)y 4 ---
+(2°~1) wp_s +(2-1) w,_,.

If the pulleys be all equal, each being of weight w,
8o that w, =w,=--- = Wnoy =w, .

W=@"-1)P+{2+2%+... +O" —(n— 1)} w
=(2"—1)P+{2“—n—1} w
by summing the series in G.P.

Note 1. From the above equation it

weights of pulleys, the smaller is the e
weight 17,

Note 2. TIn this system, unless the point in the bar from which
the weight is suspended is properly chosen, the b
horizontal, 1In any particular case,
mined,

is clear thatthe greater the
fiort P required for a given

ar will not remain
the point can be easily deter-

Note 3. Asin the case of the fi
in this case also the relation betwea
by the principle of work,

rst and second system of pulleys,
0 effort and weight can be obtained

12°9. Illustrative Examples.

Ex. 1. 4 “first systom” of pulley
weight 8 lbs., and the string
over a fixed pulley,
at the free end of the
the lowest Dulley 2

8 consists of 4 Pulleys, each of
Passing round the top-most Dulley passes
With what force must o man of weight 220 Ibs. pull
String in order {o balance himself, suspended from
. [C. U 1945 ]
The man being suspended from thg lowest pulley,
pulling at the free end of the string, 1ot p
at the freg end, and W ips, wt,

- and himself

1bs. wt. be the pull exerted
the downwarq force exerteq by him at
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ce his total
the 1 t pulley. The reactions at these twoends balan
e lowes 4
weight, so that .
P+ W=220. d
o effort and the weight balance

o as th
Again, P and W clearly serve a and as the pulleys have equal

by the system of pulleys in this cas?[,I
weights, we get as in Art. 12'6, Case I,
94 P= W+ (2"’ hod 1)-8|

i.e 16P=T7+120. S

From (i) and (ii), we get
17P =340, or, P=20 1bs. wt.,

giving the required pull at the free end.

is 15 -qises @ body of 8 cwt. by
eight is 154 lbs. Taases

Ex. 2. 4 man whose W ¢ same rope passes round all the

means of a system of pulleys in ;uk;’;:h ?ﬂzaﬂd e g
2 gy in each bloci,
pulleys, there being four

. o
e upper l} oclke 7 he weights 0 fh.e. pul Y5, ﬁ?l what wi e
{1 1 J ) it f I d T Il b
wupper Cl. AﬂgZECtZ gt ] -
- t on the q O‘Mﬂd 'i‘;f he _pnlls vertica zy ownwaras . ol 4 I
his thrust on J 7 A d d ‘ C U 04
w Vi Y 2 YS.
Here e have the Second Sy stem of Pullﬂ
Ihe number o ower bOB]\.—2X4=
be £ Etl‘]ngs at the 1 (] 1
S the Welghtvs Of the Pu]les S are nEglected, if P be thﬁ eﬁort
ince il

8.

8P=238 cwt.=8x 112 1bs, wt.
J P =42 lbs, wt. 3

o thrust of the man on the ground is clearly the difference
The thru
betsween his weight and the pull he exerts.

the reqd. thrust=154 1bs. wt.—42 lbs. wt.=112 1bs, Wt.

Ex. 3. In the “third system” of pulleys, if the uie-ight s;bpportc(;l ;Z
56 lbs., each movable pulley, of which there are 8, fzvamghsf 1 ;., a:. it ’;L
radius of each pulley including the fixed one be cf, ﬁ?;d tl;a ft;ﬂe o
the bar from which the weight must be suspended in order that th
may remain horizontal. |
Taking the figure of Art. 12'8, let K, :L, .M, N.be the points
of attachment of the strings in the bar beginning with the longest



276 STATICS [ Ex. XII(a)
(extreme left), and X the point from which the w
Obviously, EL=TM=MN=g,

56 1bs, wt, = =

eight is susper.ded.
Now, as in Art, 12'8, Case II,

T\ +T5+ T, +1,
=(2* —1)P+(28 =1) w, + (22 - 1) wy s,
=15P+(T+3+41) Ihe, wt., since

w,=w, =w, =1 1b, wit,
15P=45 1bg, w,

P=3 1bs. wt, <o (1)
Thus, T, =P=3]ps, wh., T, =37, +w, =T lbs. wt,.,
= 27, +w, =15 lbs, wt,

Now, for the equilibrium of the rod, takin

g moment about X,
WXK=1

sa+1,9q+ T, .8a,
or, 56, XK= (15+14+ 9).a =384,
o XK=3f5=

fa.

(=C]

Hence, the weight must he

attached to g point in the bar at a distance
436 from the point of attachme

0t of the lopgest string,

Examples on Chapter XII(a)

_1. If in th ¥, the number of
Welghtless pulleys be seven, fi

nd the weight which can be
raised by an effort 16 1bs. weight.

[C. U 1936 ]
2. Th‘e number of moyahle pulleys in g first system 18
three and the sum of the

Power and weight ig 9 lbs. If the
DulIe_ys are weightlegs, calculate the Power,

e first system of pulle

3. TIf in the first system of pulleys, the pPo
the weight = 1685 ewt., ang the weight of each p
find the number of movabhle pulleys in the syst

4. Tn the system of pyJp i

! pulley hangs
Dport by g Separate string, the weights of the

nd 1 lhs, réspectively hegin-
€ lowest, i :
"Weight supporg 9 What weight vl 5 Power of 5 Ibs.

wer = 30 ]bs.,
ulley =9 Ibs.,
em,

{CHINES 877
Ex. XIT (a) ] MEAOTH

: : 5
5. In a system of pul[eyf in Whillzl;-seﬁtfﬂz é):i}eg;i_;zg%;
"o s o i , there are three pu L
la‘.)}iea stecg;;;ﬁitsgrﬁ:?id to the lowest is 312 1bs., and the po
is 11 1bs. Find the weight of each pulley.

i r first system
isi reight two inches by the ot
6. In raising the weig = SR :
ches of string p G
Ef prlll“e}Z-EE‘;i’nf(:llvet]gZEtnfsgfblerll' of the pulleys, assuming their
and. nt
weights to be negligible.

rs, show that, whatever
stem of pu}le}_s, sho Lhene
7. In fl];: offlfsu?;s, the equilibrium vy:%ltnc?fte];z }? pflci el
:;e t];\e oL ¢ the effort, load, and the weigh
¥ 1ncreasing ,

by the same amount.

: ights of the
. lleys, if the weight
st system of pu W, increase
Sil Iu :gﬁcrfz:ing from the one ne&rel-s;ftifiaoof which is 2,
7 pu eyst;ﬂetric progression, the common
in a geo 5
Prove that
W . w n_ g-n ;
2= 5§a+ 3 (2 2
] 1 r
where w is the weight of the lowest pulley

in which there are
rstem of pulleys, in inning
i B gt o the s oo
}ihreetﬂl Oﬂqgllzsg increase in arithmethﬂ‘%lgﬂ%g’ The pulleys
rom the hign / upports a weight W. i
Wwards, and a pogeinihse Ireverse Rl ity h1ghfes%tl:1)>3;2§
ot Towast, snd. it s found that Lol
wWesu, . POV
%lﬂfsa.inga.ins equilibrium. Prove tha
: 3 (W+ P)=2Wx, 1941 ]
hers T, = total weight of the three pulleys. [ C. U.
where W, =

leys, the weights of the
t system of pul !

101.1 InI t}:?urflifg with the highest are in A.P., and fu gongr
P o eﬁt;e{f weight W ; the pulleys are then reversed, K 13
f:isl;?s% being placed lowest .&pd‘so on, and now W an
wgen interchanged are in equilibrium. Show that

QW =n(W+ P),

. q i
NIRRT LN e S WS oy e LSSl oLV al el
il P A p
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11. TIn the first system in which there are four movable

pulleys, each of weight w, if P be the effort (supposed to act
upwards) and R the stress on the beam, then

B=15P - 11w.
12. Tf in the first system of pulleys, P is the power
(acting upwards)

» W the weight, and R the stress on the
beam from which the pulleys hang, show that

(1-2""\ W< R < (2"-1) P,
7 being the number of pulleys in the system.

13. In the first system in which there are 4 weightless

movable pulleys, g man of weight 10 stoneg hangs {from the
lowest; pulley and supports himge

If by pulling at the end oé
the string which Passes over a fixed pulley. With wha
force does he pull the string ?

If in the above case, the pulleys insteaq of being Weighﬁli
less, be all of the same weight 8 lbs., what would be the pu
on the string 9

14. A man of weight 136 1bs, standing on the floor pulls
ab the power end of the firgt eystem

of 4 weightless pulleys.
& weight suspendeq be eight times the weight of the

man, what is the bressure of his feet on the floor ?

15. If there be twelve pulleys divided equally between

the two blocks in th

weight which a

e second system of pulleys, find the
power of 10 Ihg.’
of the pulleys h

wh. will support, the weights
eing neglected,

18. A gecong system of pulleys has 5 pulleys in the
UPper block and 4 in e lower. How many times his own
weight can o man raise hy thig machine, if each hlock
Weighs 5th of his own weight ?

17. The cablg by which Great Paul, the bel] weighing
18 tons, wag lifted tq its place in the cathedra] tower,
DPassed four timeg through eac}
negligible weight,

! 1 of two blocks of pulleys of
Find the strength of the cable.
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. bs.
, ght of 71
f pulleys, a wel bs. just
d system o ' of 9 lbs.

