U.G. 1st Semester Examination - 2023

PHYSICS

[MINOR]

Course Code: PHY-MI-T-01
(Mathematical Physics-I)

[NEP-2020]

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any five questions:

 $2 \times 5 = 10$

- a) The function f(x) = |x 2| is continuous at x=2. Check whether the function is differentiable at x=2 or not.
- b) Plot the function $y=2\sin(x-\frac{r}{2})+3$, Find the time period of the function.
- c) Discuss the exitance of unique solution of the ordinary differential equation $y'=xy-\sin y$, y(0)=2
- d) Find the projection of $\vec{A} = \hat{\imath} 2\hat{\jmath} + \hat{k}$ on the vector $\vec{B} = 4\hat{\imath} 4\hat{\jmath} + 7\hat{k}$

- f) What is independent random variable? Give example.
- g) Find the eigen values of the matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$
- h) Give example of a symmetric and a skew-symmetric matrix.

GROUP-B

2. Answer any two questions:

5×2=10

- a) State Greens theorem. Prove Greens theorem using Gause divergence theorem.
- b) If $\vec{A} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$, evaluate the flux of \vec{A} across the surface of a unit cube with two opposite corners at (0,0,0) and (1, 1, 1) respectively.
- c) Investigate whether the equation $x^2ydx-(x^3-y^3)dy=0$ is exact or not. Solve the equation.
- d) Calculate the determinant, trace, eigenvalue and eigen vector of these Pauli matrices

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Answer any two questions:

10×2=20

- 3. a) Using Green's theorem evaluate $\int_C (x^2 y dx x^2 dy)$ where C is boundary described counter-clock wise of the triangle with vertices (0, 0), (1,0) (1, 1).
 - b) If $\vec{F} = (2x^3 3z^2)\hat{i} 2xy\hat{j} 4x\hat{k}$ find $\iiint \nabla \cdot \vec{F} dV$, where V is the region bounded by the coordinate planes and the plane 2x + 2y + z = 4.
- 4. a) $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and $\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$ are two vectors. Show that the scalar product $\vec{A} \cdot \vec{B}$ remains invarient under rotation of angle θ about Y axis.
 - b) Let $y_1=t$ and $y_2=te^{4t}$ are two solutions of a second order differential equation. Show that these two solutions are independent. 6+4
- 5. a) Plot the curve y= cosh X
 - b) Show that $df=y(xy+e^x)dx-e^xdy$ is not exact differential but $\frac{df}{y^2}$ is exact.
 - c) Find the area of the ellipse $x=a \cos \varphi$, $y=b \sin \varphi$.

(3)

- d) What is Dirac delta function? Write two properties of it.
 - Show that $\delta\left(\frac{x}{a}\right) = |a|\delta(x)$ 2+2+2+2+2
- 6. a) State the order and degree of the differential equation

$$\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^2 + x^3y = 0$$

- b) Solve the equation y'' + 6y' + 8y = 0Subject to the condition y = 1, y' = 0 at x = 0Where $y' \equiv \frac{dy}{dx}$ and $y'' \equiv \frac{d^2y}{dx^2}$
 - c) Prove $\vec{\nabla} \times (\phi \vec{\nabla}) = (\vec{\nabla} \phi) \cdot \vec{V} + \phi (\vec{\nabla} \cdot \vec{V})$ for a scalar field $\phi(x,y,z)$ and a vector field $\vec{V}(x,y,z)$.

Now take \vec{V} to be a non-zero constant vector field \vec{C} and use Stoke's theorem to prove that,

$$\int_{C} \phi d\vec{V} = \iint_{S} d\vec{s} \cdot \vec{\nabla} \phi$$

where the closed curve C is the boundary of the surface S 1+4+5