18. In the,sﬁiogf 30 lbs. and 2 ‘ﬁ;ﬁhzotal number of
supports & welg ht of 44 lbs. Find f the lower block.
'sul)DorhS_ a;hwzlfstem and the weight o
pulleys in the :

ratio of
unless the ratic bt
rghem of pulleys’ ded weig
L9:hy I Ehe Secondls'?vser block to the s?ﬁge?ower block
the weight of the mber of strings 1in is no mechanical
be less thanbthe nrili:;* chow that there
diminished by u )

advantage.

{ t. with four

: ived to lift a Welghthof 01;10 S;:;ier the firs
20. It 1is req}ﬂighing 8 lbs. Wou évgnt&geous ?

pulleys ea(ﬂgi ;;:tem as being more & [ C. U. 1933 1

or the secon '

t. by
: & loﬂad Of 6 oW 4
:ohing 10 stones raises 's, there being

1A man Welfél"i;ngg system of light }?uél%o? the man on
means of &_S‘ngle}f llJlock- Find the)ﬂ;i?ing beam.
fhhulleys dm&n?ihe stress on the supp [ B. E. 1936,°40 ]
the ground,

having three
stem of pulleys to that
22. By the seconttlﬁcﬁ: and the string a{-igaih:ieight e
pulleys in the 10&? eZ on the ground R )
block a man stan mthg,t of the lower b ?tc 'lL by his feet is
6 stones (inclufing 'A% ground exere 1 weight he can
and the Pl'essgred c?ﬁhe maximum additiona
198 lbs. wt. Hin

support.

'] eight of
; the ground raises a,.w oy
23. A man st&?d:)ﬂ}g)lc?crllcs, each containing Ph‘i?:; pllj.geisl,[) s;‘
1 ton by means of ‘sth the pulleys on it, weig £ L0
o bloc]t{-,' :j lt;he beam from which the uppe
Fingerg}c?lzdhli;l; 'thoe least weight of the man.
sus ;

94, In the second system of Rulleys, (t:i Iiae{;;f;og? T;;.s,
: the lower block. _man : i
suspepded fri]i platform, supports himself by exerbglti Ooni
St};wd{:rniigoz force equal to P. If » be the total num
the 8
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pulleys in the system, and m W the weight of the platform
and the lower block together, show that

U7 iparil
P m+1

25. D
means of
as great,

raW & system of pulleys with paralle] strings by
which a force may balance g weight seven times
[C. T 19251

26. In raising a weight by (i) the firsg system, (ii) the
third system of pulleys, which is the more advantageous,
to have the pulleys heavy or light ?

27. There ig one sysfem of pulleys in which as the

weights of the pulleys increase, the mechanical advantage
ncreases.  What ig that system 9

in the thirg system there are three movable
pulleys such that the weight of cach 18 equal to the power,
show that the Power wi

. T will support g weight 26 times as great
as itself,

29, In the third system in which therg are three
mova}b;le pulleys of Weights 1 ] » 2 lbs,

ST T the thirg 8ystem there grg % Weightless pullevs
each of radius a. Shoy that the distance c?f the prtjnint S:Df
application of the weight from the line of action of the

o '
effort ig gn =7 na.

32. In the third sygtem of Wweightlegg pulleys, if the free
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lley be attached to

] und the lowest pulle; R0
S Siillili%hrtﬂle weight is S}lspended,_ S]fq?»“l ih'ag“‘
tb;he !"«'ﬂ' g‘fot?ﬁe string is diminished in the ratio :
ension

i lley, in that system
ht of the lowest u ; 2
“33. 'I[‘ th‘i;j’gf;u the strings, # in nunﬂ}ier,ﬁgstgiigisé]:g’
i pulleys_ 1ﬂt; be equal to the power P, of i; le ile el
2 té]}_g We:lg o on, that of the highest movable pulley
t ,and s S e
3?‘"2 P, prove that W : P=3"-1 s
* o are three movable pulleys of Wellg E; s 91,'10;&1’
34 The}% system, and the force P then ba,]f.nc e
Wi ffhe ttl;;l;(ﬁi-;t and second pulleys are ﬁlﬁirc anged,
i ha
Eo,r:;zl?’[} halances the same load. Show
Bt Pl
we—wy 15
u ight of
' ighing 126 lbs. supports a weig .
1023]?. t})} Iﬁ:ﬂn‘:e;h{lggr pulleys of which one is fixed, in
hs. by

: : the ground if the

: d his thurst on 7

fhe 15hn‘df St}]’;jer?;)vag{en pulleys beginning from the lowest
masses o

i 7 C. U. 1940 ]
are 1, 2 and 3 lhs. respectively. [
ANSWERS
1. 2048 Ibs, wt. 2. 10 Ibs. w. S G 95 Tha wil
i 6. 5 13. Sf‘.,- 1bs. wt. A 151‘} 1bs. wt,
5. 81bs. wt. b fah ,-

68 1bs. wt 15. 120 1bs. 16. 8% times his own weight.
by : 18. 7 ;19 1bs. wt. 20. First system,

22. 64 stones.

17. 2} tons wt. ‘
21, 84 1bs. wt. ; 728 1bs. wt.

2635 1bs. wt. ; 375 Ibs. wb.  25. Second system, with T pulleys,
4 ‘23.th; upper and 3 in the lower block, or third system with 3 pulleys.
in r

26. Light in the first system, and heavy in the third system.
27' Third system. 29. 178 1Ibs., 166 1bs.

30. 101bs. wt. ; the point required divides the distance between the
first ! strings (passing over the two topmost pulleys) in the ratio 5:2.

85. 120 lbs. wt.
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II. LEVERS 3

12°10. A Lever is a rigi i
: gid rod, straight or d
E{c:aal;)l:i 1112 one 1;{1&(11:1?; ]?b;ut a fixed point incthe roﬂcur\{[‘ehe;
1s calle e fulerum, and the parts of th-e leve
:;tgwt:aendthe fulc;rum and the points of application of ;hg
rt and the weight are called the arms of the lever.

When the arms are in th i
€ ‘ e same straight line, the 1 i
called a straight lever ; in other cases, it ig called a ben?g:;e:f

i (iig’;t;ghés learlers are usually divided into three classes
A effor% 0(1 e poqltlons_of the points of application of
and the weight with respect fio the fulerum.

Class. I. In levers of
. 2hgs the first class the effor
weight W aet on opposife sides of the fulcz-?lme g‘ft 7 &”,d che

AR

A
B

i
) w

A Cro W*bﬂ;f ed 0 ralse I VY W 1 l)L‘ 0 T (=} als
use Yy
ral & he C]gh y & Poke 'llSed t alse ¢o

ina grate, otc, are ]
J evers of th . 5 t
are double levers of the first clas: first class 3 and scissors, pincers cto.

lClass II. In levers of the second class the effort P and
P . &
A= = ——= (o]

Ew

Wi act on § :
eing nearer the {ulcm?]: same side of fulerum 0, the weight
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* The oar of a boat is a lever of the second class and & pair of
nut-crackers is a double lever of this class.

Class III. In levers of the third class the effort P and
the weight T act on the same side of the fulerum C, the

effort being nearer to the fulerum.
TF'
(o]

A

\ VR
w i

ass lever is seen in the human forearm
the effort being in

B

An example of a third cl
raising an object placed on the plam of the hand,

this case the tension in the ligament near the joint; a pair of tongues

is a double lever of this type.

Equilibrium conditions and mechanical advantage of a straight
Lever.

If the weight of the lever is neglected, then in each of
the above three cases, the lever is in eduilibrium under
the action of three forces, the effort P, the weight W and
the reaction B at the fulerum. Hence B must be equal
and opposite to the resultant of P and 7.

In Class I, BR=P+W.
In Class IT, L="i=P.
In Class III, R=P-W.

Again, as the resultant of the parallel forces P and W

acbs through C.

g

P.AC=W.BC.
mechanical advantage= Bf = :ABg

Thus, the levers of Class I generally and those of
Class II always have got mechanical advantage, whereas
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the levers of Class ITI have got mechanical disadvantage.

The levers of third class are usea to apply force at a point
where the direct application of the force is not convenient.

It the weight of the lever is taken into consideration,

the equation for equilibrium may be written by taking

momenft about the fulerum, the moment of the weight of
the lever being also addeq,

III, THE COMMON BALANCE
12°11. The Common Balance,

The common balance ig
the weightgs of bodies. It
beam 4B, having two scale-
from the two ends, and ¢
outside the beam but

an instrument for determining
consists of a straight uniform
pans of equal weight suspended

urning freely about a fulerum O
rigidly connected to it.

. I}l % perfect hy
Bravity @ of the he

lance the fulery;
am (with itg con

M and the centrg of
nected parts) hoth lig
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i i i 2 i rly, so that
on'the line which bisects the beam per pend_mula} v,
when the beam is horizontal, O, G and the mid-point C of the
beam are in the same vertical line. AC and BC are called
the arms of the halance.

am is horizontal when no weights or equaaln we:ght_:s
are Tlljl?bclii{uc?n the scale-pans. The body to'be Welgh-ed 18
placed in one of the scale-pans, anc:{ weights of _Lno“.*.n
magnitudes are placed in the of;her till the beam is I}on-
zontal, If the balance be true (i.e., perfect), the sum of the
known weights gives the weight of the body.

Note. The common balance is a lever of the first class.

12°12. Requisites of a good balance.
The requisites of a good balance are :

(1) it must be true,, i.e., the beam should remain hori.
zonfal when no weight, as well as equal weights are placed
in the seale-pans.

For this, it is necessary that
(@) the arms of the balance must be exactly equal,
(2) the weights of the scale-pans must be equal,

(c) the C.G. of the beam including
must be on the line through the fuler
the beam.

the rigid connections
um perpen.dicular to

To test the truth of a balance, we first 'see that the
beam is horizontal when the pans are empty. Next, a body
is placed in one scale-pan and such weights are placed in
the other that the beam is horizonta] ; now, if the contents
of the pans heing interchanged, the beam is still found to
be horizontal, the balance must be true. If in the second

case, the beam is not horizontal, the balance is said to be
false.

(i) it must be sensitive, i.e., for g ver
in the weights of the contents of the ge
should be inclined to the horizontal af g

v small difference
ale-pans, the beam
perceptible angle 3
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(iii) 6 must be stable, z.e., the beam, with the pans

empty, must quickly return to its horizontal position, when
disturbed,

Note1. In a good balance a rod or a pointer called the tongue is
attached perpendicular to the beam af its middle point, and as the beam
oscillates, the pointer moves against a graduated scale. Since it is
vertical when the beam is horizontal, by its help the determination of
sensitiveness and stability of a balance becomes easier. '

Noto 2. A balanco is said to be faulty in every respect, if it is not

true in every respect i.e,. (i) if its arms are unequal in length, (ii) its

scale-pans are unequal in weight, and (iii) the C.G. of the machine is
1ot on the perpendicular from the fulerum on the beam.

12°13. Position of equilibrium of a balance with
unequal weights in the scale-pans.

- Let Che th'e Iqiddlg-point of the beam 4B, @, the C.G-.
%fe :Igol:;e?inovgi;h c‘1159. rigid connections, and O the fulerum.
Let S=weight of each scale-pan

W= weight of the beam

W1, Wa=weights placed i th =
Loeaie s e A %Vg. in the pans at 4 and B res
@ =length of each arm, so that AC=(CB=q.
Let 8 be the inclination of

it the : o
the position of equilibrium, beanfx to the horizon in
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O in this

* The horizontal distances of 4, B an% eGa fcr;sné T
position are easily seen from figure t‘z. i
@ cos 0+ f sin 0 and (i + k) sin 6 respectively-

The beam is acted upon by the following {orces :

i : t A and B, W
! a vertically downm_ds a '
ert]'—[fal,l-l:-séox?;;v:fl’s at G, and the verbical upward reaction
v 1C y
at O.

' i ut 0, we
Hence, for equilibrium, taking moments abo |
]
have 1, S
— 1, sin 0)= W(h + %) sin -
o +(Wa + S)a cos 6+ h sin 0),
G 7o +28S)h].
*. (Wy— Wa) a cos 6=sin 0 [+ 1)+ (Wa+ W +28)k]
AN (W= Wala £
E 0 VTS A An = =
L. ban 0= gra o (W + We+ 28k
i =0, 4.e., the beam
Note1. The result shows thatif W.= Wo, 0=0, e,
i i ition.
can rest only in a horizontal posi el
Note 2. It should be noted *that if 7 and % were both zerji,g,c,;;
0 i . . . . e
the C. G. of the beam and the fulcrum coincided in the line T 3 o
s i in
beam could rest in any position when equal weights were pu

pans, and could rest only in a vertical position if the weights were
]
different.

Note 3. Tor a given difference W, —W, of .t}m \:fngt];i;s b::;ntl;:
pans, the greater the value of @, the more senslltuve ?1 3 ,mdk]_kboq;
Thus, for a balance ‘40 be sensitive, a mush be large, an LE} G hf t; :
small, 4.e., the arm should be long, and the fulcrum fmc% the C. -.ﬁ thl
beam as near the beam as possible, bub not exactly coincident wit e
contre of the beam (see Note 2 above).

Note 4. If W, and W, be removed, while the inclination of the
beam to the horizon is f, the moment about O of the acting forces,
tending to restore the beam toits horizontal position is, from the
figure ¢ :

l S (a cos 8+ sin 6) + W (h+7%) sin 6—8 (a cos 8 —7 sin 6)
=gin 0 {28+ (h+E%) W}

and for this to be large, h and & should be large; in other words,
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4 balance is stable for which b and I:'are large. Thus, if a balance is
more stable, it will be less gensitive, and vice versa.

12'14. Double weighing,

Method I. First Place the hody to be weighed in one
scale-pan and in the other puf suitable material (such as
sand, brick-chips, ete.) sufficient to balance the body. Next
remove the body, and in itg place put weights of known
magnitudes sufficient to balance the brick-chips. The weight
of the body is obviously the sum of the weights.

This is known as Borda’s method of

. Method IT. The weight of a body is observed by placing
16 Successively in the two scale-pans. If the weights are
l"ou_nd to be exactly the same in both cases, the observed
Weight is the frue weight of the body and the hbalance

18 true. Thig method enables us tg test the truth of
% bhalance.

double weighing.

IV. STEELYARDS

. 12°15.  The Steelyards are also levers of the first kind,
with graduation marks on them, used for weighing goods,
in X"-'hich the necessity of keeping a number of weights ig
obviated, There are two kinds in common uge :

(i) the Common (or Roman) Steelyards, having
‘a fixed fulerum, :

(i) the Danish Steelyards, having

& movable
fulerum.,

12'16. The Common (or Roman) Steelyard,

It consists of g straight sfeel lever 4B having g fuler
at a fixed point O near one end 4. At 4 ¢ er; a;slzll,hl:;;lo?
Or a scale-pan in which the body to be weighed can he
I)Iagaed, and s movable weight P slides along the arm CRB
Which hag graduations marked on i, After an article has
been placeq in the scale-pan, the movable weight is. shifted
ong CB until the beam is horizonta] and the mark gt X
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indi icht of the
where the movable weight rests, indicates the weight o
arbicle.

X 8
o i i el e A

0

Graduation.

g the scale-pan
i f the steelyard and . ’

Let W' be the we ltEhcf;iothe; beam through which 'W 9{:0!;:_
and let G be the pon s S

: nsh : : :
st }1]-1511'?8:1]}'3('&:!0“. When there is no lwelgbﬁjﬁi
GHCs, isI T thele: gbe the position of the movable weig
the scale-pan,

m ] rk of the
: m is horizontal. The mar ‘
o éor t'Whlg.? (t)hi(?s. }:JEZn zoro. Taking moment about C for
graduation

this case,

i

P.OCsW’,GG. gich (i)

i - t X be the
J i T in the scale pan, su:%d le
Ne;:;iié;gi 2fwl§]fg£-t which the beam is horizontal. Then
'?aignlé moment about C, we have,

P.X0=TW.AC+ W'.GC. A5 ()
Subtracting (i)-from (ii), we get
P.OX=TW.CA.
W

i o (a)
0X=1+04
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Now, if we measure off distances 0X,, 0Xa, OXs5...
along OB, equal to CA4, 2C4, 3CA4... and write 1, 2 Blosa
for X4, Xa, Xa,... these graduabions give the points fo
which the weight of the body placed in the pan is P, 2P
3P,...

It should be noted that the graduations are of equal -

length and if the movable weight P is taken as 1 lb. (or
1 kg.), the graduations obtained would indicate pounds (or
kilogram). If smaller graduations are required, these
divisions can again be divided into suitable sub-divisions.

Note1l, The distances of the successive graduations from the
fulerum are in A.P.

Note 2. Weigh-Bridge is a modified form of this machine. Itis
generally used in railway stations for measuring the weights of heavy
. luggages.

12°17. The Danish Steelyard.

The Danish steelyard consists of a le
fulerum C is movable. At one end B, the:ee risiBluZJl;JOzef
metal as a knob, and at the other end 4 there is a hook or
8 pan where the body to be weighed is placed. The beam
1s graduated and the weight of an article placed in the scale-

Eﬁ: ;ii:.]:c:;:tai}lqe% 11)53]71 olfaserving the mark of graduation of
> whic e fulerum must b
beam should rest horizontally. s placed‘ S
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Gradueation.

Tet P be the weight of the beam and the pan, acting
through the point G of the steelyard. It is obvious that
the zero graduation is at G, since the fulerum must be at G,
when the beam balances in a horizontal position without
any weight in the scale-pan.

Tet C be the position of the point where the fulcrum
must rest when there is a weight W =nP (say) in the scale-
pan, and the beam balances horizontally.

Taking moment about C, we have

nP.AC=P.GC
=P.(AG- AQ).

AGH

40= nt+l

Thus, the successive. graduations for n=1, 2, 3,... etc.
are at points C1, Cz, Cs,-..., Whose distances from 4 are

14G, $4G, 14G,...

If we mark 1, 2, 8,... for 01, C2, O3, these graduations give

the points for which the weights of the body on the pan are
P, 9P, 3P,... respectively. If P be equal to 1 1b., the
graduations indicate pounds.

Note. Since, &, %, #,... are in H. P., the distances of the successive
graduations from the point from which the scale-pan is susj}end‘cd are
in H.P.

V. WHEEL AND AXLE
12°18. The Wheel and Axle.

This machine consists of the axle 4B, in the form
of a cylinder, capable of rotation about a fixed horizontal
axis CD, and a wheel EF, rigidly attached to it, and there
fore rotating about the same axis which passes throug};
the centre of the wheel and is perpendicular to its plane
At the ends of the axis, there are two pivots C and D
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resting in.ﬁxed sockets. This machine is used for raising
heavy bodies.

A string is wound round the circumference of the wheel
with one end fized to it ; effort P is applied at the other end
of the string. The wheel is grooved along the circumference
to prevent the rope from slipping off. Another string is
coiled round the axle in the opposite direction with one
end fixed to it ; the weight. 7V is suspended from the other
end of this string. When effort is applied, the point of
application of P moves down the string round the wheel
18 _uné:oiled, and that round the axle winds up, so that W is
raised.

Mechanical Advantage.

Let @ and b(b > a) be the radii of the axle and the
whee_l respectively. Since the only {orces (except the
reaction on the axis) acting on the machine are P and W
which tend to rotate it round the axis CD in opposite

rhrectl'on‘s, for equilibrium, the sum of their moments round
the axis is zero.

Hence, W.a—P.b=0,

7.6., W.a=P.b.
mechanical advantage =

W_ b _radius of the wheel,
Fd P a  vradius of the azle
which is obviously greater than unity.

Note. Mechanical advantage can easily be incrensed by making

the radius of the wheel larger and that of the axle smallor,
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]
Verification of the Principle of Work.

When the wheel and the axle make one complete
revolution, the length of the string uncoiled from the wheel
is 2ab and the length of the string wound up round the axle
is 97a. Hence, the point of application of P moves down
through a distance 2xb and that of W moves up through
a distance 2na.

work done by the effort =P X 2ab
and work done against the weight = W X 2za.

Hence, W % 2aa=P X 2ab. "Wa=P.b
as otherwise shown above.

Note. Windlass, used for drawing water from a well, and Capstan,
used on board a ship, arve different forms of wheel and axle. In the
former the axis is horizontal, and in the latter, the axis is vertieal.

12°19. [Illustrative Examples.

Ex. 1. The arms of a balance are of unequal length, but the beam
remains in a horizontal position when the scale-pans are not loaded. If
a body be weighed, being placed in succession in the two scale-pans,
show that ils true weight is the geometric mean between ifs apparent
weights.

Since the beam remains horizontal when the scale-pans are empty,
the O.&. of the beam with the pans must be vertically below the
fulerum,

Let @ and b be the lengths of the arms of the beam and let a body
whose true weight is W appear to weigh W, and W, successively.
Then taking moment about the fulecrum,
for the first weighing, Wa=W,.b s (1)
for the second weighing W.b=W..a. e (2)
Multiplying (1) and (2), we have W*= W, W,
W= W\

Ex. 2. If the scale-pans are unequal in weight, but the balance 18
otherwise correct, find the real weight of a body which appears to weigh
W, and W, when placed successively in the two scale-pans.
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Let S,, S, be the weights of the scale-pans, a the length of 'either
arm, and W the true weight of the body.

Taking moment about the fulerum at ti:c 1st weighing,

(W+8,)a=(W,+8S,)a. - (1)
Similarly, at the 2nd weighing,
(W"‘Sn)ﬂ:(Wn"'Sl)a sxe (2)

Adding (1) and (2), 2W=W,+W,.
W=3(W,+W,).
. Ex. 8. The arms of a balance are equal in length but the beam i3
unjusﬂy- loaded (i.e., the C.G. of the whole machine is not on the
perpendicular from the fulerum on the beam). Show that the true

weight of the body is the arithmetic mean between its apparent weights
when it is weighed being placed in succession in each scale-pan.

Lef a be the length of each arm and « the horizontal distance of the
C.G. of the machine from the fulcrum on the side of the body at the first

weighin.g. Lot W be the true weight of the body, W, and W, its appa-
rent weights and w be the weight of the machine.

"

Then taking moment about the fulerum, at the 1st weighing,
W.a=Wa+wz.
Similarly, at the 2nd weighing,
Waa+ws= Wa.
Addivz, (W,+W.a=2Wa. S W=, W)
Ex.4. A grocer has a balance whose arms are 30 cm. and 36 cm.
respectively, but which is otherwise correct. If he sells 10 Ky, of tea
to a customer at Rs.6 per Eg. by weighing half the quantity in one
scale-pan and the other half in the other, find how much does he gain

or lose by the transaction.

Let W, and W, be the true weights of the quantity of tea which
appear to weigh 5 Kg. at the time of first and second weighing.
Then, taking moment about the fulerum,
W,.80=5.36 ; W..36=15.30
W,=6; W,=4%,
Wi+ W.=6+43=103,

‘of the machine, taking 1
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' ... the grocer really gives the customer 104 Kg. of tea and receives
the price for 10 Kg.
he loses by the ‘transaction the price of 3 Kg.of tea d.e., he
loses 3 xRs. 6=Re 1.

Ex. 5. A shoplkeeper using a cominon steelyard, alters the movable

weight for which it has been graduafed. Does he cheat himself or Tis

. U. 1933
customers ? Ll :

Trom the fig. of Art. 12716, We have, when the machine is correct,
W.CA+W'.CG= P.CX,

where T7 is the weight of the body placed in the scale-pan :_Lnd P the
movable weight. If the shopkeeper increases P, the- right side of the
above equation becomes increased. ‘Hence the left sTde, and therefore,
W is increased. But ¥ was the quantity corresponding to the n_:mrked
graduation. Hence where P is increased, the shopkeeper cheats himself.

Similarly, if P is decreased, he cheats his customers.

Ex. 6. If in a Danish steelyard, aa be the dist-c?uce of the fulcrum
from the emtremity from which the weight of n lbs. 18 suspended, show
that

1*+—1-’='L' [C U. 1938]

an Qnta Oni
Hero apeys Gnia S8 distances of the fulerum from the extremity
carrying the scale-pan, when masses of (n+1) 11:15. a..nd (n+2) 1135: are
placed in the pan. Then from the fig. of Art. 1'2- 17, if I be the welglflt
oment about the position of the fulerum in
the first case,

g:,an=P.GC=P{AG—an}.

P
: an= 4G
TR Bttt
112 (1)
: 1 1 P+(n+1
Similarly, o=—=7g' *’-—%—-) = (2)

1 1 P+{nta)
anta 4G P A




296 STATICS [ Bx. XII(b)

- adding (1) and (3), we get
DARORT N 1) [2P+2u+2]_727 [Pih_;_ﬂ)]= 2
?l_n+&n;;*AG P —AG P Anty
Ex. 7. In a wheel and axle, if the radius of the wheel be 6 mngs
that of the axle, and if by means of an effort equal to 5 lbs. wt. a body be

a2
lifted through 50 ft., find the amount of work expended. [ P. U. 1932 ]
Let a=the radius of the axle,

then 6a=radius of tha wheel.

Since the body is lifted through 50 ft., the circular measure of the

L
angle through which the axle turns=‘-’(§—)s which is also equal to the

angle through which the wheel turns during the
rigidly connected with each other,

from (2).

time, as they are

Let @ be the length of the string uncoiled from the wheel as the
body is raised,

Then B0}

g <. 2=50%6=2300 ft.
the amount of the work expended =5 x 800=1500 ft. 1bs.

Examples on Chapter XII(b)

1. The pressure on th

first kind ig 6 lbs. wt. an

acting at the endg is 2 lbs.
at which they get.

e fulerum of g straight lever of
d the difference of the forces
Wt Find the ratio of the arms

ever AB. If P and () inter-
change places ang additional weights P1 and @, are added
at 4 and B respectively, the equilibrium is undigturbed.
Show that p2 — Q*=P.Q- Q.P,

3. A straight light horizonta] lever h

: as for fulerum
:‘vl]i?hgteﬁ? o?fa tind C, and from 2 point B is suspended the
_ A € pressy i 1 B
o3 LT 6 on the hinge (either upward

t not; 1
must act somewher o" exceed 37, show that the effort
4. In a lever

@ within g gpace equal to B0,
ft i
B supporteo he firsf; clagg, o weight W fastened to
are interch&nged, the

d by a foree p at the other ; if the ends
nece
@5 prove that 5= N(PQ

)ssa,ry force to balance W is a force

997
Ex. XTI(b) ] EEC R

is 4% inches long, and a nub
5 ir of nut-crackers is 4% inc i
i ? él[z;u;rdc;s;me % in. from the h‘mge._ th?}geprgzstmif
u 1)l'nd(z'ie t the ends of the arms, will crac SR
:!Lapp l:'gh?‘; of 20% Ibs., when placed on the top
wel auy 3
cracks it ? il A
< £ g ¥ ton,
ular block of Stoqe Weab.u Bico e
flt At;eigngsg centre, is to be raised by &f -cmtt\ (BfaritS b
;Vela 1 ﬂct'n;; against & log of wood in fron oL et
e 16 inches from the end of the bar in co Aot
:hdmt%mi Pind the least force that must be apr
€ stone.
raise the stone. . JURGLEG 1
aicht lever AB whose arms i .
i in o sndos tho acion o s s P s
s -espectively ; the lin ¢ .
g f [::ngB ;(:1? /. 0AB=a and [_OE{‘A—B. Fmd.
force'st'mei P to @, and the pressure on t!ne fu crum‘. e
e 1?&0 t‘aight'lever is acted on at ibs oextr{_aéml{les k hy
e L its length.
forc;s % 4 1?§+ 1: ./3—1, show that the reaction a
If Q= N
fulerum is 21/2 at 45° to the lev?r. fh e,
9. A lever without weight is of lengtdhbc,f an i%svz DES ]
i i trings of lengbhs_a an rom :
}? :Eglig;t;idrggtgwirg ?L Eori'zonbal position, show that the arms
1 = 0
of the lever are in the ratio

(a®+c2—02): (b%+c% —a?). ;
'ms of a false balance are ¢ and.b, and a
:!0}'1f3 %eb:}aﬁies P at the end of the shorter arm b, and
geﬁ the end of the arm a ; show that
A REE e T [ P. U. 1940; U. P. 1947 ]
D= QR tI
A tradesman weighs out to a customer apparently
eqtilli quentities of wheat alternately fron;) the }i:wog s'cﬁ,le;
i 1 arms. oes he gain o
fmns? of & balance with unequa B R
0s8
i the two arms succes-
2. A substance weighed from !
iviely of a false balance has apparent weights, 9 and 4 1bs,
%‘ind the ratio of the lengths of the arms and f:heiir ;';(1)1% ;
weight of the body. [ P. U.
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13. In a false balance i
+ In the arms being of unequal length
a weight is measured in one scale-pan by P lbs. qa;d in giihe:

other b
as /P :yﬁQ{bS‘ Show that the arms are to one another

14. In a balance wi

. ; th
weights of a body are 423:1
succession in th
beam is 9% ft.

unequal arms, the apparent
; Ibs. and 49 lbs. when weighed in
e two scale-pans, and the whole length of
Find the length of each arm.

15. g
e hAis ngaﬁ Sltt}}lg In one scale of a common bhalance
pugree” on the heam between the fulcrum and

the point of suspension of the scale, Will he weigh more

or less than if h
e ha :
answer. d pugree on ? Give reasons for your

¥ [C.U. 1930]
upwa:rd sAin(:ﬁiSltﬁing in one scale-pan of a hbalance presses
the fulerum an%l r{f against the beam at any point between
e Se.a{;ed : :Sggmt from which the scale-pan in
to weigh more, pended. Show that he will appear

17. The arms
f >
How muc}? d:e false balance are in the ratio of

Rl ! s a trader gain or lose i
e askecc)l ?:r iveI:(ghed at the end of the shoi‘:e;falrl::: p\i’%f:s
ilograms of potatoes at 50 paise perr Kg.

18. A halanc i

1 b e ha
unjustly loaded, A Sbéfl
AN t{};:-ew en placed successively in the two

Which the pan iy loadefia:ho of the arms and the weight with

19.
balance

of ] :
1 30 W, be the gy balance is unjustly loaded. If

Tille weight
cessi ghts of a b
o weight with s Lo Dans A HopE
180 which the scale in loaded ;
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' 91. TIf a halance be faulby in every respect, and if the
apparent weight of a body when weighed from the arms
of lengths @ and b be W, and W, respectively, its true
weight T is given by
_ Wabt Waa,
iy atb

#99 A dealer has a balance faulty in every respect, the
arms being 10 and 12 inches long. He weighs qut to a
customer two bags of rice each of the same weight. If
W, and W be their apparent weights when weighed from
the shorter and longer arms respectively, show that the

customer loses a quantity equal to & (Wa — Wa).

a

#03  Tf a tradesman weighs out to a customer a qua-n.tity
of wheat by alternately weighing apparently equal 1)01:1310135
of it in the two scale-pans of a balance which is unjustly
loaded, has unequal arms, and whose C.G. is in the longer

arm, show that he will defraud himself.

k94 A tradesman has & pair of scales, which do not
guite balance and makes them balance by attaching a small
weight to one of the pans. Show that if he tries to serve
a customer with any weight of commodiby by weighing
parts of it in succession in each scale-pan against half the
weight in the other, he will always cheat himself.

%95 A balance is faulty in every respect. A certain
article appears to weigh Py or P; according as it is pub
into one scale-pan or the other. Similarly, another article
appears to weigh Q1 or Q.. Show that the true weight of
an arbicle which appears to weigh the same in whichever
geale-pan it is put, is

P 1_Q_g =P 2@1 .
(Pl—Pe)_(Ql_Qz)

“‘:26.’ Three bodies of weights P, @, B appear to weigh
P, @, R' in a balance which is faulty in every respect.
Show that (PQ'— P'Q)+(QR' — Q'R)+ (RP'— R'P)=0.

27. In a common steelyard, show that the distance
between any two graduations is proportional to the difference
between corresponding weights. [C.U. 1923
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28. TIf the distance of the C.G. of the beam of a common

steelyard from the fulerum is 9 inches, the movable weight
4 ozs., and the weight of the beam 2 Ibs., find the distance
of zero graduation from the C.G. [4.T. 1928}

- 29. A uniform beam 4B, 2 ft. long and weighing 3 Ibs.
18 used as a steelyard, whose fulerum is at a distance 3 in.
from 4. If the movable weight be 1 lb., find the greatest

and least weights which can be weighed with the machine.

“30. A s]?opkeeper using a common steelyard alters the
movable weight for which it has been graduated. Show

bhat he cheats himself or his customer according as he
increases or deecreases the movahle weight.

i 31, A common sfeelyard, correctly graduated when new,
as its ‘weight and position of its .G, slightly changed by
the wearing away of the rod. A body of weight 5 lbs. # oz.

appears to weigh 5 lbs. Find the true weight of a body
which appears to weigh 12 lbs,

: 32. If the beam of a common steelyard be uniform and
18 weight be m times the movable weight P, and the fulerum
one-nth part of the length of the beam from the end where

She weight is suspended, show that the :

: . ) greatest weight that

°an be weighed is 1 {21~ 9)+m (n— )} P, [ D. U 1958 ]
33.

When weights P and @ are successively placed in
elyard, the movable weight is

weight is equal to that of ¢

bances of the GG, of th. 2 he machine, show that the dis-

hine from the fulerum is

Pb— Qa
P-q°

» to balance a weight f 8 1b Hi
ow far th : Soan e L
h weigb];, 5 ?LGflflla(;I:um must be shifted in order to balance
35. A Danish steel L
I Seelyard loses t4;th of its weight by use.
bdd;lzv hcf; remains unchanged, find the real gveigh{ ofs 8
aPparent weight is 20 g, ag determined by it.

/ 77 301

i i d, 16 1 d that the
7 ertain Danish steelyard, 1t 1s foun
disa;;?\hceﬁno? She fulcrum from the end carrying the scale-pan
are @ and b if the weights P and @ respectively are 1)1aqed
on th(; scale-pan. Find the position of the centre of gravity

of the instrument and show that its weight is o
G, [ C. U. 1944 ]
a—b

' ' ; & the sensibility at
i Danish steelyard, show thg. :
a,n?-'?poil{f? x{'l’aries as the square of fihe distance of the point
from the end at which the weight is suspended.

[ For a small change in the weight, the grealer the shifting of ..fhc
Sulerum, i.e., the greater the distance between the graduations showing
wlerum, 1.e., et :
the difference in weights, the more sensitive is the steelyard. ]

ius of the wheel being Fhree times that of the
ax?e&ﬁnﬁh];\eo];ﬁ;g the weight will be lifted when the power
is '1)1,1116(1 down through the space of one foot. [ C. U. 1922 ]

t weighing 33 Ibs. is raised from well by
mfﬁ?n.s gf h;;l;zl :ndg axle. The radius of the wheel‘ s
91 inches and while it makes & revolutiops, the bucket rises
10 ft. Find the force which will just raise the bucket.

40. If the difference between the radii of a \.vheel and
axle be eight inches, and the power and the weight be as
6 : 7, find the radii.

41. The radius of the wheel is four times that of the
axle, and the string on the wheel is only strong enoug1_1 to
support a tension of 40 lbs. wt. ; find the greatest weight
which ean be raised.

42, Twomen, who can exert forces of 200 lbs. wt. and
925 lbs. wt. respectively work at a wheel and axle, in
which two wheels are attached, of 5 feet and 4 feet diameter
respectively, the diametier of the axle being 20 inches ; find
the greatest weight the men can raise by if.

43, The radii of the wheel and axle are a and b
respectively, the weight consists of a cage of weight W witp
a man of weight T’ inside it, who supports the system by
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holding the rope that passes over the wheel. Find thé
tension he produces in the rope. [ Allahabad ]

*44, A particle of weight 40 lbs, placed on an inclined
plane is supported by a force 24 lbs. wt. acting along the
plane. If the same weight were to be supported by a force
aching horizontally, show that the force must be increased

@n the ratio of 5 : 4, while the pressure on the plane will be
increased in the ratio of 25 : 16. '

45. Show that the smallest force which will keep & body

in equilibrium on a smooth inclined plane must act along
the plane.

46. Find the inclination of a plane to the horizon on

which a power parallel to the plane will support double
1ts own weight.

4?. A heavy body rests on a plane inclined to the
horizon at an angle « ; if the pressure on the plane be equal
to the effort applied, show that the effort is inclined at an
angle 4z — 2a to the plane.

*48. A power P acting parallel to an inclined plane can
supgort W, and acting horizontally can support W,, both
resting on the same plane. Prove that P =1y, % - 7,2

ANSWERS
ik, LEsL 5. 2% 1bs, wt. 6. 112 1bs. wh.
9. P:Q=bsmp@:asina; reaction= NP QT =2PQ cos (a+B)-

11. TLoge. 12. 2:3; 6 lbs. wt. 14, 13 inches ; 14 ins.
15. Tess. 17. Loses 10 paise. 18. 4:5; 11 Kg.
19. 13 1bs, 20. (W, +w,); W, —W,). 28, 18 inches.
29. 16 1bs.; 81bs. 81. 12 Ibs, 3 oz, 84. 1;:inches.
35. 18 1bs, wt 36. Di
. Wt - Distance of C. G. from the scale-pan is

ab(Q - P)/(bQ —aP). i
38. 4 inches, 89. 6 lbs, wt. 40. 4 ft.; 43 ft
41. 160 1bg 4 ; :

s 2. 1140 lbs, i

PR bs 43. (W+ W)b/(a+b).

Appendix A

THEORETICAL PROOF OF THE
PARALLELOGRAM OF FORCES

1. Laplace’s proof.

hall ficst of all consider the case of two perpendi-
culgfr_'v ?oicgs, and then extend the result to the case of any

two oblique forces.

Let P and Q be any two perpendicular forces acting at
0 along 04 and OB, and let B be the magnitude -of their
resultant acting in an unknown direction OC at angle 6 to
04. Let XOY be drawn perpendicular to OC.

Then R along OC is equivalent fo a force P at an angle
0 to it (s.e., along 04), and a force @ perpendicular to P.
Hence, a force A.E along OC is equivalent to force 2.P ab
an angle 6 to it, together with a foree 4.0 perpendicular
to the latter, for multiplying by the factor A is essentially
the same as an alteration in the scale of representation.
Thus, the force P along 04, which can be taken as

%- E along 04, can be replaced by a force E-P at an

angle 0 to OA4, (i.e., along OC), together with force

r
g- Q in the direction OX perpendicular to OC. In the s
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same manner, the force Q=%- R along OB ca-n- be replaced

by a force jQ?, P along OY at an angle 6 to OB, together

with a perpendicular force g Q along OC. Thus, the two

given forces P along 04 and Q along OB are equivalent to
| p? 2
a force B + % along 0C, together with a force l}? along

0X and a force QRB along OY, and the two latter being

equal and opposite, cancel one another. Thus, the single

p*+Q*
B

force equivalent to the two given forces P and Q is — 5

along OC, which is thus the required resultant E.
2 9

Hence, B= "% or, B* = P* + Q" i.e., B= JPT+ ",

?ving the magnitude of the resultant of two perpendicular
orces.

z

-
4
s ‘ »
R 4 C
% i AT
E M éi. / /
ok !
S 7= > E e)
8 s % ¢ Oy A X
B B
Y =}
Y
Fig. (i) Fig. (ii)

For direction, let us consider first three equal forces

F, I, T, acting at O along three mutually perpendicular

directions OX, OY, 0Z, and let them be represented by

04, OB, 00 respectively. ¢
Ry ) v. Complete the rectangul
piped with 04, OB, OC as adjacent edges (Fig. i)a_I paratielo;

APPENDIX 4 805

The resultant of the two equal forces F, F repre_sent'ed
by 04 and OB must, from symmetry, be equally inclined 't;o
them, and therefore must act along the diagonal OD ; also its
magnitude, from what has been proved above, is &/ F2+
=F /2. Combining with this the force F' along QO, the
resultant of J7 /2 along OD and F along OC must evidently
be along some line in the plane COD. Again, considering
the two forces F, I represented by OB and OC first, and
then combining their resultant with 0A, the final resultant
will lie in the plane AOH. Thus, the direction of the final
resultant being common to the two planes COD and AOE
must be along the diagonal OO'. Hence, we establish thab
the resultant of two perpendicular forces F /2 along oD
and F along OC is in the direction of the diagonal 00" of
the rectangle ODO'C, and its magnitude is

NIEH(F 2R =F J3=00.

Next, taking forces F, F./2, F along O0X, 0%, 04
represented by 04, OB, OC (Fig. ii), considering first the
resultant of 04, OB, and then combining it with OC, and
alternatively, finding the resultant of OB, OC and then com-
bining with O4, we can show exactly in a similar manner as
above that the resultant of two perpendicular forces FJ3
along OD and F along OC is along the diagonal 00', and its
magnitude = F' J/4= 00'.

Then take F, F /3, I along 0X, 0Y, OZ. . Proceeding
in this manner, we show finally that the resultapt of two
perpendicular forces Fn/n_and I is represented by the

diagonal in magnitude and direction. ,

Now, taking ¥, F, F i/n along OX, 0Y, 0Z we extend
the above result to the case of two perpendicular forces
F J2 and F Jn. Then taking F, F' /2, F' /n the result is
extended to I «/3 and F./n. Proceeding thus, we prove
the result for the case of two perpendicular forces F /m
and F «/n where m and n are any two positive integers.
Writing m=p* and n=g¢*, where p and ¢ are any two
positive integers, we finally prove the parallelogram law of
forces to hold good for two perpendicular forces pF' and

gF. We can replace pF and ¢F' by P and @), where P and

20
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@ are any two commensurable forces, for the ratio ¢f any
two commensurable guantities can be puf in the form p : ¢
where p and g are integers. ;

Even if P and @ are incommensurable, their ratio can
be put in the form of an endless decimal, and we can geb
a terminating decimal differing from it by as small & quantity
2s we please, which can he put in the form p :q. Accord-
ingly, in the limit, the law is extended to the case of two
incommensurable forces.l

Thus, the parallelogram law holds good for finding the
resultant of any two perpendicular forces P and @, whether
commensurable, or incommensurable.

Lastly, to prove it for any two oblique forces, let OA
and OB represent two oblique forces P and . Complete
the parallelogram 0ACB.

Join OC and draw XOY perpendicular to the diagonal
0C, and let AL and BM be drawn perpendiculars on OC.

By what has already been proved, the force 04 can bhe
replaced by the perpendicular components OX and OF and
the force OB by the perpendicular components OM and
O0Y. Now from Geometry, triangles OBM and ACL are
congruent and accordingly OM=LC, and AL=BI
Hence,' the forces represented by OX and OY which art;
respectively equal to AT, and DM, being equal and opposite
cancel one amother. Thus, the forces 04 and OB are;
equivalent to a force OI + Q= OL+LC=00 along OC

Hence, 0C : :
o i) represents the resultant in magnitude and
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Thus, the law of parallelogram of forces is completely
established. :

2. Duchayla’s proof.

This proof is based on the assumption of the prineciple
of Transmissibility of a force.

We first of all prove that if the parallelogram law for
the direction only of the resultant be true for any two
particular forces P and Q acting at any angle, and also
for two forces P and R acting at the same a.pgle, then
it will be true for the forces P and @+ R acting ab the

same angle,

T.et OA and OB represent the forces P and @, and
let BD along OB represent B. Complete the parallelogram
ODEA and draw BC parallel to O4. Join OC, OE, BE.

By our assumption, the resultant of P and Q is in
the direction of the diagonal OC, and by the principle of
transmissibility of a force, this resultant may be supposed
to act at C. Here, it can be resolved into its components
P and @ along BC and AC parallel to their original
directions.

Again, P along BC may be supposed to act at B
and this along with E along BD will, by our supposition,
give rise to a resultant along BE, which in its turn can
be assumed to act at H. Also @ along AC may be supposed »
to act at E. :



808 _ STATICS

Thus, the tiwo forces P along 04 and @+ R along OBD
are ultimately equivalent to two forces both acting at Z,
one along CF and the other along BE. Hence, the resultant
of P and Q-+ R acting at O, represented by O4 and
OD respectively, must be acting through % and therefore

must be along the diagonal OE of the parallelogram
ODEA.

<

Now, to start with, take two equal forces F, I’ along
any two directions, represented by 04 and OB. From
symmetry, their resultant must be equally inclined to O4
and OB, and accordingly it is in the direction of the
diagonal of the rhombus OACB. Hence, {from what has
been proved ahove, the parallelogram law for direction
of the resultant will hold good for forces F and F'+ F i.e.,
and 27 along 04 and OB. Again, as the result is true for
F, F and for F, 9F acting at the same angle, it is true
f_or forces F and 317 acting at the same angle. Proceeding
In this manner, it can be shown to be true for F and pF.
T!:“lﬂ, it is true for F+ F and pF, i.e., for 2F and pF.
Similarly, it will be true for 3F and pF and ultimately for
ol and pF where p and ¢ are any integers. Replacing pF'
and ¢gF by P and @, we see that, so far as the direction
18 concerned, the parallelogram law for resultant is true

for any two commensurable forces P and @ acting at
&ny angle.

The result then can be extended to incommensurable
forces as well, in the limit, as in the previous proof.

. Hence, for any two forces P and (), commensurable or
incommensurable, acting at any angle, the parallelogram
}a,w 18 established so far as the direction of the resultant
1s coqcerqed. Now to establish that the law being true for
dn'ectmn: it will be true for magnitude as well, it is left ag
an exercise to the student. In this connection, ses Tx, 8
worked out, p. 24, and Ex. 58, p. 32 set in the hogk, W

Appendix B

1. Note on Art. 3°2.

2 '] -ces P, @, B acbing
C be the triangle where the forces P, ¢, :
pergjegodgc, c4d, AB ;1,1 outwards meet at O, a point

"

inside the triangle ABC. Let the forces eut BC, C4, 4B
at D, B, I respectively. :

=

P_Q
BY hYp-v E b

But we have,

P Q B L,

W6+ gin BOF sin FOD  sin DOE
[*. /LA=180°—LEOF]

Hence by the converse of Lami's theorem, the forces are
in equilibrium.

We can prove the theorem similarly if O be outside,
on & side or at any angular point of AABC.

Note. Also in case the directions of the forces are such that
forces make equal angles with the corresponding sides of the triangle
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(instead of being only Pperpendicular), the theorem can also be proved.
The proof is ag follows :— b

Let ABC be 2 triangle where the forces P, @, B through
make the same angle o (@ # 0, or =) with BC, €4, AB.
Let the forces cut BO, CA, AB a D B B respectively.
£LO0DC=/ OR4~ LOFB=aq, Let LEOF=0,, / FOD = 02,

,_LDOE=03. From the quad. ODCE, Os+a+C+a—a=2qg,
2.6, 0y =n—C. Similarly 0, = — 4 and 03 =x—B. Hence
the proof follows ag before,

2. On Note 3, Art. 8'1.

Proof :  In note 3, Arb. 58 we have seen that if g
system of forces, acting on a rigid body keeps it at rest,
the algebraic sum of their moments ahout any line in the

oay 18 Zero,

) Lei} three forces P, @, B acting on g rigid body keep it
in equilibrium, Tt 4 be a point in the body on the line
of ackion of P, Yo take two distinct points B and D on
the line of action of Q. Since forces P, Q, B are in equili-
um, the algebraic sum of their moments ahout the
sbraight lineg 4B, AD must be zero, But the moments of
thea?'d 8] aboup 4B and AD vanish, since 4B, AD intersect
o tI}nes of action of P ang Q. Hence, the moment of R
U6 4B and AD pygt vanish. Tt therefore follows that

t?olntss of intersection be ‘G and E. Now 4B and AD are
b lineg ; go they determine g plane

APPENDIX B 22l

i i nd R
E 1 's that the lines of action of ¢ and
fnaltl L) The coplanar forces ¢ and 1 have
Now this foree S

Tt
lie in this plane =. :
2 single resultant (say S) in the plane a.

Q

and the force P keep the body in equilibrium. Hence

P and S must have the same line of action.
forces P, @, R are co-planar.

2 : us :
Otherwise, we may proceed th

thatr, i ; -
i agses through 4, W’hl(‘.h. is any poin
on tS]mcﬁ t:;l eofligiﬁ;np;? P, the plane = contains the line of
e lin

action of P.
Hence the forces P, @, F are co-planar.




UNIVERSITY QUESTIONS

1967 (Calcutta)—Pass

1. (a) Find the resultant of two like parallel forces acting on a rigid
body.

{t) One end of a heavy uniform rod, of weight ¥, rests on a
smooth horizontal plane, and a string tied to the other end of the rod
is fastened to a fixed point above the plane ; find the tension of the
string,

2, Find the

position of the C.G. of 4 thin uniform lamina in the
form of a quadra

nt of an ellipse,
(b) A particle P is attracte
to uPL, uPM and uPN res

Where G is the centre of gravity of a uniform thin lamina bounded by
the sides .21, N and NI,

d to three points L, M, N by forces equal
pectively. Show that the resultant is SuPG,

3. (a) Shew that any system of forces, acting in one plane upon
& rigid body is equivalent to a force acting at an arbitrary point
of the body together with a couple. Hence deduce the conditions

of equilibrium of a system of forces acting in one plane upon a rigid
body.

() A uniform rod of weight ¥, is supported in equilibrium
by a string, of length 21, attached to its ends and passing over a
Smooth peg. If a weight W’ be now attac
show that it can be placed
sliding 5 length

hed to one end of the rod,
in another position of equilibrium by

i
W—Ww
of the string over the peg.

4. (2) Explain what do you understand by ‘limiting friction’ and
‘cone of friction’,

(t) A uniform ladder rests in limiting equilibrium wity one end
On a rough horizonta] Plane, and the other againsg & smooth vertical

Wwall ; a man then ascends the ladder ;

show that he eannot go more
than half-way up.
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1. (@) If three forces acting upon a rigid body,.ba re;;re;etliit:sl;:

: de, direction, and line of action by the sides o g
mngmt}l e, der, shew that they are eguivalent to a couple whose
zkfx?en::nis (::pre;ented by twice the area of the triangle.

[ ¢ S
”) FOTCQS PrO )()rtl‘onﬂl to AB, BG Lnd 2CA act ﬂrl-oﬂg thﬁ Sl&e
)g](l .JBG t'ﬂ\e‘ﬂ in der H ht he resu bﬂnt 18 representel
of a 1 [‘inn £ aK orae show t 1t the l t a

e 5 ; P
irecti hat its line of action cuts B

i i direction by C4 and t

in magnpitude and

3 1
produced at a point D where CD 18 equal to BC.

C]rcle f I'ﬂldlus
2 ill wire 18 bEntr into an arc of a o)
- (ﬂ,} A uﬂlio[m txh

vire is 8 cms.
d the distance between the free ends of the wire i
5 cms. an

Find the position of the centre of gravity of the wire.
1

i f & regular polygon
f the angular points o aul
At each of (n—1) © ] 3 T L
= @) f a particle is placed, the particles being equal i Sthewcirhde
SR fpuhe{r centre of gravity from the centre o h
the distance o

9 i ius of the
e, 1 is ,J.(n_]), \vherﬁ 18 t}la r&dlu
circumscrlbmg t'hn P \

ircle. »
& the arrangement in the “third system of pulleys’

3. (a) Describe advantage of the system if there are n

and calculate the mechanical
ight @.
ulleys each of welg - o |
P iform beam, of length 2a, rests in equilibrium, -Wlth one
(Z'J) 3 un'l Ot  smooth vertical wall and with a point of its length
end resting agmn;oobh horizontal rod, which is parallel to the wall
a B

resting upon show that the inclination of the beam to

and at o distance b iror::l it
the vertical is sin~*(bla)®.
[
4, (a) BExplain what you understand by the term “angle of
. (a) E3

friction’.

(b) A uniform ladder rests with one end against a smooth ve.rtical
all and the other on the ground, the coefficient of friction being £ ;
wall ¢
if the inclination of the ladder to the ground be 45°, show that a man,
whose weight is equal to that of the ladder, can just ascend the top of
o
the ladder without its slipping.
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1969 (Calcutta)—Pass

1. (a) State and prove Liami’s Theorem,
(6) Thres equal weightless strin
equilateral triangle ABC and a w
triangle angd weight be supporte

two strings at B and C, each af
tension in B( is

‘gs, are knotted togsther to form an
eight W is suspended from A. If the
d, with BC horizontal, by means of
an angle 135° with BC, show that the

w :
6 (GENG))
2. (a) If thres forces, acting upon a rigid body, keep it in equili-
brium, then prove that they must bhe
(i) coplanar, ang
(ii) either concurrent or parallel.
(%) A uniform bar AB of w
& smooth hinge at itg upper en
horizonta] dis
Prove that the

eight 77 and length 22 can turn about
d 4, and the lower end B is kept at a
ance 2b from the hinge by a horizontal force applied at B.
reaction at the hinge is

e

2 a*~p?

3. (@) Find the resultant of two unlike unequal parallel forces

ingon a rigid body. How will your result be modified if the forces
are equal ?

act

() From 2 uniform trian

gular board a portion covered by the
inseribed circle is removed.

Show that the distance of the centre of
8ravity of the remainder from any side g is
° 8 25°—3raS
8as  s*—xS
Where § i the ares and s-the gemi-

perimeter of the hoard, [ area of the
in-cirela= TS?/52,]

4. (a) Show that the ineclinatio

1 of a rough plane with the horizonta]
on which g particle,

acted upon solely by its own weight, is just about
to slip ig equal to the angle of friction,
(®) A man whoss Weight is 160 1bg,

means of g single string system of pulley,
the upper block while each blogk
be his thrusg on the ground if he P

Traiges g body of 9'5 cwt, by
8. The rope is attached to
contains 5 pulleys. Fing what will
ulls vertically downwards,
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rigid body and
in one plane acts on a rig ‘
. A system of forces i i S
th lm("'m) :n{s} of the system about three non-collinear %mlhc s
ent; : ‘ : ; :
1011 :ro a, 8, . Prove that (i) if a, 8, v are not all ;qrut;.l, Tty mis
plane hha'h il S .
i i force; (ii) if a=B=930, T
is equivalent to a single ‘ D, Shr e
'qm]cnt. to a couple ; (iii) if a=g=v=0, the system is in eq
equivye g 3

Thy rents of a system of forces about the points (0, 0), (a, 0),
e moments of a s

" respectively ind the components of their
' {0, a) are aW, 2aWW, 3aWW respectively. Finc

vhi rectangular) and
resultant parallel to the co-ordinate axes (which are rectangular)
the equation to its line of action.

i 1 AB of
(b) Forces P, Q, R act respectively along the :qldes pG, CAt1 S
the triangle ABC. Show that their resultant will act along n,f &
16 trig ; : :
Joining the centre of the circumscribed circle and the orthocentre o

triangle if )
P cos Bcos C _ @ cos Ccos A _ R cos 4 cos

—c0s*C  cos®C—cos?d  cos’Ad—cos® B
cos*B—cos*C cos*C—cos?d  cos

- 2. (a) The distance of the angular points and the poiflt of lt.lt{-:L‘S(-:c-
tion of the diagonals of a plane quadrilateral from any line OX in its
Plancare a, b, ¢, d, e respectively. Show that the distance of the centra
of gravity of the quadrilateral from the same line is }{a+b-+c+d—e).

<N ML
(6) From a uniform triangular board & portion consisting of the

area of the inscribed circle is removed ; show that the distance of the

centre of gravity of the remainder from any side 4 is

S 2 _37“f8 where Sis the area and s the semi-peri-
3as s*—w8S
meter of the board.

(c) A uniform rod, of weight 17, is supported by
one attached toeach end, which pass over small smooth fixeq pulleys
and earry, at the other ends, weights w, and w, respectively, (w, > w,)
Show that the inclination of the rod to the horizon ig

two fine strings,

sin=! ———1 — — 3
W2(w,*+w,2) - W2
3. (a) If friction resists motion,

how woulq you reconcile thig fact
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With the statement; :

‘If there were no friction between our shoes and
the ground, we should

not be able to wall’ ?

(8) Two cubes, each of weight W and side 24,
table at a distance apart. On

. Oofradius g ang weight 1,

rest on a horizontal
them rests symmetrically a eylinder,

the whole system being symmetrical about
the vertica] plane through the centres of the cubes, If all the surfaces

are equally rough, show that #, the coefficient of friction, must not be
less than the Ppositive root of

rE2W+w)+2 /3 MW+ w)—w=0,
(¢) The arms of 5 balance are of

Temains in g horizonta] Position when
Bhow that if

unequal length, but the beam

the scale-pans are not loaded.
a tradesman appears to weigh out equal quantities of the
Same substance, using alternately each of the scale-pans, he will
defraud himgelf,

1969 (Calcutta)—Honours
1. (a) Find the resulta

» 4D 1is perpendicular on

s i lo AB and -—1—
Ap 2eting along A0

BC; prove that the resultant of forces

acting along 4 ig AiD acting along 4D,

() Forees P, Q, 2 act along the sides BC, 04, 4B of a triangle
4BC and forces P, qQ,

B act along 04, OB, OC whero O is the

cenfre of the circumscrihed circle, Prove that, if the six forces are in

equilibrium, then

P cos A+Qcos B+ R cos C=0,

-1—3'_12)_..]. Q_Q_.,,_R'R — 0.
a b c

2. (a) Find the conditions of equilibrigm of three forces acting on
& Tigid body.

A heayy uniform rod, of length 9g,
Without a fixeq smooth hemispherical

rests partly within and partly
the bowl is horizontal anq one point of

bowl, of radius » ; the rim of

the rod is in contact with the

rod to the horizontal, show that
2r co8 20=g, o5 5, ;

317
UNIVERSITY QUESTIONS

Tea St inclination of the ro a an thus
1 h W thﬂ!t the gree te d tha t Ci
Also sho

resh is

: sin~* (—:,a)

i i lar portion
i lamina ABCE, a triangu
g a uniform square : T
(_b) From ay, where D is the middle point of CE. -If tjhe ;qtmlt;;o
o cu{t “‘;; );,uspenrled at 4, show that AD will be inclined to
ABCD is free
vertical at an angle

14
tan~?* (2—7)'

ipti i i-axes a, b, @ > b) hangs
i heavy elliptical wire, (semi - ) ha
) -ﬁlu::]’é:;ﬂ;eg. Show that if the wire can be ?n ethl?ru_xm
iy smﬂ[fmint :i it in contact with the peg, the coefficient of friction
with any
must not be less than

(a® —1*)/2ad.

(b) Describe the system of pulleys with separate strings attached
e -
to a movable bar carrying the weight.

If, in such a system, there be four pulleys of weights 1'_ 2, 8'04 Tbs.
eqpe;tlir:'ely beginning from the lowest, and a man, weighing 126 1bs.
Ies ]

and standing on the ground, supports a weight of 106 1bs., find his
thrust on the ground.

(c) Calculate the Horse-Power of an .engine which require;
10 minutes to pump out water from a cylindrical well 200 £t deep an
of radius 21 . [ Supposo that the well is full of water and that the
water is pumped to the level of the top of the well. |

1967 (Gauhati)—Pasg

1. TIf three forces acting at a point be in equilibrium,
the forces are coplanar and each force ig Proportional to the
angle between the other two,

show that
sine of the

O is the circumecentre of the triangle ABQ; forces P, @,
along 04, OB, OC respectively are in equilibrium ; prove that

B e B Ml ik 1.0 D !
m“—a’)_ *e* +a*—p?) ¢*(a?+p® —¢?)

B acting
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e
2. If three forces acting on a rigid hody' can be repre?czifstlzhacl;
respects by the three sides of a triangle taken .m ordc;r, prtt:::icl By Vi
will be equivalent to a couple whose moment is equal to
i e. ; 1
j tj‘;té“‘i‘;ﬁ& triangular plate; 4’, B, ¢’ aro respectw.ely the zﬁils
points of BC, G4, 4B ; forces represented in’ ‘magn’lt.l’lde,A’pB’ L
direction and senge by K.BC, K.CA, K.AB, \.B'C JAC A, ?\(i i
the plate in equilibrium, What is the relation between K an ?
8. Attempt citler (a) and (5) or (c) and (d) :— s
(@) Find the centre of gravity of a strf;ight rod whose
i of the distance from one end, ‘
vm:les(;a‘)s ?i:??:ﬁ; ladder, of length 24 and weight W, rests against

1
i ipping on
& smooth vertical wall and its lower end 18 prevented from sllppl:(ljing
the floor (which is smooth) by means of a string of length 1, cot;l:‘l‘might
it with the junction of the wall and the flocr. If a person o
i = i d, deter-
2W stands on a rung of the ladder distant a2 from its lower end, i
mine the reactions at the two ends of the ladder and the tension
the string, : i ! R
(c) Caleulate the horse-power of an engine which tal;es 105’; 1::1:; ¢
tes to pump out water from a ecylindrical well full of waf:rAhove i
section 120 sq. ft, and of depth 90 ft. to a level giound 14 ft. a i
surface of the well, [ Wt. of 1 cu. ft. of water=62% 1h, ]

(@) A man, of weight 126 Ib., supports a weight of 106 Ib. by~

means of four pnlleys arranged in order of the ‘third system’, one of
these pulleys’ being fixed. If the masses of the movable pulleys

beginning from the lowest are 1, 2, 3 1b. respectively, find the thrust of
the man on the ground. ‘

1968 (Burdwan)—Pags

1. (a) A weight is supported on a smooth plane of inclination a to -
horizongal by a string ineclined to the vertical at an angle . If tlfe
ed to B and the slope of the string is
e string is doubled to support the weight.
—cob y=2 cot 8.

resultant of two equal and like parallel forces acting

the

slope of the Plane be inecreas
unaltered, the tension of th

Prove that cot q
: (b) Find the
on a right body,
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* 2, (a) If three forces,
Magnitude, direction and line of action by
in order, then they are equivalent to
twvice the area of the triangle,

acting upon a rigid body, be represented in

the sides of g triangle taken
& couple of moment represented by
Prove this. 3

ft. long
one of which ig g ft. and ¢
he forces on the props,
the beam fop which th
3. (a) Prove that, if three fore
keep it in equilibrium, they musg

() The upper portion of

semi-vertical ap

(6) A uniform beam, 14
two props,
Calculate ¢
that end of

and weighing 120 lbs,
he other 5 ft, from
When a weight of 100 1bs,
¢ equilibrium is Possible,
€8 acting in one Plane u
be either concurr,
& right circuly
gle @ is cut off by a Plane p
Plane passes through the middle poing of t
remainder,
4. (a) Explain ¢
Limiting friction ;

-
» rests on
its centre,
is placed at

pon a rigiq body
ent or paralle],

I cone of height 7, and
arallel to thq base, 1 the
he axis, finq the

of 105 1bs,, v

: i Power Supports g eight
are 3 movahlg Pulleys, each waighine
show thag with an n.dditiona.l movalla Pulley, algq \\'ﬁighinmnilig '1 "
be maqe to support g weight of 909 1bs, 3 il
1969 (Burdwan)HPass
1. (a) 4, B, C are three poj
3 8 Points gp the ojy
Forceg PlAR and P|BC gt along 4 and p :“mfemnce e e
their resultant gog along the tan ;

(b) Proyg that,

& trianglpy Ieep
its siges taken ip order,

2. (a) 1£ two like Parallg

their Momen g aboy

their resulty,

1 forcag 'L'L{:t."
t any Poing j

: algebraje
2 thejr 1, w e sum of
() & myan® the same gy Pio:ni;: 00 the mopy gy °
8 i e
Momengy (5 Ces in

Spe
Show t
algebraj of Gi~-q hat tne
Orceg acting Upon, 2 1ipi Mentg f
gid body, o & sy of ¢
s 0 3 4) )1&.
epa.r‘ttely,vamsh,t © System is: il equ;?zh of threg 4, n-col; Planay
Ibrium,
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(b) Find the position of the centre of mass of a uniform hemis-
pherical shell of radius 7.

4. (2) A uniform ladder of length 7 and weight W rests with its fof)t
_on a rough floor (coefficient of friction=p) and its upper end agairist
a smooth wall, the inclination of the ladder to the vertical being 0.
A force P is horizontally applied to a point of the ladder at & dist&ﬂ('? c
from the foot so as to make the foot just on the point of moving

wi
towards the wall. Prove that P=L— e
(b) Draw a neat diagram of the First system (separate St“;g
system) of pulleys with three movable pulleys. Calculate the

mechanical advantage of the system for n equally heavy movable
pulleys, each of weight w.

1969 (North Bengal)—Pass

1, If any number of forces acting on a particle be represented

in magnitude and direction by sides of a polygon taken in order,
show that the forces shall be in equilibrium.

In the first system of pulleys in which there are four movable

pulleys each of weight w, if P be the effort and R the stress on the
beam, then show that

R=15P—-11w.

2. A systom of n like parallel coplanar forces P;, Pas .-+ Pn 806
at points 4,, 4,, ..., 4, whose co-ordinates referred to rectangular axes

are (z,, 4,), (€2, 9.), ...... , @m yn); find the point at which their
resultant acts.

Find the centre of gravity of the arc of the parabola 7= 4ax

included between the vertex and an ordinate at a distance at® from
the vertex.

3. Define cone of friction. State the laws of friction. A heavy

uniform rod rests in limiting equilibrium within a fixed hollow sphere.
If N be the angle of friction, and 2a the angle subtended by the rod
at the centre of the sphere, show that the inclination 0, of the rod
<0 the horizon is given by 2 tan 6=tan (a +2) —tan (a—2). '



